1
|
Koppara T, Dregely I, Nekolla SG, Nährig J, Langwieser N, Bradaric C, Ganter C, Laugwitz KL, Schwaiger M, Ibrahim T. Simultaneous 18-FDG PET and MR imaging in lower extremity arterial disease. Front Cardiovasc Med 2024; 11:1352696. [PMID: 38404725 PMCID: PMC10884315 DOI: 10.3389/fcvm.2024.1352696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Background Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) is a novel hybrid imaging method integrating the advances of morphological tissue characterization of MRI with the pathophysiological insights of PET applications. Aim This study evaluated the use of simultaneous 18-FDG PET/MR imaging for characterizing atherosclerotic lesions in lower extremity arterial disease (LEAD). Methods Eight patients with symptomatic stenoses of the superficial femoral artery (SFA) under simultaneous acquisition of 18-FDG PET and contrast-enhanced MRI using an integrated whole-body PET/MRI scanner. Invasive plaque characterization of the SFA was performed by intravascular imaging using optical coherence tomography. Histological analysis of plaque specimens was performed after directional atherectomy. Results MRI showed contrast enhancement at the site of arterial stenosis, as assessed on T2-w and T1-w images, compared to a control area of the contralateral SFA (0.38 ± 0.15 cm vs. 0.23 ± 0.11 cm; 1.77 ± 0.19 vs. 1.57 ± 0.15; p-value <0.05). On PET imaging, uptake of 18F-FDG (target-to-background ratio TBR > 1) at the level of symptomatic stenosis was observed in all but one patient. Contrast medium-induced MR signal enhancement was detected in all plaques, whereas FDG uptake in PET imaging was increased in lesions with active fibroatheroma and reduced in fibrocalcified lesions. Conclusion In this multimodal imaging study, we report the feasibility and challenges of simultaneous PET/MR imaging of LEAD, which might offer new perspectives for risk estimation.
Collapse
Affiliation(s)
- Tobias Koppara
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
| | - Isabel Dregely
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephan G. Nekolla
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jörg Nährig
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nicolas Langwieser
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Bradaric
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Carl Ganter
- Institute of Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
| | - Markus Schwaiger
- DZHK (German Center for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tareq Ibrahim
- Department of Internal Medicine I, Cardiology and Angiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Tear LR, Carrera C, Dhakan CB, Cavallari E, Travagin F, Calcagno C, Aime S, Gianolio E. An albumin-binding Gd-HPDO3A contrast agent for improved intravascular retention. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00128k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new Gd-HPDO3A derivative with improved MR contrast enhancing efficiency, demonstrated in a murine tumor model and in mouse models for stable and vulnerable atherosclerotic plaques, due to increased intravascular retention.
Collapse
Affiliation(s)
- Louise R. Tear
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan B. Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
- University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
3
|
Willemink MJ, Coolen BF, Dyvorne H, Robson PM, Bander I, Ishino S, Pruzan A, Sridhar A, Zhang B, Balchandani P, Mani V, Strijkers GJ, Nederveen AJ, Leiner T, Fayad ZA, Mulder WJM, Calcagno C. Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T. PLoS One 2020; 15:e0241779. [PMID: 33315867 PMCID: PMC7735577 DOI: 10.1371/journal.pone.0241779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Accurate quantification and characterization of atherosclerotic plaques with MRI requires high spatial resolution acquisitions with excellent image quality. The intrinsically better signal-to-noise ratio (SNR) at high-field clinical 7T compared to the widely employed lower field strengths of 1.5 and 3T may yield significant improvements to vascular MRI. However, 7T atherosclerosis imaging also presents specific challenges, related to local transmit coils and B1 field inhomogeneities, which may overshadow these theoretical gains. We present the development and evaluation of 3D, black-blood, ultra-high resolution vascular MRI on clinical high-field 7T in comparison lower-field 3T. These protocols were applied for in vivo imaging of atherosclerotic rabbits, which are often used for development, testing, and validation of translatable cardiovascular MR protocols. Eight atherosclerotic New Zealand White rabbits were imaged on clinical 7T and 3T MRI scanners using 3D, isotropic, high (0.63 mm3) and ultra-high (0.43 mm3) spatial resolution, black-blood MR sequences with extensive spatial coverage. Following imaging, rabbits were sacrificed for validation using fluorescence imaging and histology. Image quality parameters such as SNR and contrast-to-noise ratio (CNR), as well as morphological and functional plaque measurements (plaque area and permeability) were evaluated at both field strengths. Using the same or comparable imaging parameters, SNR and CNR were in general higher at 7T compared to 3T, with a median (interquartiles) SNR gain of +40.3 (35.3-80.1)%, and a median CNR gain of +68.1 (38.5-95.2)%. Morphological and functional parameters, such as vessel wall area and permeability, were reliably acquired at 7T and correlated significantly with corresponding, widely validated 3T vessel wall MRI measurements. In conclusion, we successfully developed 3D, black-blood, ultra-high spatial resolution vessel wall MRI protocols on a 7T clinical scanner. 7T imaging was in general superior to 3T with respect to image quality, and comparable in terms of plaque area and permeability measurements.
Collapse
Affiliation(s)
- Martin J. Willemink
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hadrien Dyvorne
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Philip M. Robson
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ilda Bander
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Seigo Ishino
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alison Pruzan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthi Sridhar
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bei Zhang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Venkatesh Mani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Willem J. M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Lavin Plaza B, Gebhardt P, Phinikaridou A, Botnar RM. Atherosclerotic Plaque Imaging. PROTOCOLS AND METHODOLOGIES IN BASIC SCIENCE AND CLINICAL CARDIAC MRI 2018:261-300. [DOI: 10.1007/978-3-319-53001-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017; 5:5714-5725. [DOI: 10.1039/c7tb01241a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contrast agents for Cardiovascular Magnetic Resonance (CMR) play a major role in research and clinical cardiology.
Collapse
Affiliation(s)
- Marco M. Meloni
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- School of Pharmacy and Chemistry
| | - Stephen Barton
- School of Pharmacy and Chemistry
- Kingston University
- London
- UK
| | - Lei Xu
- Department of Radiology
- Beijing Anzhen Hospital
- Beijing
- China
| | - Juan C. Kaski
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
| | - Wenhui Song
- UCL Centre for Biomaterials
- Division of surgery & Interventional Science
- University College of London
- London
- UK
| | - Taigang He
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- Royal Brompton Hospital
| |
Collapse
|
6
|
Phinikaridou A, Andia ME, Lavin B, Smith A, Saha P, Botnar RM. Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque. Circ Cardiovasc Imaging 2016; 9:e004910. [PMID: 27940955 PMCID: PMC5388187 DOI: 10.1161/circimaging.116.004910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Compromised structural integrity of the endothelium and higher microvessel density increase vascular permeability. We investigated whether vascular permeability measured in vivo by magnetic resonance imaging using the albumin-binding contrast agent, gadofosveset, is a surrogate marker of rupture-prone atherosclerotic plaque in a rabbit model. METHODS AND RESULTS New Zealand white rabbits (n=10) were rendered atherosclerotic by cholesterol-diet and endothelial denudation. Plaque rupture was triggered with Russell's viper venom and histamine. Animals were imaged pre-triggering, at 3 and 12 weeks, to quantify plaque area, vascular permeability, vasodilation, and stiffness and post-triggering to identify thrombus. Plaques identified on the pretrigger scans were classified as stable or rupture-prone based on the absence or presence of thrombus on the corresponding post-trigger magnetic resonance imaging, respectively. All rabbits had developed atherosclerosis, and 60% had ruptured plaques. Rupture-prone plaques had higher vessel wall relaxation rate (R1; 2.30±0.5 versus 1.86±0.3 s-1; P<0.001), measured 30 minutes after gadofosveset administration, and higher R1/plaque area ratio (0.70±0.06 versus 0.47±0.02, P= 0.01) compared with stable plaque at 12 weeks. Rupture-prone plaques had higher percent change in R1 between the 3 and 12 weeks compared with stable plaque (50.80±7.2% versus 14.22±2.2%; P<0.001). Immunohistochemistry revealed increased vessel wall albumin and microvessel density in diseased aortas and especially in ruptured plaque. Electron microscopy showed lack of structural integrity in both luminal and microvascular endothelium in diseased vessels. Functionally, the intrinsic vasodilation of the vessel wall decreased at 12 weeks compared with 3 weeks (18.60±1.0% versus 23.43±0.8%; P<0.001) and in rupture-prone compared with stable lesions (16.40±2.0% versus 21.63±1.2%; P<0.001). Arterial stiffness increased at 12 weeks compared with 3 weeks (5.00±0.1 versus 2.53±0.2 m/s; P<0.001) both in animals with stable and rupture-prone lesions. CONCLUSIONS T1 mapping using an albumin-binding contrast agent (gadofosveset) could quantify the changes in vascular permeability associated with atherosclerosis progression and rupture-prone plaques.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.).
| | - Marcelo E Andia
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Begoña Lavin
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Alberto Smith
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Prakash Saha
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - René M Botnar
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| |
Collapse
|
7
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
8
|
Parolini C, Busnelli M, Ganzetti GS, Dellera F, Manzini S, Scanziani E, Johnson JL, Sirtori CR, Chiesa G. Magnetic resonance imaging visualization of vulnerable atherosclerotic plaques at the brachiocephalic artery of apolipoprotein E knockout mice by the blood-pool contrast agent B22956/1. Mol Imaging 2015; 13. [PMID: 24825406 DOI: 10.2310/7290.2014.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection (p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration (p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis (p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events.
Collapse
|
9
|
Sadat U, Jaffer FA, van Zandvoort MAMJ, Nicholls SJ, Ribatti D, Gillard JH. Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation 2014; 130:786-94. [PMID: 25156914 DOI: 10.1161/circulationaha.114.010369] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Umar Sadat
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.).
| | - Farouc A Jaffer
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Marc A M J van Zandvoort
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Stephen J Nicholls
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Domenico Ribatti
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Jonathan H Gillard
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| |
Collapse
|
10
|
Teresa Albelda M, Garcia-España E, Frias JC. Visualizing the atherosclerotic plaque: a chemical perspective. Chem Soc Rev 2014; 43:2858-76. [PMID: 24526041 DOI: 10.1039/c3cs60410a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
Collapse
Affiliation(s)
- Ma Teresa Albelda
- Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna, c/ Catedrático José Beltrán 2, 46071 Valencia, Spain
| | | | | |
Collapse
|
11
|
Atherosclerosis and atheroma plaque rupture: imaging modalities in the visualization of vasa vasorum and atherosclerotic plaques. ScientificWorldJournal 2014; 2014:312764. [PMID: 24688380 PMCID: PMC3944209 DOI: 10.1155/2014/312764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/30/2013] [Indexed: 11/24/2022] Open
Abstract
Invasive angiography has been widely accepted as the gold standard to diagnose cardiovascular pathologies. Despite its superior resolution of demonstrating atherosclerotic plaque in terms of degree of lumen stenosis, the morphological assessment for the plaque is insufficient for the analysis of plaque components, and therefore, unable to predict the risk status or vulnerability of atherosclerotic plaque. There is an increased body of evidence to show that the vasa vasorum play an important role in the initiation, progression, and complications of atherosclerotic plaque leading to major adverse cardiac events. This paper provides an overview of the evidence-based reviews of various imaging modalities with regard to their potential value for comprehensive characterization of the composition, burden, and neovascularization of atherosclerotic plaque.
Collapse
|
12
|
Hyafil F, Feldman L, Le Guludec D, Fayad ZA. Evaluating Efficacy of Pharmaceutical Interventions in Atherosclerosis: Role of Magnetic Resonance Imaging and Positron Emission Tomography. ACTA ACUST UNITED AC 2012; 79:689-704. [DOI: 10.1002/msj.21349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
14
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Koole D, Heyligers J, Moll FL, Pasterkamp G. Intraplaque neovascularization and hemorrhage. J Cardiovasc Med (Hagerstown) 2012; 13:635-9. [DOI: 10.2459/jcm.0b013e3283590cd2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Abstract
Intraplaque hemorrhage (IPH) is an important co-factor for plaque progression and rupture. So far noninvasive MRI has shown promise for the in-vivo identification of IPH and for the prediction of plaque instability. Intravascular imaging techniques such as intravascular ultrasound or optical coherence tomography (OCT) cannot distinguish between IPH and other plaque components. However, OCT has the unique ability to identify microvessels located in the lipid core of atherosclerotic plaque due to its high resolution (around 20 μm). Microvessels are known to be the main source of blood extravasation due to their anatomically compromised structure. Coronary plaques with a high microvessel density undergo rapid plaque progression and are often associated with other features of plaque instability such as inflammatory cells. The combination of data from both MRI and OCT studies will allow a better understanding of the mechanism of plaque destabilization and the pathophysiology of cardiovascular events.
Collapse
Affiliation(s)
- Francesco Prati
- Interventional Cardiology, San Giovanni Hospital, Rome, Italy.
| | | |
Collapse
|
17
|
Teng Z, He J, Degnan AJ, Chen S, Sadat U, Bahaei NS, Rudd JHF, Gillard JH. Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage. Atherosclerosis 2012; 223:321-6. [PMID: 22762729 PMCID: PMC3437553 DOI: 10.1016/j.atherosclerosis.2012.06.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 12/02/2022]
Abstract
Objective Intraplaque hemorrhage is an increasingly recognized contributor to plaque instability. Neovascularization of plaque is believed to facilitate the entry of inflammatory and red blood cells (RBC). Under physiological conditions, neovessels are subject to mechanical loading from the deformation of atherosclerotic plaque by blood pressure and flow. Local mechanical environments around neovessels and their relevant pathophysiologic significance have not yet been examined. Methods and results Four carotid plaque samples removed at endarcterectomy were collected for histopathological examination. Neovessels and other components were manually segmented to build numerical models for mechanical analysis. Each component was assumed to be non-linear isotropic, piecewise homogeneous and incompressible. The results indicated that local maximum principal stress and stretch and their variations during one cardiac cycle were greatest around neovessels. Neovessels surrounded by RBC underwent a much larger stretch during systole than those without RBCs present nearby (median [inter quartile range]; 1.089 [1.056, 1.131] vs. 1.034 [1.020, 1.067]; p < 0.0001) and much larger stress (5.3 kPa [3.4, 8.3] vs. 3.1 kPa [1.6, 5.5]; p < 0.0001) and stretch (0.0282 [0.0190, 0.0427] vs. 0.0087 [0.0045, 0.0185]; p < 0.0001) variations during the cardiac cycle. Conclusions Local critical mechanical conditions may lead to the rupture of neovessels resulting in the formation and expansion of intraplaque hemorrhage.
Collapse
Affiliation(s)
- Zhongzhao Teng
- University Department of Radiology, University of Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pedersen SF, Thrysøe SA, Paaske WP, Thim T, Falk E, Ringgaard S, Kim WY. CMR assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset. J Cardiovasc Magn Reson 2011; 13:10. [PMID: 21269470 PMCID: PMC3036628 DOI: 10.1186/1532-429x-13-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial damage and angiogenesis are essential for atherosclerotic plaque development and destabilization. We sought to examine whether contrast enhanced cardiovascular magnetic resonance (CMR) using gadofosveset could show endothelial damage and neovessel formation in balloon injured porcine coronary arteries. METHODS AND RESULTS Data were obtained from seven pigs that all underwent balloon injury of the left anterior descending coronary artery (LAD) to induce endothelial damage and angiogenesis. Between one - 12 days (average four) after balloon injury, in vivo and ex vivo T1-weighted coronary CMR was performed after intravenous injection of gadofosveset. Post contrast, CMR showed contrast enhancement of the coronary arteries with a selective and time-dependent average expansion of the injured LAD segment area of 45% (p = 0.04; CI95 = [15%-75%]), indicating local extravasation of gadofosveset. Vascular and perivascular extravasation of albumin (marker of endothelial leakiness) and gadofosveset was demonstrated with agreement between Evans blue staining and ex vivo CMR contrast enhancement (p = 0.026). Coronary MRI contrast enhancement and local microvessel density determined by microscopic examination correlated (ρ = 0.82, p < 0.001). CONCLUSION Contrast enhanced coronary CMR with gadofosveset can detect experimentally induced endothelial damage and angiogenesis in the porcine coronary artery wall.
Collapse
Affiliation(s)
- Steen F Pedersen
- Dept. of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Samuel A Thrysøe
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - William P Paaske
- Dept. of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Troels Thim
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Erling Falk
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Steffen Ringgaard
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| | - Won Y Kim
- Dept. of Cardiology, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
- MR-center, Aarhus University Hospital Skejby, Brendstrupsgaardsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
19
|
te Boekhorst BCM, Bovens SM, van de Kolk CWA, Cramer MJM, Doevendans PAFM, ten Hove M, van der Weerd L, Poelmann R, Strijkers GJ, Pasterkamp G, van Echteld CJA. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo. NMR IN BIOMEDICINE 2010; 23:939-951. [PMID: 20878972 DOI: 10.1002/nbm.1514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo is limited. Study aims were: evaluation of (1) timing of MRI after intravenous injection of cannabinoid-2 receptor (CB2-R) (expressed by human and mouse plaque macrophages) targeted micelles; (2) inter-scan variability of inversion-recovery fast spin echo and fast spin echo; (3) relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo and fast spin echo. Inversion-recovery fast spin echo/fast spin echo imaging was performed before and every 15 min up to 48 h after injection of CB2-R targeted or control micelles using several groups of mice measured in an interleaved fashion. NER(plaque) (determined on inversion-recovery fast spin echo images) remained high (∼2) until 48 h after injection of CB2-R targeted micelles, whereas NER(plaque) decreased after 36 h in the control group. The inter-scan variability and relation between NER(plaque) and gadolinium (assessed with inductively coupled plasma- mass spectrometry) were compared between inversion-recovery fast spin echo and fast spin echo. Inter-scan variability was higher for inversion-recovery fast spin echo than for fast spin echo. Although gadolinium and NER(plaque) correlated well for both techniques, the NER of plaque was higher for inversion-recovery fast spin echo than for fast spin echo. In mice injected with CB2-R targeted micelles, NER(plaque) can be best evaluated at 36-48 h post-injection. Because NER(plaque) was higher for inversion-recovery fast spin echo than for fast spin echo, but with high inter-scan variability, repeated inversion-recovery fast spin echo imaging and averaging of the obtained NER(plaque) values is recommended.
Collapse
Affiliation(s)
- B C M te Boekhorst
- Department of Cardiology, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Staub D, Schinkel AF, Coll B, Coli S, van der Steen AF, Reed JD, Krueger C, Thomenius KE, Adam D, Sijbrands EJ, ten Cate FJ, Feinstein SB. Contrast-Enhanced Ultrasound Imaging of the Vasa Vasorum. JACC Cardiovasc Imaging 2010; 3:761-71. [PMID: 20633855 DOI: 10.1016/j.jcmg.2010.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/20/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
21
|
Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis 2010; 13:87-99. [DOI: 10.1007/s10456-010-9172-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
|
22
|
Will the real plaque vasculature please stand up? Why we need to distinguish the vasa plaquorum from the vasa vasorum. Trends Cardiovasc Med 2009; 19:87-94. [PMID: 19679265 DOI: 10.1016/j.tcm.2009.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies of experimental atherosclerosis and pathologic observations of human specimens have provided evidence supporting a correlation between vascularization of the atherosclerotic plaque and its natural growth and progression toward acute failure, associated with clinical events. The growing interest in the topic is illustrated by several excellent recent reviews discussing the molecular mechanisms that might play a role in the formation of plaque vasculature and that could explain some of the observed associations with pathologic features of experimental and human atherosclerotic lesions. At the same time, these reviews also emphasize that the field is still largely in uncharted territory. Hoping to spark some new investigations, we are taking this opportunity to question some of the common assumptions and to highlight less explored mechanisms. Finally, we are proposing to adopt the term vasa plaquorum to refer to the neovasculature located within the atherosclerotic plaque to distinguish it clearly from vasa vasorum, the native, supporting vasculature of the artery. We suggest that this new nomenclature offers a potential solution to eliminate ambiguity regarding implicit, but frequently neglected, differences between these structures. We think these points are relevant for future efforts to tailor diagnostic tools and therapeutic interventions targeting plaque neovascularization for the clinical management of atherosclerosis.
Collapse
|
23
|
Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 2009; 218:7-29. [PMID: 19309025 DOI: 10.1002/path.2518] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical complications of atherosclerosis are caused by thrombus formation, which in turn results from rupture of an unstable atherosclerotic plaque. The formation of microvessels (angiogenesis) in an atherosclerotic plaque contributes to the development of plaques, increasing the risk of rupture. Microvessel content increases with human plaque progression and is likely stimulated by plaque hypoxia, reactive oxygen species and hypoxia-inducible factor (HIF) signalling. The presence of plaque hypoxia is primarily determined by plaque inflammation (increasing oxygen demand), while the contribution of plaque thickness (reducing oxygen supply) seems to be minor. Inflammation and hypoxia are almost interchangeable and both stimuli may initiate HIF-driven angiogenesis in atherosclerosis. Despite the scarcity of microvessels in animal models, atherogenesis is not limited in these models. This suggests that abundant plaque angiogenesis is not a requirement for atherogenesis and may be a physiological response to the pathophysiological state of the arterial wall. However, the destruction of the integrity of microvessel endothelium likely leads to intraplaque haemorrhage and plaques at increased risk for rupture. Although a causal relation between the compromised microvessel structure and atherogenesis or between angiogenic stimuli and plaque angiogenesis remains tentative, both plaque angiogenesis and plaque hypoxia represent novel targets for non-invasive imaging of plaques at risk for rupture, potentially permitting early diagnosis and/or risk prediction of patients with atherosclerosis in the near future.
Collapse
Affiliation(s)
- Judith C Sluimer
- Maastricht University Medical Centre, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Neubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA. Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn Reson Med 2009; 60:1353-61. [PMID: 19025903 DOI: 10.1002/mrm.21795] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contrast agents targeted to molecular markers of disease are currently being developed with the goal of identifying disease early and evaluating treatment effectiveness using noninvasive imaging modalities such as MRI. Pharmacokinetic profiling of the binding of targeted contrast agents, while theoretically possible with MRI, has thus far only been demonstrated with more sensitive imaging techniques. Paramagnetic liquid perfluorocarbon nanoparticles were formulated to target alpha(v)beta(3)-integrins associated with early atherosclerosis in cholesterol-fed rabbits to produce a measurable signal increase on magnetic resonance images after binding. In this work, we combine quantitative information of the in vivo binding of this agent over time obtained by means of MRI with blood sampling to derive pharmacokinetic parameters using simultaneous and individual fitting of the data to a three compartment model. A doubling of tissue exposure (or area under the curve) is obtained with targeted as compared to control nanoparticles, and key parameter differences are discovered that may aid in development of models for targeted drug delivery.
Collapse
Affiliation(s)
- Anne M Neubauer
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen W, Vucic E, Leupold E, Mulder WJM, Cormode DP, Briley-Saebo KC, Barazza A, Fisher EA, Dathe M, Fayad ZA. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 3:233-42. [PMID: 19072768 DOI: 10.1002/cmmi.257] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnetic resonance (MR) imaging is becoming a pivotal diagnostic method to identify and characterize vulnerable atherosclerotic plaques. We previously reported a reconstituted high-density lipoprotein (rHDL) nanoparticle platform enriched with Gd-based amphiphiles as a plaque-specific MR imaging contrast agent. Further modification can be accomplished by inserting targeting moieties into this platform to potentially allow for improved intraplaque macrophage uptake. Since studies have indicated that intraplaque macrophage density is directly correlated to plaque vulnerability, modification of the rHDL platform may allow for better detection of vulnerable plaques. In the current study we incorporated a carboxyfluoresceine-labeled apolipoprotein E-derived lipopeptide, P2fA2, into rHDL. The in vitro macrophage uptake and in vivo MR efficacy were demonstrated using murine J774A.1 macrophages and the apolipoprotein E knock-out (apoE(-/-)) mouse model of atherosclerosis. The in vitro studies indicated enhanced association of murine macrophages to P2fA2 enriched rHDL (rHDL-P2A2) nanoparticles, relative to rHDL, using optical techniques and MR imaging. The in vivo studies showed a more pronounced and significantly higher signal enhancement of the atherosclerotic wall 24 h after the 50 micromol Gd/kg injection of rHDL-P2A2 relative to administration of rHDL. The normalized enhancement ratio for atherosclerotic wall of rHDL-P2A2 contrast agent injection was 90%, while that of rHDL was 53% 24 h post-injection. Confocal laser scanning microscopy revealed that rHDL-P2A2 nanoparticles co-localized primarily with intraplaque macrophages. The results of the current study confirm the hypothesis that intraplaque macrophage uptake of rHDL may be enhanced by the incorporation of the P2fA2 peptide into the modified HDL particle.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Imaging Science Laboratories, Departments of Radiology and Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|