1
|
Jain A, Kishore N. Mechanistic insight into association of lysozyme, serum albumin, and insulin with aloin: Thermodynamic and conformational analysis. Int J Biol Macromol 2025; 306:141413. [PMID: 39993682 DOI: 10.1016/j.ijbiomac.2025.141413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Lysozyme, serum albumin, and insulin carry out essential functions in the living systems. The properties and functions of these proteins may be positively impacted in association with Aloe vera, which is known to have usefulness as dietary supplement and clinical conditions. In this work, the conformational changes in these proteins have been analysed as a result of interaction with aloin, which has a long history of use in traditional health management. A combination of circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry have been used in analysing the associated thermodynamic signatures and structural changes. It is observed that lysozyme, and bovine serum albumin showed weak binding behaviour with aloin at molar ratio of (1:1), which is found to be entropically driven at first binding site while enthalpically driven at second binding site. Similarly for insulin also, the interaction of aloin increased with increase in its concentration and the binding of ligand at first and second site is entropically and enthalpically driven, respectively. These three proteins offer hydrophobic and hydrophilic functionalities for establishing intermolecular interactions with aloin. Differential scanning calorimetry and circular dichroism spectroscopy have provided mechanistic details on tertiary structural changes in these proteins as a result of interactions. The results offer valuable insights into molecular mechanism of conformational changes in these proteins and hence their properties in association with aloin, thereby, having biological implications related to health and food industry.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Maheshwari A, Kishore N. Deciphering the spectroscopic and thermodynamic aspects of binding of biologically important antioxidants with the alkali induced state of human serum albumin. Phys Chem Chem Phys 2024; 26:28689-28704. [PMID: 39529604 DOI: 10.1039/d4cp03636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Protein-ligand interactions are crucial for developing and identifying novel therapeutic targets. In this study, we investigate the interaction of the alkali induced state of human serum albumin (pH 11.2) with three hydroxycinnamic acid derivatives (HCDs), ferulic acid (FA), sinapic acid (SA) and trans-o-coumaric acid, which are biologically important antioxidants, and compare the outcomes with the results obtained at physiological pH (7.4). This study aims to explore the interaction of altered protein conformation with small molecules. Spectroscopic characterization methods show that the conformation of HSA and the ionic properties of HCDs are pH-dependent. Fluorescence, FRET and lifetime measurements reveal that the binding of HCDs with HSA is different at both pH 7.4 and 11.2. Despite the moderate binding of HCDs to HSA, circular dichroism and thermal denaturation studies report no conformational changes in HSA in the presence of HCDs. Isothermal titration calorimetry is employed to assess their binding based on structure and energetics using thermodynamic parameters. Standard molar enthalpy change (ΔH0m) and standard molar entropy change (ΔS0m) values vary with the change of pH from 7.4 to 11.2 with the contributions from the exothermicity and hydrophobicity of functional and aromatic groups of HCDs. Ferulic acid (FA) and sinapic acid (SA) binding to HSA is entropically driven, whereas trans-o-coumaric acid (CA) acid binding is enthalpically favourable. Our ITC studies also reveal that the involvement of -OH functional groups present in CA in binding with HSA is greater than that present in FA and SA at pH 11.2. Overall, this experimental study shows the comparable binding strength of HCDs to both the alkali-induced state of HSA and native HSA (pH 7.4). However, the mechanism of their binding is different.
Collapse
Affiliation(s)
- Anjali Maheshwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
3
|
Thorve M, Kishore N. Binding and displacement study of gentamicin, 5-fluorouracil, oxytetracycline and rolitetracycline with (BSA: Drug2) complex using spectroscopic and calorimetric techniques: Biophysical approach. Int J Biol Macromol 2024; 276:133677. [PMID: 38986981 DOI: 10.1016/j.ijbiomac.2024.133677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Understanding of energetics of interactions between drug and protein is essential in pharmacokinetics and pharmacodynamics study. The binding affinity (K) helps in investigating how tightly or loosely drug is bound to protein. The binding, displacement, conformational change and stability study of drugs- gentamicin (GM), 5-fluorouracil (5FU), oxytetracycline (OTC) and rolitetracycline (RTC) with bovine serum albumin (BSA) has been carried out in presence of each other drug by fluorescence, UV-visible spectroscopy, molecular docking, circular dichroism techniques and thermal denaturation method. The site marker study and docking methods have confirmed that 5FU and GM are able to bind at site 1 and OTC and RTC at site II of BSA. The order of their binding affinities with BSA for the binary system were as GM <5FU < OTC < RTC with the order of 102 < 103 < 105 < 105-6 M-1. The displacement study has shown that higher affinity drug decreases the equilibrium constant of another drug already in bound state with BSA if both these drugs are having the same binding site. Therefore 5FU, GM (binding site 1) drugs were not able to displace OTC and RTC (binding site 2) and vice-versa as they are binding at two different sites. The binding constant values were found to be decreasing with increasing temperature for all the systems involved which suggests static or mixed type of quenching, however can only confirmed with the help of TCSPC technique. The ΔG0 (binding energy) obtained from docking method were in accordance with the ITC method. From molecular docking we have determined the amino acid residues involved in binding process for binary and ternary systems by considering first rank minimum binding energy confirmation. From CD it has been observed that RTC causes most conformational change in secondary and tertiary structure of BSA due to the presence of pyrrole ring. OTC-RTC with higher affinity showed highest melting temperature Tm values while low affinity drugs in (5FU-GM) combination showed lowest Tm value. 5FU showed large endothermic denaturation enthalpy ΔHd0 due to the presence of highly electronegative fluorine atom in the pyridine analogue.
Collapse
Affiliation(s)
- Madhuri Thorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
5
|
Mohanty S, Mishra SS, Kuldeep, Maharana J, Subuddhi U. Insight into the Effect of Submicellar Concentrations of Sodium Deoxycholate on the Structure, Stability, and Activity of Bovine and Human Serum Albumin: An Interesting Comparison between Single and Double Tryptophan Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5228-5244. [PMID: 38413419 DOI: 10.1021/acs.langmuir.3c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The progressive escalation in the applications of bile salts in diverse fields has triggered research on their interaction with various biological macromolecules, especially with proteins. A proper understanding of the interaction process of bile salts, particularly in the lower concentrations range, with the serum albumin seems important since the normal serum concentration of bile salts is approximately in the micromolar range. The current study deals with a comprehensive and comparative analysis of the interaction of submicellar concentrations of sodium deoxycholate (NaDC) with two homologous transport proteins: bovine serum albumin (BSA) and human serum albumin (HSA). HSA and BSA with one and two tryptophans, respectively, provide the opportunity for an interesting comparison of tryptophan fluorescence behavior on interaction with NaDC. The study suggests a sequential interaction of NaDC in three discrete stages with the two proteins. A detailed study using warfarin and ibuprofen as site markers provides information about the sites of interaction, which is further confirmed by inclusive molecular dynamics simulation analysis. Moreover, the comparison of the thermodynamics and stability of the NaDC-serum albumin complexes confirms the stronger interaction of NaDC with BSA as compared to that with HSA. The differential interaction between the bile salt and the two serum albumins is further established from the difference in the extent of decrease in the esterase-like activity assay of the proteins in the presence of NaDC. Therefore, the present study provides important insight into the effect of submicellar concentrations of NaDC on the structure, stability, and activity of the two homologous serum albumins and thus can contribute not only to the general understanding of the complex nature of serum albumin-bile salt interactions but also to the design of more effective pharmaceutical formulations in the field of drug delivery and biomedical research.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Smruti Snigdha Mishra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kuldeep
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Jitendra Maharana
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
6
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
7
|
Khaibrakhmanova D, Nikiforova A, Li Z, Sedov I. Effect of ligands with different affinity on albumin fibril formation. Int J Biol Macromol 2022; 204:709-717. [PMID: 35134455 DOI: 10.1016/j.ijbiomac.2022.01.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
The effect of binding of several ligands to bovine serum albumin on the kinetics of fibril formation at denaturing conditions is studied. The considered ligands are clinical drugs with different binding constants to albumin: relatively strong binders (naproxen, ibuprofen, warfarin with 105 to 107 binding constant values) and weak binders (isoniazid, ranitidine with 103 to 104 binding constant values). The data of thioflavin fluorescence binding assay, Congo red binding assay, and circular dichroism spectroscopy indicate ligand concentration-dependent suppression of fibril formation in the presence of strong binders and no effects in the presence of weak binders. Analysis of kinetic curves shows no induction lag associated with fibril nucleation and the first-order kinetics of fibril formation with respect to albumin concentration for all the studied systems. Using DSC method, the fractions of unfolded albumin at incubation temperature were determined for each albumin-ligand system and ligand concentration. Their magnitudes ranging from 0 to 1 correlate with the initial rates of fibril formation and with equilibrium concentrations of fibrils formed in the system after incubation for at least 120 min. The results indicate that fibrils are formed from partially or completely denatured albumin form with the rate proportional to the fraction of this form. Strong albumin binders act as thermodynamic inhibitors of fibrillation shifting the unfolding equilibrium to the side of the native ligand-bound protein.
Collapse
Affiliation(s)
| | - Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Ziying Li
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
| |
Collapse
|