1
|
Yin J, Spillman E, Cheng ES, Short J, Chen Y, Lei J, Gibbs M, Rosenthal JS, Sheng C, Chen YX, Veerasammy K, Choetso T, Abzalimov R, Wang B, Han C, He Y, Yuan Q. Brain-specific lipoprotein receptors interact with astrocyte derived apolipoprotein and mediate neuron-glia lipid shuttling. Nat Commun 2021; 12:2408. [PMID: 33893307 PMCID: PMC8065144 DOI: 10.1038/s41467-021-22751-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Lipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, we elucidate molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment.
Collapse
Affiliation(s)
- Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emma Spillman
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ethan S Cheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Short
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yang Chen
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jingce Lei
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Gibbs
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Justin S Rosenthal
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Sheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuki X Chen
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Kelly Veerasammy
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Tenzin Choetso
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Rinat Abzalimov
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ye He
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Gómez-Velasco H, Rojo-Domínguez A, García-Hernández E. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein. Biophys Chem 2020; 257:106315. [DOI: 10.1016/j.bpc.2019.106315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 11/29/2022]
|
3
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
Kielkopf CS, Low JKK, Mok YF, Bhatia S, Palasovski T, Oakley AJ, Whitten AE, Garner B, Brown SHJ. Identification of a novel tetrameric structure for human apolipoprotein-D. J Struct Biol 2018; 203:205-218. [PMID: 29885491 DOI: 10.1016/j.jsb.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded β-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-β burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Surabhi Bhatia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Tony Palasovski
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia; Specialist Breast Clinic Sutherland Shire and Wollongong, NSW, Australia; Integrated Specialist Health Care Sutherland Shire, NSW, Australia
| | - Aaron J Oakley
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia.
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Bello M, Fragoso-Vázquez MJ, Correa Basurto J. Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG. Int J Biol Macromol 2016; 92:625-636. [PMID: 27456117 DOI: 10.1016/j.ijbiomac.2016.07.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Bovine β-lactoglobulin (BLG) belong to the lipocalin family. This is a group of proteins involved in the binding and transporting of hydrophobic molecules. Experimental and theoretical reports have stated its complex structural behavior in solution, with coupled effects between homodimerization and ligand recognition. Nonetheless, structural evidence at the atomic level about the cause of this coupled effect has not been reported to date. To address this issue microsecond molecular dynamics (MD) simulations were combined with the molecular mechanics generalized Born surface area (MM/GBSA) approach, clustering analysis and principal component analysis (PCA), to explore the conformational complexity of BLG protein-protein self-association and palmitic acid (PLM) or dodecyl sulfate (SDS) ligand recognition in the monomeric and dimeric state. MD simulations, coupled to the MM/GBSA method, revealed that dimerization exerts contrasting effects on the ligand-binding capacity of BLG. Protein dimerization decreases PLM affinity, promoting dimer association. For SDS the dimeric state increases affinity, enhancing dimer dissociation. MD simulations based on PCA revealed that while few differences in the conformational subspace are observed between the free and bound monomer and dimer coupling for PLM, substantial changes are observed between the free and bound monomer and dimer coupling for SDS.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico.
| | - M Jonathan Fragoso-Vázquez
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| | - José Correa Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| |
Collapse
|
6
|
Ramirez JL, de Almeida Oliveira G, Calvo E, Dalli J, Colas RA, Serhan CN, Ribeiro JM, Barillas-Mury C. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae. Nat Commun 2015; 6:7403. [PMID: 26100162 PMCID: PMC4542143 DOI: 10.1038/ncomms8403] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. A soluble factor induced by Plasmodium infection promotes hemocyte differentiation and increases mosquitoe resistance to subsequent infections. Here the authors show that this factor consists of a Lipocalin/Lipoxin A4 complex, and that insects can metabolize arachidonic acid to produce lipoxins.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Giselle de Almeida Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
7
|
García-Mateo N, Ganfornina MD, Montero O, Gijón MA, Murphy RC, Sanchez D. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation. Front Cell Neurosci 2014; 8:374. [PMID: 25426024 PMCID: PMC4227524 DOI: 10.3389/fncel.2014.00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood. Apolipoprotein D (ApoD) is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA), also interacts with lysophosphatidylcholine (LPC) in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i) ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii) ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii) ApoD controls the basal and injury-triggered levels of LPC and AA; (iv) ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation. Regulation of macrophage behavior by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration-promoting agent.
Collapse
Affiliation(s)
- Nadia García-Mateo
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Maria D Ganfornina
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Olimpio Montero
- Mass Spectrometry Unit, Center for Biotechnology Development (CDB), Consejo Superior de Investigaciones Científicas Valladolid, Spain
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Diego Sanchez
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| |
Collapse
|
8
|
Ruiz M, Ganfornina MD, Correnti C, Strong RK, Sanchez D. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila. FASEB J 2013; 28:1555-67. [PMID: 24361577 DOI: 10.1096/fj.13-240556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket.
Collapse
Affiliation(s)
- Mario Ruiz
- 2Instituto de Biología y Genética Molecular, c/Sanz y Forés 3, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
9
|
Gutiérrez-Magdaleno G, Bello M, Portillo-Téllez MC, Rodríguez-Romero A, García-Hernández E. Ligand binding and self-association cooperativity of β-lactoglobulin. J Mol Recognit 2013; 26:67-75. [PMID: 23334914 DOI: 10.1002/jmr.2249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Unlike most small globular proteins, lipocalins lack a compact hydrophobic core. Instead, they present a large central cavity that functions as the primary binding site for hydrophobic molecules. Not surprisingly, these proteins typically exhibit complex structural dynamics in solution, which is intricately modified by intermolecular recognition events. Although many lipocalins are monomeric, an increasing number of them have been proven to form oligomers. The coupling effects between self-association and ligand binding in these proteins are largely unknown. To address this issue, we have calorimetrically characterized the recognition of dodecyl sulfate by bovine β-lactoglobulin, which forms weak homodimers at neutral pH. A thermodynamic analysis based on coupled-equilibria revealed that dimerization exerts disparate effects on the ligand-binding capacity of β-lactoglobulin. Protein dimerization decreases ligand affinity (or, reciprocally, ligand binding promotes dimer dissociation). The two subunits in the dimer exhibit a positive, entropically driven cooperativity. To investigate the structural determinants of the interaction, the crystal structure of β-lactoglobulin bound to dodecyl sulfate was solved at 1.64 Å resolution.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Magdaleno
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, DF 04630, México
| | | | | | | | | |
Collapse
|
10
|
Ruiz M, Sanchez D, Correnti C, Strong RK, Ganfornina MD. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: functional implications for cell differentiation. FEBS J 2013; 280:3928-43. [PMID: 23777559 DOI: 10.1111/febs.12394] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022]
Abstract
Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand-binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration, we screened the binding of 15 potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols, however, showed a species-specific binding pattern: cholesterol did not show strong binding to human ApoD, whereas NLaz and Laz did bind ergosterol. Among the lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene, but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of lipocalin ligand binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions.
Collapse
Affiliation(s)
- Mario Ruiz
- Departamento de Bioquímica y Biología Molecular y Fisiología-Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | |
Collapse
|
11
|
Ruiz M, Wicker-Thomas C, Sanchez D, Ganfornina MD. Grasshopper Lazarillo, a GPI-anchored Lipocalin, increases Drosophila longevity and stress resistance, and functionally replaces its secreted homolog NLaz. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:776-789. [PMID: 22846641 DOI: 10.1016/j.ibmb.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Lazarillo (Laz) is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein first characterized in the developing nervous system of the grasshopper Schistocerca americana. It belongs to the Lipocalins, a functionally diverse family of mostly secreted proteins. In this work we test whether the protective capacity known for Laz homologs in flies and vertebrates (NLaz, GLaz and ApoD) is evolutionarily conserved in grasshopper Laz, and can be exerted from the plasma membrane in a cell-autonomous manner. First we demonstrate that extracellular forms of Laz have autocrine and paracrine protecting effects for oxidative stress-challenged Drosophila S2 cells. Then we assay the effects of overexpressing GPI-linked Laz in adult Drosophila and whether it rescues both known and novel phenotypes of NLaz null mutants. Local effects of GPI-linked Laz inside and outside the nervous system promote survival upon different stress forms, and extend lifespan and healthspan of the flies in a cell-type dependent manner. Outside the nervous system, expression in fat body cells but not in hemocytes results in protection. Within the nervous system, glial cell expression is more effective than neuronal expression. Laz actions are sexually dimorphic in some expression domains. Fat storage promotion and not modifications in hydrocarbon profiles or quantities explain the starvation-desiccation resistance caused by Laz overexpression. This effect is exerted when Laz is expressed ubiquitously or in dopaminergic cells, but not in hemocytes. Grasshopper Laz functionally restores the loss of NLaz, rescuing stress-sensitivity as well as premature accumulation of aging-related damage, monitored by advanced glycation end products (AGEs). However Laz does not rescue NLaz courtship behavioral defects. Finally, the presence of two new Lipocalins with predicted GPI-anchors in mosquitoes shows that the functional advantages of GPI-linkage have been commonly exploited by Lipocalins in the arthropodan lineage.
Collapse
Affiliation(s)
- Mario Ruiz
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/Sanz y Forés 3, 47003 Valladolid, Spain
| | | | | | | |
Collapse
|
12
|
Abstract
Lipocalins are a family of diverse low molecular weight proteins that act extracellularly. They use multiple recognition properties that include 1) ligand binding to small hydrophobic molecules, 2) macromolecular complexation with other soluble macromolecules, and 3) binding to specific cell surface receptors to deliver cargo. Tear lipocalin (TLC) is a major protein in tears and has a large ligand-binding cavity that allows the lipocalin to bind an extensive and diverse set of lipophilic molecules. TLC can also bind to macromolecules, including the tear proteins lactoferin and lysozyme. The receptor to which TLC binds is termed tear lipocalin-interacting membrane receptor (LIMR). LIMR appears to work by endocytosis. TLC has a variety of suggested functions in tears, including regulation of tear viscosity, binding and release of lipids, endonuclease inactivation of viral DNA, binding of microbial siderophores (iron chelators used to deliver essential iron to bacteria), serving as a biomarker for dry eye, and possessing anti-inflammatory activity. Additional research is warranted to determine the actual functions of TLC in tears and the presence of its receptor on the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Navarro JA, Ohmann E, Sanchez D, Botella JA, Liebisch G, Moltó MD, Ganfornina MD, Schmitz G, Schneuwly S. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia. Hum Mol Genet 2010; 19:2828-40. [PMID: 20460268 PMCID: PMC7108586 DOI: 10.1093/hmg/ddq183] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2010] [Accepted: 05/01/2010] [Indexed: 12/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.
Collapse
Affiliation(s)
- Juan A. Navarro
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Elisabeth Ohmann
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, C/Sanz y Forés s/n, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - José A. Botella
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany and
| | - María D. Moltó
- Department of Genetics, Universidad de Valencia, CIBERSAM, 46100 Burjassot, Valencia, Spain
| | - María D. Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, C/Sanz y Forés s/n, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany and
| | - Stephan Schneuwly
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|