1
|
Hu M, Dong X, Shi Q, Sun Y. Identification of a broad-spectrum high-affinity peptide ligand for the purification of spike proteins. J Chromatogr A 2024; 1723:464912. [PMID: 38643740 DOI: 10.1016/j.chroma.2024.464912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Since the outbreak of coronavirus disease 2019, the global demand for vaccines has increased rapidly to prevent infection and protect high-risk populations. However, identifying viral mutations poses an additional challenge for chromatographic purification of vaccines and subunit vaccines. In this study, a new affinity peptide model, X1VX2GLNX3WX4RYSK, was established, and a library of 612 peptides was generated for ligand screening. Based on a multistep strategy of ligand screening, 18 candidate peptides were obtained. The top ranking peptide, LP14 (YVYGLNIWLRYSK), and two other representative peptides, LP02 and LP06, with lower rankings were compared via molecular dynamics simulation. The results revealed that peptide binding to the receptor binding domain (RBD) was driven by hydrophobic interactions and the key residues involved in the binding were identified. Surface plasmon resonance analysis further confirmed that LP14 had the highest affinity for the wild RBD (Kd=0.520 μmol/L), and viral mutation had little influence on the affinity of LP14, demonstrating its great potential as a broad-spectrum ligand for RBD purification. Finally, chromatographic performance of LP14-coupled gel-packed column verified that both wild and omicron RBDs could be purified and were eluted by 0.1 mol/L Gly-HCl buffer (pH 3.0). This research identified a broad-spectrum peptide for RBD purification based on rational design and demonstrated its potential application in the purification of RBDs from complex feedstock.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Farzi-Khajeh H, Toraby S, Akbarzadeh-Khiavi M, Safary A, Somi MH. Development of biomimetic triazine-based affinity ligands for efficient immunoglobulin G purification from human and rabbit plasma. J Chromatogr A 2022; 1684:463559. [DOI: 10.1016/j.chroma.2022.463559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
|
3
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Xue A, Fan S. Matrices and Affinity Ligands for Antibody Purification and Corresponding Applications in Radiotherapy. Biomolecules 2022; 12:biom12060821. [PMID: 35740946 PMCID: PMC9221399 DOI: 10.3390/biom12060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Antibodies have become an important class of biological products in cancer treatments such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to separate antibodies from complex mixtures. Quality chromatographic components (matrices and affinity ligands) have either been found or generated to increase the purity and yield of antibodies. More importantly, some matrices (mainly particles) and affinity ligands (including design protocols) for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy. This paper provides a brief overview on the matrices and ligands used in affinity chromatography that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich potential approaches for improving the efficacy of radiotherapy.
Collapse
|
5
|
Abstract
The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins, and are designated as "biomimetic ligands". A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogs of amino acid side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, and highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.
Collapse
Affiliation(s)
- Isabel T Sousa
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - M Ângela Taipa
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Matos MJB, Pina AS, Roque ACA. Rational design of affinity ligands for bioseparation. J Chromatogr A 2020; 1619:460871. [PMID: 32044126 DOI: 10.1016/j.chroma.2020.460871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
Affinity adsorbents have been the cornerstone in protein purification. The selective nature of the molecular recognition interactions established between an affinity ligands and its target provide the basis for efficient capture and isolation of proteins. The plethora of affinity adsorbents available in the market reflects the importance of affinity chromatography in the bioseparation industry. Ligand discovery relies on the implementation of rational design techniques, which provides the foundation for the engineering of novel affinity ligands. The main goal for the design of affinity ligands is to discover or improve functionality, such as increased stability or selectivity. However, the methodologies must adapt to the current needs, namely to the number and diversity of biologicals being developed, and the availability of new tools for big data analysis and artificial intelligence. In this review, we offer an overview on the development of affinity ligands for bioseparation, including the evolution of rational design techniques, dating back to the years of early discovery up to the current and future trends in the field.
Collapse
Affiliation(s)
- Manuel J B Matos
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana S Pina
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
7
|
Chromatographic assay to probe the binding energy and mechanisms of homologous proteins to surface-bound ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121927. [DOI: 10.1016/j.jchromb.2019.121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
|
8
|
dos Santos R, Figueiredo C, Viecinski AC, Pina AS, Barbosa AJ, Roque ACA. Designed affinity ligands to capture human serum albumin. J Chromatogr A 2019; 1583:88-97. [DOI: 10.1016/j.chroma.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
|
9
|
Paloni M, Cavallotti C. Molecular Modeling of the Interaction of Protein L with Antibodies. ACS OMEGA 2017; 2:6464-6472. [PMID: 31457247 PMCID: PMC6645367 DOI: 10.1021/acsomega.7b01123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/27/2017] [Indexed: 06/10/2023]
Abstract
Protein L (PpL) is a bacterial protein which is used in the affinity chromatography stage of the production of monoclonal antibodies because of its ability to form high affinity complexes with the light chains of immunoglobulins. In the present work, the binding interfaces between one domain of PpL and antigen-binding fragments (Fab) have been investigated adopting molecular dynamics with the aim of determining the binding contribution of the residues located at the Fab-PpL interface. Because it is known that PpL binds antibodies through two distinct binding sites with different affinities, simulations were performed for both sites to determine interaction free energies to assess the relative binding contribution of the two sites. Mutational studies were then performed only on the dominant binding site. The binding free energy was evaluated with the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) and umbrella sampling/weighted histogram analysis methods. Key residues for the formation of the dominant binding site complex were identified by means of alanine scanning performed both for the Fab and PpL domains. Residues of the light chain of the antibody that contribute most to binding were found to be located between SER7 and VAL13. Four residues from PpL are important for the stability of the complex: PHE839, LYS840, GLU849, and TYR853. Three residues of PpL that do not contribute to the interaction were mutated to histidine (HIS), which changes its protonation state as a function of pH, to find whether this could allow us to control the binding interaction energy. This can be useful in the elution stage of the affinity chromatography purification of antibodies if PpL is used as a ligand. These residues are GLN835, THR836, and ALA837. Molecular dynamics simulations with both protonated and unprotonated HIS were performed to mimic how changing pH may reflect on protein-ligand interaction energies. The MMPBSA approach was used to evaluate the variation of the affinity of the mutated systems with reference to the wild type. Our results show that these mutations could help in disrupting the complex under acidic conditions without impairing the affinity of PpL for the light chains at higher pHs.
Collapse
|
10
|
Affiliation(s)
- Nika Kruljec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Batalha IL, Zhou H, Lilley K, Lowe CR, Roque ACA. Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. J Chromatogr A 2016; 1457:76-87. [PMID: 27345211 DOI: 10.1016/j.chroma.2016.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3. Ligand A8A3 was coupled onto both cross-linked agarose and magnetic nanoparticles, presenting higher binding capacities (100-fold higher) when immobilized on the magnetic support. The magnetic adsorbent was further screened against a tryptic digest of two phosphorylated proteins (α- and β-caseins) and one non-phosphorylated protein (bovine serum albumin, BSA). The MALDI-TOF mass spectra of the eluted peptides allowed the identification of nine phosphopeptides, comprising both mono- and multi-phosphorylated peptides.
Collapse
Affiliation(s)
- Iris L Batalha
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Houjiang Zhou
- Cambridge Centre for Proteomics, Cambridge, CB2 1QR, UK
| | | | - Christopher R Lowe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT, Cambridge, UK
| | - Ana C A Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
12
|
Fernandes CS, Castro R, Coroadinha AS, Roque ACA. Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope. J Chromatogr A 2016; 1438:160-70. [DOI: 10.1016/j.chroma.2016.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
|
13
|
Tong HF, Lin DQ, Chu WN, Zhang QL, Gao D, Wang RZ, Yao SJ. Multimodal charge-induction chromatography for antibody purification. J Chromatogr A 2016; 1429:258-64. [DOI: 10.1016/j.chroma.2015.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
14
|
Crivianu-Gaita V, Thompson M. Immobilization of Fab’ fragments onto substrate surfaces: A survey of methods and applications. Biosens Bioelectron 2015; 70:167-80. [DOI: 10.1016/j.bios.2015.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
15
|
Crivianu-Gaita V, Romaschin A, Thompson M. High efficiency reduction capability for the formation of Fab׳ antibody fragments from F(ab) 2 units. Biochem Biophys Rep 2015; 2:23-28. [PMID: 29124142 PMCID: PMC5668623 DOI: 10.1016/j.bbrep.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 11/15/2022] Open
Abstract
Antibodies have widespread applications in areas ranging from therapeutics to chromatography and protein microarrays. Certain applications require only the fragment antigen-binding (Fab) units of the protein. This study compares the cleavage efficacy of dithiothreitol (DTT), mercaptoethylamine (MEA), and dithiobutylamine (DTBA) – a relatively new reducing agent synthesized in 2012. Pseudo-first order kinetic analyses show DTBA to be ~213 times faster than DTT and ~71 times faster than MEA in the formation of Fab׳ antibody fragments from polyclonal rabbit antibodies. Monoclonal mouse antibodies were also used to show the feasibility of the reduction process on antibodies from a different species and with a different clonality. DTBA cleaved the monoclonal mouse F(ab)2 units most efficiently, ~2 times faster than DTT ~10 times faster than MEA. Due to the extremely quick reactivity of all the reducing agents in the first five minutes of monoclonal antibody reductions as well as for the DTBA reductions of the polyclonal rabbit antibodies, the pseudo-first order kinetic analyses should be interpreted qualitatively for these results. Nucleophilic sulfides on Fab׳ fragments are preserved in the DTBA reduction process, demonstrated by their reactivity with Ellman׳s reagent. Degradation of the Fab׳ fragments was observed with the monoclonal mouse antibodies after reduction with DTBA or DTT. In conclusion, DTBA is the more efficient reducing agent compared to DTT and MEA, however, the reduction process should be optimized as degradation of the Fab׳ fragments is possible. Dithiobutylamine (DTBA) is a relatively new reducing agent synthesized in 2012. Antibody cleavage efficiency was compared with DTT, MEA, and DTBA. DTBA was able to cleave monoclonal mouse and polyclonal rabbit antibodies. Fab׳ nucleophilic sulfides were preserved during the cleavage process. DTBA cleavage should be optimized as undesirable byproducts are possible.
Collapse
Affiliation(s)
- Victor Crivianu-Gaita
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | | | - Michael Thompson
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
16
|
Dual-ligand affinity systems with octapeptide ligands for affinity chromatography of hIgG and monoclonal antibody. J Chromatogr A 2014; 1369:64-72. [DOI: 10.1016/j.chroma.2014.09.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 11/23/2022]
|
17
|
Zhao WW, Liu FF, Shi QH, Dong XY, Sun Y. Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Abstract
The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.
Collapse
Affiliation(s)
- Isabel T Sousa
- Centre for Biological and Chemical Engineering, Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
19
|
The hidden potential of small synthetic molecules and peptides as affinity ligands for bioseparations. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Silva CS, Lansalot M, Garcia JQ, Taipa MÂ, Martinho JM. Synthesis and characterization of biomimetic nanogels for immunorecognition. Colloids Surf B Biointerfaces 2013; 112:264-71. [DOI: 10.1016/j.colsurfb.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
|
21
|
Barroso T, Lourenço A, Araújo M, Bonifácio VDB, Roque ACA, Aguiar-Ricardo A. A green approach toward antibody purification: a sustainable biomimetic ligand for direct immobilization on (bio)polymeric supports. J Mol Recognit 2013; 26:662-71. [DOI: 10.1002/jmr.2309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 08/13/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Telma Barroso
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Anita Lourenço
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Marco Araújo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Vasco D. B. Bonifácio
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Ana C. A. Roque
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Ana Aguiar-Ricardo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| |
Collapse
|
22
|
El Khoury G, Lowe CR. A biomimetic Protein G affinity adsorbent: an Ugi ligand for immunoglobulins and Fab fragments based on the third IgG-binding domain of Protein G. J Mol Recognit 2013; 26:190-200. [DOI: 10.1002/jmr.2265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/19/2013] [Accepted: 01/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Graziella El Khoury
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology; University of Cambridge; Tennis Court Road; Cambridge; CB2 1QT; UK
| | - Christopher R. Lowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology; University of Cambridge; Tennis Court Road; Cambridge; CB2 1QT; UK
| |
Collapse
|
23
|
Sousa IT, Lourenço NMT, Afonso CAM, Taipa MA. Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand. J Mol Recognit 2013; 26:104-12. [DOI: 10.1002/jmr.2252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Affiliation(s)
- I. T. Sousa
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | - N. M. T. Lourenço
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | - C. A. M. Afonso
- Centro de Química Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | | |
Collapse
|
24
|
Santana SDF, Dhadge VL, Roque ACA. Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5907-5914. [PMID: 23098183 DOI: 10.1021/am301551n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dextran-coated iron oxide magnetic particles modified with ligand 22/8, a protein A mimetic ligand, were prepared and assessed for IgG purification. Dextran was chosen as the agent to modify the surface of magnetic particles by presenting a negligible level of nonspecific adsorption. For the functionalization of the particles with the affinity ligand toward antibodies, three methods have been explored. The optimum coupling method yielded a theoretical maximum capacity for human IgG calculated as 568 ± 33 mg/g and a binding affinity constant of 7.7 × 10⁴ M⁻¹. Regeneration, recycle and reuse of particles was also highly successful for five cycles with minor loss of capacity. Moreover, this support presented specificity and effectiveness for IgG adsorption and elution at pH 11 directly from crude extracts with a final purity of 95% in the eluted fraction.
Collapse
Affiliation(s)
- Sara D F Santana
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
25
|
Sheng S, Kong F. Separation of antigens and antibodies by immunoaffinity chromatography. PHARMACEUTICAL BIOLOGY 2012; 50:1038-1044. [PMID: 22480305 DOI: 10.3109/13880209.2011.653493] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Affinity chromatography is an efficient antibody, antigen and protein separation method based on the interaction between specific immobilized ligands and target antibody, antigen, and so on. Populations of available ligands can be used to separate antibodies or their Fab fragments. Similarly, antigens can be isolated by immunoaffinity chromatography (IAC) on immobilized antibodies of low affinity. OBJECTIVE This review describes the advantages, the applications, as well as the drawbacks, of IAC in the separation and purification of antibodies and antigens. METHODS The present review discussed all types of purification and isolation of antibodies and antigens by IAC, including purification of antibodies using immobilized and synthetic mimic proteins A, G and L; isolation of Fab fragments of antibodies; separation of antibodies against different antigen forms; isolation of antigens by immobilized antibodies and so on. These methods come from over 60 references compiled from all major databases. RESULTS Purification of antigens with antibodies should choose low-affinity antibodies to avoid denaturation of most proteins. Concern for cost and safety, prompted research activities focused on novel synthetic ligands with improved properties such as lower cost, avoidance of the risk of contamination associated with natural ligands of human or animal origin to isolate antibodies and antigens. CONCLUSION It is anticipated that the improvements of IAC will have impact not only on large-scale production of antibodies but also on the generation of new affinity-based methods for the increasing number of proteins and antibody derivatives available by protein engineering and the proteomics revolution.
Collapse
Affiliation(s)
- Shuai Sheng
- Department of Hematology, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | | |
Collapse
|
26
|
Qian J, El Khoury G, Issa H, Al-Qaoud K, Shihab P, Lowe CR. A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 898:15-23. [DOI: 10.1016/j.jchromb.2012.03.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022]
|
27
|
El Khoury G, Rowe LA, Lowe CR. Biomimetic affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. Methods Mol Biol 2012; 800:57-74. [PMID: 21964782 DOI: 10.1007/978-1-61779-349-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Affinity chromatography is the method of choice for biomolecule separation and isolation with highly specific target recognition; it is ideally suited to the purification of immunotherapeutic proteins (i.e., mAbs). Conventional affinity purification protocols are based on natural immunoglobulin (Ig)-binding proteins, which are expensive to produce, labile, unstable, and exhibit lot-to-lot variability. Biological ligands are now being replaced by cost-effective, synthetic ligands, derived from the concepts of rational design and combinatorial chemistry, aided by in silico approaches. In this chapter, we describe a new synthetic procedure for the development of affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. The lead ligand developed herein is specific for the IgG-Fab fragment and mimics Protein L (PpL), an IgG-binding protein isolated from Peptostreptococcus magnus strains and usually used for the purification of antibodies and their fragments.
Collapse
Affiliation(s)
- Graziella El Khoury
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
28
|
Ye L, Xu A, Cheng C, Zhang L, Huo C, Huang F, Xu H, Li R. Design and synthesis of affinity ligands and relation of their structure with adsorption of proteins. J Sep Sci 2011; 34:3145-50. [DOI: 10.1002/jssc.201100606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/11/2022]
|
29
|
Carredano E, Baumann H. Affinity Ligands from Chemical Combinatorial Libraries. ACTA ACUST UNITED AC 2011; 54:259-67. [DOI: 10.1002/9780470939932.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
30
|
Li P, Fu L, Qiao Y, Zhao J, Wang W, Yuan Z. Affinity adsorption mechanism studies of adsorbents C1-Zn(II) for uremic middle molecular peptides containing Asp-Phe-Leu-Ala-Glu sequence. Sci China Chem 2011. [DOI: 10.1007/s11426-010-4193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Feng J, Fu L, Li J, Wang W, Yuan Z. Application of surface plasmon resonance in screening adsorbents and explaining adsorption phenomena using model polymers. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Qualitative and quantitative relationships between affinity constants from model study and real adsorption data. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Wixom RL, Gehrke CW. Today's Chromatographers and their Discoveries (2000-2008). CHROMATOGRAPHY 2010. [DOI: 10.1002/9780470555729.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Pina AS, Lowe CR, Roque ACA. Comparison of Fluorescence Labelling Techniques for the Selection of Affinity Ligands from Solid-Phase Combinatorial Libraries. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496395.2010.507447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Preparation and characterization of a cellulose affinity membrane for human immunoglobulin G (IgG) purification. J Memb Sci 2010. [DOI: 10.1016/j.memsci.2009.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Batalha IL, Hussain A, Roque ACA. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. J Mol Recognit 2010; 23:462-71. [DOI: 10.1002/jmr.1013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Zhao G, Dong XY, Sun Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J Biotechnol 2009; 144:3-11. [DOI: 10.1016/j.jbiotec.2009.04.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/10/2009] [Accepted: 04/23/2009] [Indexed: 11/24/2022]
|
38
|
Haigh JM, Hussain A, Mimmack ML, Lowe CR. Affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1440-52. [PMID: 19345158 DOI: 10.1016/j.jchromb.2009.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/04/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
This report describes a novel use of the four-component Ugi reaction to generate a solid-phase library suitable for the purification of immunoglobulins and their fragments by affinity chromatography. An aldehyde-functionalised Sepharose solid-support constituted one component in the four-component reaction, whereas the other three components (a carboxylic acid, a primary or secondary amine and an isonitrile) were varied in a combinatorial fashion to generate a tri-substituted peptoidal scaffold structure which provides a degree of rigidity and functionality suitable for rational investigation of immunoglobulin binding. The Ugi ligand library was initially screened chromatographically against whole human IgG and its fragments (Fc and Fab) to yield a Fab-specific lead ligand based on its ability to bind Fab differentially over Fc. Preparative chromatography of IgG from human serum showed 100% of IgG was adsorbed from the 20mg/ml crude stock and subsequently eluted with a purity of 81.0% as determined by SDS-PAGE analysis under non-optimised conditions. High purity Fab and IgG isolation was achieved from both yeast and E. coli host cell proteins according to silver-stained SDS-PAGE lane densitometry. The ligand density and spacer-arm chemistry of the immobilised ligand was optimised to define an affinity adsorbent which binds 73.06 mg IgG/ml moist gel (dynamic binding capacity at 10% breakthrough) and a static binding capacity of 16.1+/-0.25mg Fab/ml moist resin displaying an affinity constant K(d)=(2.6+/-0.3)x10(-6)M. The lead candidate was modelled in silico and docked into a human Fab fragment (PDB: 1AQK) to suggest a putative binding interface to the constant CH(1)-CL Fab terminal through six defined hydrogen bond interactions together with putative hydrophobic interactions.
Collapse
Affiliation(s)
- Jonathan M Haigh
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
39
|
Sousa IT, Ruiu L, Lowe CR, Taipa MA. Synthetic affinity ligands as a novel tool to improve protein stability. J Mol Recognit 2009; 22:83-90. [DOI: 10.1002/jmr.900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Rationally designed ligands for use in affinity chromatography: an artificial protein L. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 421:93-109. [PMID: 18826050 DOI: 10.1007/978-1-59745-582-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Synthetic affinity ligands can circumvent the drawbacks of natural immunoglobulin (Ig)-binding proteins by imparting resistance to chemical and biochemical degradation and to in situ sterilization, as well as ease and low cost of production. Protein L (PpL), isolated from Peptostreptococcus magnus strains, interacts with the Fab (antigen-binding fragment) portion of Igs, specifically with kappa light chains, and represents an almost universal ligand for the purification of antibodies. The concepts of rational design and solid-phase combinatorial chemistry were used for the discovery of a synthetic PpL mimic affinity ligand. The procedure presented in this chapter represents a general approach with the potential to be applied to different systems and target proteins.
Collapse
|
41
|
Huang Y, Zhao R, Luo J, Xiong S, Shangguan D, Zhang H, Liu G, Chen Y. Design, synthesis and screening of antisense peptide based combinatorial peptide libraries towards an aromatic region of SARS-CoV. J Mol Recognit 2008; 21:122-31. [PMID: 18383098 DOI: 10.1002/jmr.880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A combination of high-performance affinity chromatography and antisense peptide based combinatorial peptide libraries was used to screen a potential inhibitor for SARS-CoV. An aromatic-amino acid-rich region within the transmembrane domain at the C terminal of spike (S) protein identified as a membrane-active region was chosen as the target sense peptide (SP) and immobilized as affinity ligand. Four antisense peptides were designed based on the degeneracy of genetic codes. One of them was screened as the lead peptide to construct the extended peptide libraries (EPL). The library screening was carried out at pH 5.5 so as to mimic the low-pH milieu required by virus fusion. After five cycles of screening, a dodecapeptide KKKKYRNIRRPG (DP) was identified to possess the highest binding affinity to the immobilized sense peptide. The dissociation constant of the complex between the DP and the SP was 5.64 x 10(-7) M in a physiological condition. The recognition between the DP and recombinant SARS S protein was demonstrated by ELISA assay to be in a saturable way. The competitive inhibition of the sense peptide in the competitive ELISA reveals the affinity binding between the DP and SARS S protein is specific and directed towards the target SP of the S protein. The results indicate this preferred polypeptide can be used as a lead compound of potent inhibitor of SARS-CoV. The mechanism study suggests the specific recognition between the DP and the target peptide was due to sequence-dependent and multi-modal affinity interaction.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Roque ACA, Silva CSO, Taipa MA. Affinity-based methodologies and ligands for antibody purification: Advances and perspectives. J Chromatogr A 2007; 1160:44-55. [PMID: 17618635 DOI: 10.1016/j.chroma.2007.05.109] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 05/25/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.
Collapse
Affiliation(s)
- Ana C A Roque
- IBB-Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | |
Collapse
|
43
|
Silva CSO, Baptista RP, Santos AM, Martinho JMG, Cabral JMS, Taipa MA. Adsorption of human IgG on to poly(N-isopropylacrylamide)-based polymer particles. Biotechnol Lett 2006; 28:2019-25. [PMID: 17021661 DOI: 10.1007/s10529-006-9188-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Thermosensitive poly(N-isopropylacrylamide)-based polymer particles were synthesised, and screened for the adsorption of human immunoglobulin G (hIgG). At pH 9 the adsorption on microgel particles was strongly affected by temperature, approximately 40 mg hIgG/g support (90% of initial hIgG) being adsorbed at 40 degrees C but only 10% of initial hIgG at 25 degrees C. At pH 5 the maximum adsorbed amount (20 mg hIgG/g support) was similar for both temperatures. The adsorption of hIgG on to charged poly(methyl methacrylate)/poly(N-isopropylacrylamide) core-shell latexes was negligible (5-10 mg hIgG/g support) at the same temperature and pH conditions. The lower adsorption of hIgG onto the core-shell particles is explained by steric interactions due to the small size of the shell.
Collapse
Affiliation(s)
- Claudia S O Silva
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av Rovisco Pais, 1049-001, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Melissis S, Labrou NE, Clonis YD. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase. J Chromatogr A 2006; 1122:63-75. [PMID: 16712859 DOI: 10.1016/j.chroma.2006.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/25/2022]
Abstract
The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.
Collapse
Affiliation(s)
- S Melissis
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | | | | |
Collapse
|
45
|
Ruiu L, Roque ACA, Taipa MA, Lowe CR. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase fromFusarium solani pisi. J Mol Recognit 2006; 19:372-8. [PMID: 16779873 DOI: 10.1002/jmr.782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The protein surface is the interface through which a protein molecule senses the external world. The composition of this interface, in charged, polar and/or hydrophobic residues is crucial for both the activity and stability of the protein. Protein immobilization on surfaces has been extensively explored as one of the most effective approaches for stabilization. The mechanism of stabilization, however, is still poorly understood, and usually the success of any method is more a matter of trial and error rather than the result of rational concepts. The importance of local unfolding processes in a number of biologically significant processes has been recognized and attracted increasing attention. Unfolding regions have been localized in different proteins including the recombinant cutinase from Fusarium solani pisi. The study of three structural surface regions associated with early cutinase unfolding events was the basis for the approach followed in this work. A 64-member solid-phase combinatorial library of ligands was synthesized on a triazine-substituted agarose matrix using a modified 'mix and split' procedure. The combinatorial library was assessed for binding to cutinase from Fusarium solani pisi in a biologically active form. Four lead ligands (3/5, 3/7, 4/5, 4/7) have been selected in which immobilized cutinase presented a relative activity of 30-60% as compared to the free enzyme.
Collapse
Affiliation(s)
- L Ruiu
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
46
|
Roque ACA, Lowe CR. Advances and applications of de novo designed affinity ligands in proteomics. Biotechnol Adv 2006; 24:17-26. [PMID: 16006085 DOI: 10.1016/j.biotechadv.2005.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 11/30/2022]
Abstract
Affinity chromatography represents a promising technique for decoding the proteomics universe. While conventional affinity purification is being used in conjunction with two-dimensional electrophoresis (2D-PAGE) and mass spectrometry (MS) for the study of proteomes and subproteomes, scientists are still confronted with the need for specific and tailor-made affinity ligands to target desired groups and families of proteins. Evidence has shown that, in many situations, synthetic affinity ligands can circumvent inconveniences associated with the utilisation of biological ligands for the chromatography-based purification of biomolecules. This review will highlight the potential applications of affinity chromatography and synthetic de novo designed ligands as separation tools for proteomics.
Collapse
|
47
|
Clonis YD. Affinity chromatography matures as bioinformatic and combinatorial tools develop. J Chromatogr A 2006; 1101:1-24. [PMID: 16242704 DOI: 10.1016/j.chroma.2005.09.073] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/21/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Affinity chromatography has the reputation of a more expensive and less robust than other types of liquid chromatography. Furthermore, the technique is considered to stand a modest chance of large-scale purification of proteinaceous pharmaceuticals. This perception is changing because of the pressure for quality protein therapeutics, and the realization that higher returns can be expected when ensuring fewer purification steps and increased product recovery. These developments necessitated a rethinking of the protein purification processes and restored the interest for affinity chromatography. This liquid chromatography technique is designed to offer high specificity, being able to safely guide protein manufactures to successfully cope with the aforementioned challenges. Affinity ligands are distinguished into synthetic and biological. These can be generated by rational design or selected from ligand libraries. Synthetic ligands are generated by three methods. The rational method features the functional approach and the structural template approach. The combinatorial method relies on the selection of ligands from a library of synthetic ligands synthesized randomly. The combined method employs both methods, that is, the ligand is selected from an intentionally biased library based on a rationally designed ligand. Biological ligands are selected by employing high-throughput biological techniques, e.g. phage- and ribosome-display for peptide and microprotein ligands, in addition to SELEX for oligonucleotide ligands. Synthetic mimodyes and chimaeric dye-ligands are usually designed by rational approaches and comprise a chloro-triazinlyl scaffold. The latter substituted with various amino acids, carbocyclic, and heterocyclic groups, generates libraries from which synthetic ligands can be selected. A 'lead' compound may help to generating a 'focused' or 'biased' library. This can be designed by various approaches, e.g.: (i) using a natural ligand-protein complex as a template; (ii) applying the principle of complementarity to exposed residues of the protein structure; and (iii) mimicking directly a natural biological recognition interaction. Affinity ligands, based on the peptide structure, can be peptides, peptide-mimetic derivatives (<30 monomers) and microproteins (e.g. 25-200 monomers). Microprotein ligands are selected from biological libraries constructed of variegated protein domains, e.g. minibody, Kunitz, tendamist, cellulose-binding domain, scFv, Cytb562, zinc-finger, SpA-analogue (Z-domain).
Collapse
Affiliation(s)
- Yannis D Clonis
- Laboratory of Enzyme Technology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
48
|
Hedhammar M, Gräslund T, Hober S. Protein Engineering Strategies for Selective Protein Purification. Chem Eng Technol 2005. [DOI: 10.1002/ceat.200500144] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|