1
|
Hussain R, Khan S, Sardar A, Rasheed L, Islam MS, Almutairi TM. Synthetic strategies, biological and computational screening of thiadiazole bearing benzothiazole derivatives as prospective anti-diabetic agents. J Mol Struct 2025; 1337:142141. [DOI: 10.1016/j.molstruc.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Khanal P, Dwivedi PSR, Patil VS, Shetty A, S A, Aga A, R A, Javaid A, Bhandare VV. Barosmin against postprandial hyperglycemia: outputs from computational prediction to functional responses in vitro. J Biomol Struct Dyn 2024; 42:4489-4505. [PMID: 37458811 DOI: 10.1080/07391102.2023.2233631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/28/2023] [Indexed: 05/16/2024]
Abstract
Previously, barosmin has been demonstrated to possess anti-diabetic action. However, its effect to inhibit α-amylase and α-glucosidase, including glucose utilization efficacy, has yet to be revealed. Hence, the current study attempted to assess the efficiency of barosmin in inhibiting the α-amylase, α -glucosidase, and dipeptidyl peptidase 4 enzymes, including glucose uptake efficacy. Molecular docking and simulation were performed using AutoDock Vina and Gromacs respectively followed by gene ontology analysis using the database for annotation, visualization, and integrated discovery. Further, in vitro enzyme inhibitory activities and glucose uptake assay were performed in L6 cell lines. Density functional theory analysis detailed mechanistic insights into the crucial interaction sites of barosmin of which the electron-dense region was prone to nucleophilic attack (O-atoms) whereas hydroxyl groups (-OH) showed affinity for electrophilic attacks. Barosmin showed good binding affinity with α-amylase (-9.2 kcal/mol), α-glucosidase (-10.7 kcal/mol), and dipeptidyl peptidase 4 (-10.0 kcal/mol). Barosmin formed stable nonbonded contacts with active site residues of aforementioned enzymes throughout 200 ns molecular dynamics simulation. Further, it regulated pathway concerned with glucose homeostasis i.e. tumor necrosis factor signaling pathway. In addition, barosmin showed α-amylase (IC50= 95.77 ± 23.33 µg/mL), α-glucosidase (IC50= 68.13 ± 2.95 µg/mL), and dipeptidyl peptidase 4 (IC50= 13.27 ± 1.99 µg/mL) inhibitory activities including glucose uptake efficacy in L6 cell lines (EC50= 12.46 ± 0.90 µg/mL) in the presence of insulin. This study presents the efficacy of the barosmin to inhibit α-amylase and α-glucosidase and glucose uptake efficacy in L6 cell lines via the use of multiple system biology tools and in vitro techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Vishal S Patil
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, India
| | - Ankith Shetty
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Adithya S
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Afra Aga
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Akshith R
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Aarif Javaid
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | | |
Collapse
|
3
|
Punia R, Mor S, Khatri M, Kumar D, Das PP, Jindal DK, Kumar A, Selvaraj P, Kumar R, Mohil R, Jakhar K. Facile synthesis and in silico studies of benzothiazole-linked hydroxypyrazolones targeting α-amylase and α-glucosidase. Future Med Chem 2024; 16:999-1027. [PMID: 38910576 PMCID: PMC11221549 DOI: 10.4155/fmc-2023-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/19/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: The objective of the present investigation was to design and synthesize new heterocyclic hybrids comprising benzothiazole and indenopyrazolone pharmacophoric units in a single molecular framework targeting α-amylase and α-glucosidase enzymatic inhibition. Materials & methods: 20 new benzothiazole-appended indenopyrazoles, 3a-t, were synthesized in good yields under environment-friendly conditions via cycloaddition reaction, and assessed for antidiabetic activity against α-amylase and α-glucosidase, using acarbose as the standard reference. Results: Among all the hydroxypyrazolones, 3p and 3r showed the best inhibition against α-amylase and α-glucosidase, which finds support from molecular docking and dynamic studies. Conclusion: Compounds 3p and 3r have been identified as promising antidiabetic agents against α-amylase and α-glucosidase and could be considered valuable leads for further optimization of antidiabetic agents.
Collapse
Affiliation(s)
- Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Prem Selvaraj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, Uttar Pradesh, India
| | - Rajni Mohil
- Department of Chemistry, Government College, Nalwa, Hisar, 125001, Haryana, India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
4
|
Gharge S, Alegaon SG. Recent Studies of Nitrogen and Sulfur Containing Heterocyclic Analogues as Novel Antidiabetic Agents: A Review. Chem Biodivers 2024; 21:e202301738. [PMID: 38126280 DOI: 10.1002/cbdv.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
The prevalence of diabetes mellitus is on the rise, which demands the identification of novel antidiabetic drugs. There is a need for safer and more effective alternatives because the therapy methods now available to manage diabetes have limits. Due to their diverse pharmacological characteristics, heterocyclic molecules with nitrogen and Sulfur atoms have become intriguing candidates in medicinal chemistry. These substances have a wide variety of structures that can be customized to target different pathways associated with diabetes and can affect important biological targets involved in glucose homeostasis. This review provides a thorough summary of the most recent studies on heterocyclic analogues of nitrogen and Sulfur as prospective antidiabetic agents. This review examines the variety of their structural forms, their methods of action, and assesses the results of preclinical and clinical investigations on their effectiveness and safety. Additionally, further optimization and development of innovative antidiabetic medications are highlighted, as well as the difficulties and prospects for the future in utilizing the therapeutic potential of these analogues. This study seeks to stimulate additional investigation and cooperation between researchers and medicinal chemists, promoting improvements in the creation of efficient and secure antidiabetic medicines to fulfill the needs in the management of diabetes.
Collapse
Affiliation(s)
- S Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, 590 010, Belagavi, Karnataka, India
| | - S G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, 590 010, Belagavi, Karnataka, India
| |
Collapse
|
5
|
Synthesis, In Vitro Anti-Microbial Analysis and Molecular Docking Study of Aliphatic Hydrazide-Based Benzene Sulphonamide Derivatives as Potent Inhibitors of α-Glucosidase and Urease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207129. [PMID: 36296720 PMCID: PMC9609496 DOI: 10.3390/molecules27207129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1–15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine.
Collapse
|
6
|
Khan S, Iqbal S, Khan M, Rehman W, Shah M, Hussain R, Rasheed L, Khan Y, Dera AA, Pashameah RA, Alzahrani E, Farouk AE. Design, Synthesis, In Silico Testing, and In Vitro Evaluation of Thiazolidinone-Based Benzothiazole Derivatives as Inhibitors of α-Amylase and α-Glucosidase. Pharmaceuticals (Basel) 2022; 15:ph15101164. [PMID: 36297276 PMCID: PMC9610606 DOI: 10.3390/ph15101164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a stepwise reaction afforded thiazolidinone-based benzothiazole derivatives 1–15, and the synthesized derivatives were then screened for biological significance and found to be the leading candidates against α-amylase and α-glucosidase enzymes. Almost all derivatives showed excellent to good activity ranging against α-amylase, IC50 = 2.10 ± 0.70 to 37.50 ± 0.70 μM, and α-glucosidase, IC50 = 3.20 ± 0.05 to 39.40 ± 0.80 μM. Some analogues such as 4 (2.40 ± 0.70 and 3.50 ± 0.70 μM), 5 (2.30 ± 0.05 and 4.80 ± 0.10 μM), and 6 (2.10 ± 0.70 and 3.20 ± 0.70 μM) were found with folds better activity than that of the standard drug acarbose (9.10 ± 0.10 and 10.70 ± 0.10 μM), respectively. Moreover, the structure–activity relationship (SAR) has been established for all compounds. A molecular docking study has been carried out to explore the binding interactions against α-amylase and α-glucosidase enzymes.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
- Correspondence: (S.K.); (S.I.); (M.S.)
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan
- Correspondence: (S.K.); (S.I.); (M.S.)
| | - Marwa Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
- Correspondence: (S.K.); (S.I.); (M.S.)
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad Campus, Islamabad 45550, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|