1
|
Yu X, Davenport JW, Urtishak KA, Carillo ML, Gosai SJ, Kolaris CP, Byl JAW, Rappaport EF, Osheroff N, Gregory BD, Felix CA. Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci. Genome Res 2017; 27:1238-1249. [PMID: 28385713 PMCID: PMC5495075 DOI: 10.1101/gr.211615.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023]
Abstract
Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison–related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.
Collapse
Affiliation(s)
- Xiang Yu
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James W Davenport
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Karen A Urtishak
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Marie L Carillo
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sager J Gosai
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christos P Kolaris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Eric F Rappaport
- NAPCore, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.,Department of Medicine (Hematology/Oncology), Vanderbilt University, Nashville, Tennessee 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| | - Brian D Gregory
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carolyn A Felix
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
2
|
Huang HS, Chiou JF, Chiu HF, Hwang JM, Lin PY, Tao CW, Yeh PF, Jeng WR. Synthesis of symmetrical 1,5-bis-thio-substituted anthraquinones for cytotoxicity in cultured tumor cells and lipid peroxidation. Chem Pharm Bull (Tokyo) 2002; 50:1491-4. [PMID: 12419916 DOI: 10.1248/cpb.50.1491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of a series of anthraquinone moieties bearing symmetrical sulfur-linked substituents in the 1 and 5 positions is described. These compounds were evaluated for their ability to inhibit the growth of suspended rat glioma C6 cells and human hepatoma G2 cells, respectively. In addition, the redox property of the compounds was determined based on the inhibition of lipid peroxidation in model membranes. Compounds 2a and 2h in this series compared favorably and exhibited the most potent cytotoxicity (0.02, 0.05 microM) against C6 cells in the XTT colorimetric assay. As far as redox properties are concerned, all bis-thio-anthraquinones show potential lipid peroxidation in model membranes very close to that of mitoxantrone (MX), and 2a, 2d, 2e, 2i, 2j, and 2k have more potential than that of MX. The lack of cytotoxicity of compound 2i cannot be related to lipid peroxidation, but the steric and electronic properties of the side-chain substituent maybe impair effective recognition of the cleavable complex. In contrast to MX, 2a and 2h are cytotoxic in rat glioma C6 cells and do not enhance lipid peroxidation in model membranes.
Collapse
Affiliation(s)
- Hsu-Shan Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sissi C, Bolgan L, Moro S, Zagotto G, Bailly C, Menta E, Capranico G, Palumbo M. DNA-binding preferences of bisantrene analogues: relevance to the sequence specificity of drug-mediated topoisomerase II poisoning. Mol Pharmacol 1998; 54:1036-45. [PMID: 9855632 DOI: 10.1124/mol.54.6.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate structure-activity relationships for drugs that are able to poison or inhibit topoisomerase II, we investigated the thermodynamics and stereochemistry of the DNA binding of a number of anthracene derivatives bearing one or two 4, 5-dihydro-1H-imidazol-2-yl-hydrazone side chains (characteristic of bisantrene) at different positions of the planar aromatic system. An aza-bioisostere, which can be considered a bisantrene-amsacrine hybrid, was also tested. The affinity for nucleic acids in different sequence contexts was evaluated by spectroscopic techniques, using various experimental conditions. DNA-melting and DNase I footprinting experiments were also performed. The location and number of the otherwise identical side chains dramatically affected the affinity of the test compounds for the nucleic acid. In addition, the new compounds exhibited different DNA sequence preferences, depending on the locations of the dihydroimidazolyl-hydrazone groups, which indicates a major role for the side-chain position in generating specific contacts with the nucleic acid. Molecular modeling studies of the intercalative binding of the 1- or 9-substituted isomers to DNA fully supported the experimental data, because a substantially more favorable recognition of A-T steps, compared with G-C steps, was found for the 9-substituted derivative, whereas a much closer energy balance was found for the 1-substituted isomer. These results compare well with the alteration of base specificity found for the topoisomerase II-mediated DNA cleavage stimulated by the isomeric drugs. Therefore, DNA-binding specificity appears to represent an important determinant for the recognition of the topoisomerase-DNA cleavable complex by the drug, at least for poisons belonging to the amsacrine-bisantrene family.
Collapse
Affiliation(s)
- C Sissi
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lucumi A, Robledo S, Gama V, Saravia NG. Sensitivity of Leishmania viannia panamensis to pentavalent antimony is correlated with the formation of cleavable DNA-protein complexes. Antimicrob Agents Chemother 1998; 42:1990-5. [PMID: 9687395 PMCID: PMC105721 DOI: 10.1128/aac.42.8.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The emergence of Leishmania less sensitive to pentavalent antimonial agents (SbVs), the report of inhibition of purified topoisomerase I of Leishmania donovani by sodium stibogluconate (Pentostam), and the uncertain mechanism of action of antimonial drugs prompted an evaluation of SbVs in the stabilization of cleavable complexes in promastigotes of Leishmania (Viannia). The effect of camptothecin, an inhibitor of topoisomerase, and additive-free meglumine antimoniate (Glucantime) on the stabilization of cleavable DNA-protein complexes associated with the inhibition of topoisomerase was assessed in the human promonocytic cell line U-937, promastigotes of L. (Viannia) panamensis selected for SbV resistance in vitro, and the corresponding wild-type strain. The stabilization of cleavable complexes and the 50% effective dose (ED50) of SbVs for parasites isolated from patients with relapses were also evaluated. The median ED50 for the wild-type strain was 16. 7 microg of SbV/ml, while that of the line selected for resistance was 209.5 microg of SbV/ml. Treatment with both meglumine antimoniate and sodium stibogluconate (20 to 200 microg of SbV/ml) stabilized DNA-protein complexes in the wild-type strain but not the resistant line. The ED50s of the SbVs for Leishmania strains from patients with relapses was comparable to those for the line selected for in vitro resistance, and DNA-protein complexes were not stabilized by exposure to meglumine antimoniate. Cleavable complexes were observed in all Leishmania strains treated with camptothecin. Camptothecin stabilized cleavable complexes in U-937 cells; SbVs did not. The selective effect of the SbVs on the stabilization of DNA-protein complexes in Leishmania and the loss of this effect in naturally resistant or experimentally derived SbV-resistant Leishmania suggest that topoisomerase may be a target of antimonial drugs.
Collapse
Affiliation(s)
- A Lucumi
- Facultad de Salud, Universidad del Valle, Cali, Colombia AA 5445
| | | | | | | |
Collapse
|
5
|
Bailly C. Sequence-specific recognition and modification of double-helical DNA by minor-groove binding conjugates structurally related to netropsin and distamycin. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-568x(98)80007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Gatto B, Zagotto G, Sissi C, Cera C, Uriarte E, Palù G, Capranico G, Palumbo M. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling, and biological activity. J Med Chem 1996; 39:3114-22. [PMID: 8759632 DOI: 10.1021/jm950924a] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of new compounds containing a 9,10-anthracenedione moiety and one or two peptide chains at position 1 and/or 4 have been synthesized. The amino acid residues introduced are glycine (Gly), lysine (Lys), and tryptophan (Trp), the latter two in both the L- and D-configurations. The peptidyl anthraquinones maintain the ability of intercalating efficiently into DNA, even though the orientation within the base-pair pocket may change somewhat with reference to the parent drugs mitoxantrone (MX) and ametantrone (AM). The interaction constants of the mono-, di-, and triglycyl derivatives are well comparable to those found for AM but 5-10 times lower than the value reported for MX. On the other hand, the glycyl-lysyl compounds bind DNA to the same extent as (L-isomer) or even better than (D-isomer) MX. As for the parent drugs without peptidyl chains, the new compounds prefer alternating CG binding sites, although to different extents. The bis-Gly-Lys derivatives are the least sensitive to base composition, which may be due to extensive aspecific charged interactions with the polynucleotide backbone. As far as redox properties are concerned, all peptidyl anthraquinones show a reduction potential very close to that of AM and 60-80 mV less negative than that of MX; hence, they can produce free-radical-damaging species to an extent similar to the parent drugs. The biological activity has been tested in human tumor and murine leukemia cell lines. Most of the test anthraquinones exhibit cytotoxic properties close to those of AM and considerably lower than those of MX. Stimulation of topoisomerase-mediated DNA cleavage is moderately present in representatives of the glycylanthraquinone family, whereas inhibition of the background cleavage occurs when Lys is present in the peptide chain. For most of the test anthraquinones, the toxicity data are in line with the DNA affinity scale and the topoisomerase II stimulation activity. However, in the lysyl derivatives, for which lack of cytotoxicity cannot be related to poor binding to DNA, the steric and electronic properties of the side-chain substituent must impair an effective recognition of the cleavable complex.
Collapse
Affiliation(s)
- B Gatto
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|