1
|
Pušnik L, Serša I, Umek N, Cvetko E, Snoj Ž. Correlation between diffusion tensor indices and fascicular morphometric parameters of peripheral nerve. Front Physiol 2023; 14:1070227. [PMID: 36909220 PMCID: PMC9995878 DOI: 10.3389/fphys.2023.1070227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that measures the anisotropy of water diffusion. Clinical magnetic resonance imaging scanners enable visualization of the structural integrity of larger axonal bundles in the central nervous system and smaller structures like peripheral nerves; however, their resolution for the depiction of nerve fascicular morphology is limited. Accordingly, high-field strength MRI and strong magnetic field gradients are needed to depict the fascicular pattern. The study aimed to quantify diffusion tensor indices with high-field strength MRI within different anatomical compartments of the median nerve and determine if they correlate with nerve structure at the fascicular level. Methods: Three-dimensional pulsed gradient spin-echo (PGSE) imaging sequence in 19 different gradient directions and b value 1,150 s/mm2 was performed on a 9.4T wide-bore vertical superconducting magnet. Nine-millimeter-long segments of five median nerve samples were obtained from fresh cadavers and acquired in sixteen 0.625 mm thick slices. Each nerve sample had the fascicles, perineurium, and interfascicular epineurium segmented. The diffusion tensor was calculated from the region-average diffusion-weighted signals for all diffusion gradient directions. Subsequently, correlations between diffusion tensor indices of segmentations and nerve structure at the fascicular level (number of fascicles, fascicular ratio, and cross-sectional area of fascicles or nerve) were assessed. The acquired diffusion tensor imaging data was employed for display with trajectories and diffusion ellipsoids. Results: The nerve fascicles proved to be the most anisotropic nerve compartment with fractional anisotropy 0.44 ± 0.05. In the interfascicular epineurium, the diffusion was more prominent in orthogonal directions with fractional anisotropy 0.13 ± 0.02. Diffusion tensor indices within the fascicles and perineurium differed significantly between the subjects (p < 0.0001); however, there were no differences within the interfascicular epineurium (p ≥ 0.37). There were no correlations between diffusion tensor indices and nerve structure at the fascicular level (p ≥ 0.29). Conclusion: High-field strength MRI enabled the depiction of the anisotropic diffusion within the fascicles and perineurium. Diffusion tensor indices of the peripheral nerve did not correlate with nerve structure at the fascicular level. Future studies should investigate the relationship between diffusion tensor indices at the fascicular level and axon- and myelin-related parameters.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Serša
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Snoj
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Yuan X, Li X, Xu Y, Zhong L, Yan Z, Chen Z. Microstructural changes of the vestibulocochlear nerve in patients with Ménière's disease using diffusion tensor imaging. Front Neurol 2022; 13:915826. [PMID: 36226092 PMCID: PMC9548978 DOI: 10.3389/fneur.2022.915826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Objective To evaluate the microstructural changes of the vestibulocochlear nerve in patients with Ménière's disease. Methods A total of 26 subjects, 13 patients with MD and 13 healthy controls, underwent diffusion tensor imaging (DTI) on a 3T scanner. The independent sample t-test was used to compare the differences in fractional anisotropy (FA) and apparent diffusion coefficient (ADC) between the two groups. A Pearson correlation was used between DTI and the dizziness handicap inventory (DHI) scores. Results There was a significant decrease in FA and an increase in ADC of the vestibulocochlear nerve in MD patients compared with healthy controls (P = 0.04, P = 0.001). FA had negative correlations with the DHI score (r = −0.62, P = 0.02) and DHI-functional score (r = −0.64, P = 0.02). Conclusion These results are the first evidence of possible changes in the microstructure of the vestibulocochlear nerves in patients with MD. DTI is a potential technique for evaluating the vestibulocochlear nerve in patients with MD.
Collapse
Affiliation(s)
- Xiaojia Yuan
- Department of Chinese Medicine, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nan Yang, China
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaozhen Li
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaozhen Li
| | - Yu Xu
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liqun Zhong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanfeng Yan
- Department of Otolaryngology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengguang Chen
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhengguang Chen
| |
Collapse
|
3
|
Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve. J Clin Med 2022; 11:jcm11113036. [PMID: 35683424 PMCID: PMC9181650 DOI: 10.3390/jcm11113036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to simultaneously characterize anisotropic microcirculation and microstructure in the rat sciatic nerve. Comparison to postmortem measurements revealed that the in vivo IVIM-DTI signal contained a fast compartment (2.32 ± 0.04 × 10−3 mm2/s mean diffusivity, mean ± sem, n = 6, paired t test p < 0.01) that could be attributed to microcirculation in addition to a slower compartment that had similar mean diffusivity as the postmortem nerve (1.04 ± 0.01 vs. 0.96 ± 0.05 × 10−3 mm2/s, p > 0.05). Although further investigation and technical improvement are warranted, this preliminary study demonstrates both the feasibility and potential for applying the IVIM-DTI methodology to peripheral nerves for quantifying perfusion in the presence of anisotropic tissue microstructure.
Collapse
|
4
|
Awais K, Snoj Ž, Cvetko E, Serša I. Diffusion Tensor Imaging of a Median Nerve by Magnetic Resonance: A Pilot Study. Life (Basel) 2022; 12:life12050748. [PMID: 35629414 PMCID: PMC9143877 DOI: 10.3390/life12050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the assessment of the central nervous system (CNS), but with the advancement in magnetic resonance (MR) hardware and software, it has now become possible to image the peripheral nerves which were difficult to evaluate previously because of their small caliber. This study focuses on the assessment of the human median peripheral nerve ex vivo by DTI microscopy at 9.4 T magnetic field which allowed the evaluation of diffusion eigenvalues, the mean diffusivity and the fractional anisotropy at 35 μm in-plane resolution. The resolution was sufficient for clear depiction of all nerve anatomical structures and therefore further image analysis allowed the obtaining of average values for DT parameters in nerve fascicles (intrafascicular region and perineurium) as well as in the surrounding epineurium. The results confirmed the highest fractional anisotropy of 0.33 and principal diffusion eigenvalue of 1.0 × 10−9 m2/s in the intrafascicular region, somewhat lower values of 0.27 and 0.95 × 10−9 m2/s in the perineurium region and close to isotropic with very slow diffusion (0.15 and 0.05 × 10−9 m2/s) in the epineurium region.
Collapse
Affiliation(s)
- Kanza Awais
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia;
| | - Žiga Snoj
- Department of Radiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Erika Cvetko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Igor Serša
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-477-3696
| |
Collapse
|
5
|
Wan Q, Yu Y, Bao Y, Hu J, Wang P, Peng Y, Xia X, Liao Y, Liu J, Xie X, Li X. Evaluation of peripheral nerve acute crush injury in rabbits: comparison among diffusion kurtosis imaging, diffusion tensor imaging and electromyography. MAGMA (NEW YORK, N.Y.) 2022; 35:291-299. [PMID: 34374905 DOI: 10.1007/s10334-021-00952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/01/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Diffusion kurtosis imaging (DKI) has been proven to provide additional value for assessing many central nervous system diseases compared with conventional diffusion tensor imaging (DTI); however, whether it has the same value in peripheral nerve injury is unclear. This study aimed to investigate the performance of DKI, DTI, and electromyography (EMG) in evaluating peripheral nerve crush injury (PNCI) in rabbits. MATERIALS AND METHODS A total of 27 New Zealand white rabbits were selected to establish a PNCI model. Longitudinal DTI, DKI, and EMG were evaluated before surgery and 1 day, 3 days, 1 week, 2 weeks, 4 weeks, 6 weeks, and 8 weeks after surgery. At each time point, two rabbits were randomly selected for pathological examination. RESULTS The results showed that fractional anisotropy (FA) derived from both DKI and DTI demonstrated a significant difference between injured and control nerves at all time points (all P < 0.005) mean kurtosis of the injured nerve was lower than that on the control side after 2-8 weeks (all P < 0.05). No statistically significant difference was found in radial kurtosis, axial kurtosis, and apparent diffusion coefficient at almost every time point. The difference in compound muscle action potential (CMAP) of the bilateral gastrocnemius at each time point was statistically significant (all P < 0.001). CONCLUSIONS CMAP was a sensitive and reliable method to assess acute PNCI without being affected by perineural edema. DKI may not be superior to DTI in evaluating peripheral nerves, DTI with a shorter scanning time was preferred as an effective choice for evaluating acute peripheral nerve traumatic injury.
Collapse
Affiliation(s)
- Qi Wan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Yudong Yu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
- Department of Radiology, Huizhou Central People's Hospital, Huizhou, China
| | - Yingying Bao
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Jianfeng Hu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Yu Peng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Xiaoying Xia
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | | | - Jieqiong Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Xiaobin Xie
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No. 151, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Xia X, Dai L, Zhou H, Chen P, Liu S, Yang W, Zuo Z, Xu X. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging: A case-control study. Eur J Radiol 2021; 145:110007. [PMID: 34758418 DOI: 10.1016/j.ejrad.2021.110007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate diabetes peripheral neuropathy (DPN) by diffusion tensor imaging (DTI) and explore the correlation between DTI parameters and electrophysiological parameters. METHODS We examined tibial nerve (TN) and common peroneal nerve (CPN) of 32 DPN patients and 23 healthy controls using T1-weighted magnetic resonance imaging and DTI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) of TN and CPN were measured and compared between groups. Spearman correlation coefficient was used to explore the relationship between DTI parameters and electrophysiology parameters in the DPN group. Diagnostic value was assessed by receiver operating characteristic (ROC) analysis. RESULTS In the DPN group, FA was decreased (p < 0.0001) and MD and RD were increased (p < 0.05, p < 0.001) in the TN and CPN compared with the values of healthy control group. Moreover, in the DPN group, FA was positively correlated with motor nerve conduction velocity (MCV) (p < 0.0001), and both MD and RD were negatively correlated with MCV (p < 0.05, p < 0.001). However, there was no correlation between AD and any electrophysiological parameters. Among all DTI parameters, FA displayed the best diagnostic accuracy, with an area under the ROC curve of 0.882 in TN and 0.917 in CPN. CONCLUSION FA and RD demonstrate appreciable diagnostic accuracy. Furthermore, they both have a moderate correlation with MCV.
Collapse
Affiliation(s)
- Xinyue Xia
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lisong Dai
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Hongmei Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Panpan Chen
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Shuhua Liu
- Burn Department, Department of Burns, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan 430060, China
| | - Wenzhong Yang
- Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain and Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
7
|
Koide K, Sugiyama A, Yokota H, Mukai H, Wang J, Nakamura K, Misawa S, Ito S, Kuwabara S. Nerve Hypertrophy and Altered Diffusion in Anti-Myelin-Associated Glycoprotein Neuropathy Detected by Brachial Plexus Magnetic Resonance Neurography. Eur Neurol 2021; 85:95-103. [PMID: 34583351 DOI: 10.1159/000519128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study assessed the morphological changes and diffusion tensor imaging (DTI)-derived parameters of the brachial plexus using magnetic resonance neurography (MRN) in patients with anti-myelin-associated glycoprotein (anti-MAG) neuropathy. METHODS Eight patients with anti-MAG neuropathy underwent MRN of the brachial plexus with 3-dimensional (3D) short tau inversion recovery (STIR) and DTI sequences. Two neuroradiologists and a neurologist qualitatively assessed nerve hypertrophy on 3D STIR MRN. The cross-sectional area (CSA) of the nerve roots was measured. Quantitative analyses of fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, and MD) were obtained after postprocessing on DTI and manual segmentation. RESULTS There was nerve hypertrophy in 37.5% of the patients with anti-MAG neuropathy. All patients with anti-MAG neuropathy with nerve hypertrophy were refractory to rituximab therapy. The CSA of the nerve roots was inversely correlated with FA and positively correlated with MD and RD. FA decreased in the nerve roots and inversely correlated with disease duration. CONCLUSIONS Nerve hypertrophy appears in the proximal portion of peripheral nerves, such as the brachial plexus, in patients with anti-MAG neuropathy. Altered diffusion in the nerve roots might be associated with the loss of myelin integrity due to the demyelination process in anti-MAG neuropathy.
Collapse
Affiliation(s)
- Kyosuke Koide
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan,
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Mukai
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Jiaqi Wang
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keigo Nakamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sonoko Misawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shoichi Ito
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Medical Education, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Lichtenstein T, Sprenger A, Weiss K, Große Hokamp N, Maintz D, Schlamann M, Fink GR, Lehmann HC, Henning TD. MRI DTI and PDFF as Biomarkers for Lower Motor Neuron Degeneration in ALS. Front Neurosci 2021; 15:682126. [PMID: 34512239 PMCID: PMC8428530 DOI: 10.3389/fnins.2021.682126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the utility of nerve magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and muscle MRI multi-echo Dixon for assessing lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS). Methods In this prospective observational cohort study, 14 patients with ALS and 13 healthy controls underwent a multiparametric MRI protocol, including DTI of the sciatic nerve and assessment of muscle proton density fat fraction of the biceps femoris and the quadriceps femoris muscles by a multi-echo Dixon sequence. Results In ALS patients, mean fractional anisotropy values of the sciatic nerve were significantly lower than those of healthy controls. The quadriceps femoris, but not the biceps femoris muscle, showed significantly higher intramuscular fat fractions in ALS. Interpretation Our study provides evidence that multiparametric MRI protocols might help estimate structural nerve damage and neurogenic muscle changes in ALS.
Collapse
Affiliation(s)
- Thorsten Lichtenstein
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kilian Weiss
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Philips Healthcare, Hamburg, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Tobias D Henning
- Department of Neuroradiology, Center Hospital Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
9
|
Pashkunova-Martic I, Manzano-Szalai K, Friske J, Aszmann O, Theiner S, Klose MHM, Baurecht D, Trattnig S, Keppler BK, Helbich TH. Modified amino-dextrans as carriers of Gd-chelates for retrograde transport and visualization of peripheral nerves by magnetic resonance imaging (MRI). J Inorg Biochem 2021; 222:111495. [PMID: 34098348 DOI: 10.1016/j.jinorgbio.2021.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
Amino-dextrans (AD) conjugated with gadolinium (Gd3+) were developed as neuro-specific contrast agents (CA) for the visualization of the sciatic nerve in rats by magnetic resonance imaging (MRI). AD with 3, 10, and 70 kDa molecular weights were assessed as carrier molecules known to be transported with various speed by axonal microtubules. Detailed spectroscopic characterizations, analyses by Fast Protein Liquid Chromatography (FPLC), Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), and inductively coupled plasma-mass spectrometry (ICP-MS), were carried out. For MRI, the paramagnetic Gd3+ ion was coupled as a T1 signal enhancer. The well-established linear chelator, diethylenetriaminepentaacetic acid (DTPA), was used and subsequently replaced by the more stable cyclic chelator 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In addition, a fluorescently labeled AD-DTPA-Gd was prepared to demonstrate an active transport to the spinal cord by histochemistry. After successful synthesis and characterization, molecular migration of the AD-DTPA-Gd in the sciatic nerve of healthy Sprague Dawley rats was monitored by MRI for up to seven days. Enhancement of nerve structures was evaluated by MRI and correlated with ICP-MS analyses. To investigate the distribution of CA along the neuraxis, all animals were sacrificed after the final MRI monitoring. Nerves, spinal ganglions, and corresponding spinal cord sections were harvested, to determine the localization and concentration of the paramagnetic element. This is the first report that demonstrates the active uptake and transport of AD-Gd conjugates within the sciatic nerve. This new concept may serve as a potential diagnostic tool for the direct visualization and monitoring of the continuity of injured nerves.
Collapse
Affiliation(s)
- Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Krisztina Manzano-Szalai
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, High Field MR Center, Lazarettgasse 14, 1090 Vienna, Austria
| | - Oskar Aszmann
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Matthias H M Klose
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Dieter Baurecht
- Department of Physical Chemistry, University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Center, Lazarettgasse 14, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
10
|
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kahn H, Does MD, Dortch RD, Thayer WP. Noninvasive diffusion MRI to determine the severity of peripheral nerve injury. Magn Reson Imaging 2021; 83:96-106. [PMID: 34403759 DOI: 10.1016/j.mri.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Primary repair of peripheral nerves is recommended following transection; however, patient management following repair is challenged by a lack of biomarkers to nerve regeneration. Previous studies have demonstrated that diffusion magnetic resonance imaging (MRI) may provide viable biomarkers of nerve regeneration in injury models; though, these methods have not been systematically evaluated in graded partial transections and repairs. METHODS Ex vivo diffusion MRI was performed in fixed rat sciatic nerve samples 4 or 12 weeks following partial nerve transection and repair (25% cut = 12, 50% cut = 12 and 75% cut = 11), crush injuries (n = 12), and sham surgeries (n = 9). Behavioral testing and histologic evaluation were performed in the same animals and nerve samples for comparison. RESULTS Diffusion tractography provided visual characterizations of nerve damage and recovery consistent with the expected degree of injury within each cohort. In addition, quantitative indices from diffusion MRI correlated with both histological and behavioral evaluations, the latter of indicated full recovery for sham and crush nerves and limited recovery in all partially transected/repaired nerves. Nerve recovery between 4 and 12 weeks was statistically significant in partial transections 50% and 75% depth cuts (p = 0.043 and p = 0.022) but not for 25% transections. INTERPRETATION Our findings suggest that DTI can i) distinguish different degrees of partial nerve transection following surgical repair and ii) map spatially heterogeneous nerve recovery (e.g., due to collateral sprouting) from 4 to 12 weeks in partially transected nerves.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America.
| | - Angel F Farinas
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Alonda C Pollins
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Marlieke E Nussenbaum
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Nancy L Cardwell
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Hakmook Kahn
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America
| | - Richard D Dortch
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America; Barrow Neurological Institute, Division of Neuroimaging Research, Phoenix, AZ, United States of America
| | - Wesley P Thayer
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America
| |
Collapse
|
11
|
van Rosmalen MHJ, Goedee HS, Derks R, Asselman F, Verhamme C, de Luca A, Hendrikse J, van der Pol WL, Froeling M. Quantitative magnetic resonance imaging of the brachial plexus shows specific changes in nerve architecture in chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy and motor neuron disease. Eur J Neurol 2021; 28:2716-2726. [PMID: 33934438 PMCID: PMC8362016 DOI: 10.1111/ene.14896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The immunological pathophysiologies of chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN) differ considerably, but neither has been elucidated completely. Quantitative magnetic resonance imaging (MRI) techniques such as diffusion tensor imaging, T2 mapping, and fat fraction analysis may indicate in vivo pathophysiological changes in nerve architecture. Our study aimed to systematically study nerve architecture of the brachial plexus in patients with CIDP, MMN, motor neuron disease (MND) and healthy controls using these quantitative MRI techniques. METHODS We enrolled patients with CIDP (n = 47), MMN (n = 29), MND (n = 40) and healthy controls (n = 10). All patients underwent MRI of the brachial plexus and we obtained diffusion parameters, T2 relaxation times and fat fraction using an automated processing pipeline. We compared these parameters between groups using a univariate general linear model. RESULTS Fractional anisotropy was lower in patients with CIDP compared to healthy controls (p < 0.001), patients with MND (p = 0.010) and MMN (p < 0.001). Radial diffusivity was higher in patients with CIDP compared to healthy controls (p = 0.015) and patients with MND (p = 0.001) and MMN (p < 0.001). T2 relaxation time was elevated in patients with CIDP compared to patients with MND (p = 0.023). Fat fraction was lower in patients with CIDP and MMN compared to patients with MND (both p < 0.001). CONCLUSION Our results show that quantitative MRI parameters differ between CIDP, MMN and MND, which may reflect differences in underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Marieke H. J. van Rosmalen
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - H. Stephan Goedee
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rosina Derks
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Fay‐Lynn Asselman
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Camiel Verhamme
- Department of NeurologyAmsterdam NeuroscienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alberto de Luca
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - J. Hendrikse
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
12
|
Goyal A, Wadgera N, Srivastava DN, Ansari MT, Dawar R. Imaging of traumatic peripheral nerve injuries. J Clin Orthop Trauma 2021; 21:101510. [PMID: 34386344 PMCID: PMC8333344 DOI: 10.1016/j.jcot.2021.101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023] Open
Abstract
Nerves are commonly injured in case of blunt or penetrating trauma to the extremities. Patients with nerve injuries have profound consequences and thus a timely decision for operative management is a very important. Conventionally, management decisions have been based on clinical findings, patient course and electrophysiological studies. However, imaging modalities have an enormous role not only in localizing and grading of the nerve injuries but also in the follow-up of the nerve recovery. High-resolution ultrasound (HUS) is the modality of choice for evaluation of peripheral nerves. Magnetic resonance neurography (MRN) plays a complementary role, enabling better assessment of muscle changes and deeper nerves. Corresponding to the injured layer of the cross-section of the nerve, imaging manifestations differ in different grades of injury. Since imaging cannot detect ultrastructural changes at the microscopic level, thus there may be overlap in the imaging findings. Herewith, we discuss the imaging findings in different grades of nerve injury and propose a simple 3-tier grading for imaging (HUS and MRN) assessment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Ankur Goyal
- All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi, 110029, India,Corresponding author. Department of Radio-diagnosis All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Nagesh Wadgera
- All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi, 110029, India
| | - Deep Narayan Srivastava
- All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi, 110029, India
| | - Mohammed Tahir Ansari
- All India Institute of Medical Sciences, Department of Orthopaedics, New Delhi, 110029, India
| | - Rakesh Dawar
- All India Institute of Medical Sciences, Department of Plastic Surgery, New Delhi, 110029, India
| |
Collapse
|
13
|
[Peripheral nerve reconstruction - diagnostics as a basis for decision-making: report of the Consensus Workshop at the 35th Meeting of the DAM]. HANDCHIR MIKROCHIR P 2021; 53:168-174. [PMID: 33860493 DOI: 10.1055/a-1307-3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In the early stage of nerve lesions, the clinical differentiation between neurapraxia, axonotmesis and neurotmesis often presents a big challenge. Especially in the early stage, however, it is crucial to correctly classify the type of damage because this is what essentially determines the therapeutic concept, in particular the surgical approach and, therefore, the prognosis. A precise diagnosis not only requires detailed clinical assessment and medical history taking, but also the use of additional electrophysiological (functional) and/or imaging examinations. Electrophysiological diagnostic tests may provide information ion localization, severity, course, type of damage and incipient or past reinnervation. Preoperative functional diagnostic measures should include neurography, needle electromyography (EMG) and, if needed, evoked potentials (EP), while imaging procedures should include neural sonography and magnetic resonance imaging (MRI). As a complimentary procedure, EMG may also be performed during surgery.
Collapse
|
14
|
Ibrahim I, Škoch A, Herynek V, Jírů F, Tintěra J. Magnetic resonance tractography of the lumbosacral plexus: Step-by-step. Medicine (Baltimore) 2021; 100:e24646. [PMID: 33578590 PMCID: PMC10545402 DOI: 10.1097/md.0000000000024646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT MR tractography of the lumbosacral plexus (LSP) is challenging due to the difficulty of acquiring high quality data and accurately estimating the neuronal tracts. We proposed an algorithm for an accurate visualization and assessment of the major LSP bundles using the segmentation of the cauda equina as seed points for the initial starting area for the fiber tracking algorithm.Twenty-six healthy volunteers underwent MRI examinations on a 3T MR scanner using the phased array coils with optimized measurement protocols for diffusion-weighted images and coronal T2 weighted 3D short-term inversion recovery sampling perfection with application optimized contrast using varying flip angle evaluation sequences used for LSP fiber reconstruction and MR neurography (MRN).The fiber bundles reconstruction was optimized in terms of eliminating the muscle fibers contamination using the segmentation of cauda equina, the effects of the normalized quantitative anisotropy (NQA) and angular threshold on reconstruction of the LSP. In this study, the NQA parameter has been used for fiber tracking instead of fractional anisotropy (FA) and the regions of interest positioning was precisely adjusted bilaterally and symmetrically in each individual subject.The diffusion data were processed in individual L3-S2 nerve fibers using the generalized Q-sampling imaging algorithm. Data (mean FA, mean diffusivity, axial diffusivity and radial diffusivity, and normalized quantitative anisotropy) were statistically analyzed using the linear mixed-effects model. The MR neurography was performed in MedINRIA and post-processed using the maximum intensity projection method to demonstrate LSP tracts in multiple planes.FA values significantly decreased towards the sacral region (P < .001); by contrast, mean diffusivity, axial diffusivity, radial diffusivity and NQA values significantly increased towards the sacral region (P < .001).Fiber tractography of the LSP was feasible in all examined subjects and closely corresponded with the nerves visible in the maximum intensity projection images of MR neurography. Usage of NQA instead of FA in the proposed algorithm enabled better separation of muscle and nerve fibers.The presented algorithm yields a high quality reconstruction of the LSP bundles that may be helpful both in research and clinical practice.
Collapse
Affiliation(s)
- Ibrahim Ibrahim
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Antonín Škoch
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jírů
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Jaroslav Tintěra
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| |
Collapse
|
15
|
Pridmore MD, Glassman GE, Pollins AC, Manzanera Esteve IV, Drolet BC, Weikert DR, Does MD, Perdikis G, Thayer WP, Dortch RD. Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging. Ann Clin Transl Neurol 2021; 8:332-347. [PMID: 33403827 PMCID: PMC7886047 DOI: 10.1002/acn3.51270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision-making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision-making and alter the clinical course of surgical interventions. METHODS Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity. RESULTS Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed. INTERPRETATION DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re-operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment.
Collapse
Affiliation(s)
- Michael D. Pridmore
- Vanderbilt Institute for Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Gabriella E. Glassman
- Department of Plastic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alonda C. Pollins
- Department of Plastic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Brian C. Drolet
- Department of Plastic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Douglas R. Weikert
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Mark D. Does
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Galen Perdikis
- Department of Plastic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Wesley P. Thayer
- Department of Plastic SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Richard D. Dortch
- Vanderbilt Institute for Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Neuroimaging ResearchBarrow Neurological InstitutePhoenixArizonaUSA
| |
Collapse
|
16
|
Burrell JC, Browne KD, Dutton JL, Laimo FA, Das S, Brown DP, Roberts S, Petrov D, Ali Z, Ledebur HC, Rosen JM, Kaplan HM, Wolf JA, Smith DH, Chen HI, Cullen DK. A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery 2021; 87:833-846. [PMID: 32392341 DOI: 10.1093/neuros/nyaa106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - John L Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franco A Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Daniel P Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sanford Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, New Hampshire
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Zheng C, Yang Z, Chen S, Zhang F, Rao Z, Zhao C, Quan D, Bai Y, Shen J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics 2021; 11:2917-2931. [PMID: 33456580 PMCID: PMC7806490 DOI: 10.7150/thno.50825] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Peripheral nerve injury (PNI) is a great challenge for regenerative medicine. Nerve autograft is the gold standard for clinical PNI repair. Due to its significant drawbacks, artificial nerve guidance conduits (NGCs) have drawn much attention as replacement therapies. We developed a combinatorial NGC consisting of longitudinally aligned electrospun nanofibers and porcine decellularized nerve matrix hydrogel (pDNM gel). The in vivo capacity for facilitating nerve tissue regeneration and functional recovery was evaluated in a rat sciatic nerve defect model. Methods: Poly (L-lactic acid) (PLLA) was electrospun into randomly oriented (PLLA-random) and longitudinally aligned (PLLA-aligned) nanofibers. PLLA-aligned were further coated with pDNM gel at concentrations of 0.25% (PLLA-aligned/0.25% pDNM gel) and 1% (PLLA-aligned/1% pDNM gel). Axonal extension and Schwann cells migration were evaluated by immunofluorescence staining of dorsal root ganglia cultured on the scaffolds. To fabricate implantable NGCs, the nanofibrous scaffolds were rolled and covered with an electrospun protection tube. The fabricated NGCs were then implanted into a 5 mm sciatic nerve defect model in adult male Sprague-Dawley rats. Nerves treated with NGCs were compared to contralateral uninjured nerves (control group), injured but untreated nerves (unstitched group), and autografted nerves. Nerve regeneration was monitored by an established set of assays, including T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunostaining. Nerve functional recovery was evaluated by walking track analysis. Results: PLLA-aligned/0.25% pDNM gel scaffold exhibited the best performance in facilitating directed axonal extension and Schwann cells migration in vitro due to the combined effects of the topological cues provided by the aligned nanofibers and the biochemical cues retained in the pDNM gel. Consistent results were obtained in animal experiments with the fabricated NGCs. Both the T2 and fractional anisotropy values of the PLLA-aligned/0.25% pDNM gel group were the closest to those of the autografted group, and returned to normal much faster than those of the other NGCs groups. Histological assessment indicated that the implanted PLLA-aligned/0.25% pDNM gel NGC resulted in the largest number of axons and the most extensive myelination among all fabricated NGCs. Further, the PLLA-aligned/0.25% pDNM gel group exhibited the highest sciatic nerve function index, which was comparable to that of the autografted group, at 8 weeks post-surgery. Conclusions: NGCs composed of aligned PLLA nanofibers decorated with 0.25% pDNM gel provided both topological and biochemical guidance for directing and promoting axonal extension, nerve fiber myelination, and functional recovery. Moreover, T2-mapping and DTI metrics were found to be useful non-invasive monitoring techniques for PNI treatment.
Collapse
Affiliation(s)
- Chushan Zheng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Cailing Zhao
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ying Bai
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
18
|
Diffusion Magnetic Resonance Imaging Predicts Peripheral Nerve Recovery in a Rat Sciatic Nerve Injury Model. Plast Reconstr Surg 2020; 145:949-956. [PMID: 32221212 DOI: 10.1097/prs.0000000000006638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nerve regeneration after an injury should occur in a timely fashion for function to be restored. Current methods cannot monitor regeneration prior to muscle reinnervation. Diffusion tensor imaging has been previously shown to provide quantitative indices after nerve recovery. The goal of this study was to validate the use of this technology following nerve injury via a series of rat sciatic nerve injury/repair studies. METHODS Sprague-Dawley rats were prospectively divided by procedure (sham, crush, or cut/repair) and time points (1, 2, 4, and 12 weeks after surgery). At the appropriate time point, each animal was euthanized and the sciatic nerve was harvested and fixed. Data were obtained using a 7-Tesla magnetic resonance imaging system. For validation, findings were compared to behavioral testing (foot fault asymmetry and sciatic function index) and cross-sectional axonal counting of toluidine blue-stained sections examined under light microscopy. RESULTS Sixty-three rats were divided into three treatment groups (sham, n = 21; crush, n = 23; and cut/repair, n = 19). Fractional anisotropy was able to differentiate between recovery following sham, crush, and cut/repair injuries as early as 2 weeks (p < 0.05), with more accurate differentiation thereafter. More importantly, the difference in anisotropy between distal and proximal regions recognized animals with successful and failed recoveries according to behavioral analysis, especially at 12 weeks. In addition, diffusion tension imaging-based tractography provided a visual representation of nerve continuity in all treatment groups. CONCLUSIONS Diffuse tensor imaging is an objective and noninvasive tool for monitoring nerve regeneration. Its use could facilitate earlier detection of failed repairs to potentially help improve outcomes.
Collapse
|
19
|
Abstract
Nerve imaging is an important component in the assessment of patients presenting with suspected peripheral nerve pathology. Although magnetic resonance neurography and ultrasound are the most commonly utilized techniques, several promising new modalities are on the horizon. Nerve imaging is useful in localizing the nerve injury, determining the severity, providing prognostic information, helping establish the diagnosis, and helping guide surgical decision making. The focus of this article is imaging of damaged nerves, focusing on nerve injuries and entrapment neuropathies.
Collapse
Affiliation(s)
- David A Purger
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sarada Sakamuri
- Department of Neurology and Neurological Sciences, 213 Quarry Road, MC 5979, Palo Alto, CA 94304, USA
| | - Nicholas F Hug
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sandip Biswal
- Department of Radiology, Stanford University, 300 Pasteur Drive, S-068B, Stanford, CA 94305, USA
| | - Thomas J Wilson
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, R293, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Abstract
Neuroma formation occurs because of some degree of nerve injury followed by improper intrinsic nerve repair. The cause of neuroma pain is incompletely understood, but appears to be multifactorial in nature, including local and system changes. A comprehensive understanding of nerve anatomy, injury, and repair techniques should be used when dealing with neuroma formation and its physical manifestations. Diagnosis of neuroma is clinically characterized by pain associated with scar, altered sensation within the given nerve distribution, and a Tinel sign. The pathophysiology of neuroma formation is reviewed.
Collapse
|
21
|
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kang H, Does MD, Thayer WP, Dortch RD. Probabilistic Assessment of Nerve Regeneration with Diffusion MRI in Rat Models of Peripheral Nerve Trauma. Sci Rep 2019; 9:19686. [PMID: 31873165 PMCID: PMC6928159 DOI: 10.1038/s41598-019-56215-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
Nerve regeneration after injury must occur in a timely fashion to restore function. Unfortunately, current methods (e.g., electrophysiology) provide limited information following trauma, resulting in delayed management and suboptimal outcomes. Herein, we evaluated the ability of diffusion MRI to monitor nerve regeneration after injury/repair. Sprague-Dawley rats were divided into three treatment groups (sham = 21, crush = 23, cut/repair = 19) and ex vivo diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) was performed 1-12 weeks post-surgery. Behavioral data showed a distinction between crush and cut/repair nerves at 4 weeks. This was consistent with DTI, which found that thresholds based on the ratio of radial and axial diffusivities (RD/AD = 0.40 ± 0.02) and fractional anisotropy (FA = 0.53 ± 0.01) differentiated crush from cut/repair injuries. By the 12th week, cut/repair nerves whose behavioral data indicated a partial recovery were below the RD/AD threshold (and above the FA threshold), while nerves that did not recover were on the opposite side of each threshold. Additional morphometric analysis indicated that DTI-derived normalized scalar indices report on axon density (RD/AD: r = -0.54, p < 1e-3; FA: r = 0.56, p < 1e-3). Interestingly, higher-order DKI analyses did not improve our ability classify recovery. These findings suggest that DTI may provide promising biomarkers for distinguishing successful/unsuccessful nerve repairs and potentially identify cases that require reoperation.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA
| | - Angel F Farinas
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Alonda C Pollins
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Marlieke E Nussenbaum
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Nancy L Cardwell
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA
| | - Wesley P Thayer
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA
| | - Richard D Dortch
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA.
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA.
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA.
| |
Collapse
|
22
|
Assessment of the Effect of Autograft Orientation on Peripheral Nerve Regeneration Using Diffusion Tensor Imaging. Ann Plast Surg 2019; 80:384-390. [PMID: 29443831 DOI: 10.1097/sap.0000000000001357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Given no definite consensus on the accepted autograft orientation during peripheral nerve injury repair, we compare outcomes between reverse and normally oriented autografts using an advanced magnetic resonance imaging technique, diffusion tensor imaging. METHODS Thirty-six female Sprague-Dawley rats were divided into 3 groups: sham-left sciatic nerve isolation without injury, reverse autograft-10-mm cut left sciatic nerve segment reoriented 180° and used to coapt the proximal and distal stumps, or normally oriented autograft-10-mm cut nerve segment kept in its normal orientation for coaptation. Animals underwent sciatic functional index and foot fault behavior studies at 72 hours, and then weekly. At 6 weeks, axons proximal, within, and distal to the autograft were evaluated using diffusion tensor imaging and choline acetyltransferase motor staining for immunohistochemistry. Toluidine blue staining of 1-μm sections was used to assess axon count, density, and diameter. Bilateral gastrocnemius/soleus muscle weights were compared to obtain a net wet weight. Comparison of the groups was performed using Mann-Whiney U or Kruskal-Wallis H tests to determine significance. RESULTS Diffusion tensor imaging findings including fractional anisotropy, radial diffusivity, and axial diffusivity were similar between reverse and normally oriented autografts. Diffusion tensor imaging tractography demonstrated proximodistal nerve regeneration in both autograft groups. Motor axon counts proximal, within, and distal to the autografts were similar. Likewise, axon count, density, and diameter were similar between the autograft groups. Muscle net weight at 6 weeks and behavioral outcomes (sciatic functional index and foot fault) at any tested time point were also similar between reverse and normally oriented autografts. CONCLUSIONS Diffusion tensor imaging may be a useful assessment tool for peripheral nerve regeneration. Reversing nerve autograft polarity did not demonstrate to have an influence on functional or regenerative outcomes.
Collapse
|
23
|
Evaluation of select biocompatible markers for labelling peripheral nerves on 11.7 T MRI. J Neurosci Methods 2019; 315:6-13. [PMID: 30630001 DOI: 10.1016/j.jneumeth.2018.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Peripheral nerve injury is often followed by a highly variable recovery process with respect to both rapidity and efficacy. Identifying post-nerve injury phenomena is key to assessing the merit and timing of surgery as well as to tracking nerve recovery postoperatively. Diffusion Tensor Imaging (DTI) has been investigated in the clinical and research settings as a noninvasive technique to both assess and monitor each patient's unique case of peripheral nerve damage. NEW METHOD We identify a MRI-suitable marker for tracking the exact site of either nerve injury or coaptation following surgical repair to aid with DTI analysis. RESULTS Due to artefact and disruption of tractography, silver wire and microvascular clips were not suitable markers. AxoGuard®, 4-0 vicryl suture, and 10-0 polyamide suture, although detectable, did not produce a signal easily distinguished from post-surgical changes. Silicone was easily identifiable and stable in both the acute and delayed time points, exhibited negligible impact on DTI parameters, and possessed geometry to prevent nerve strangulation. COMPARISON WITH EXISTING METHOD Prior studies have not assessed the efficacy of other markers nor have they assessed silicone for potential artefact with DTI parameter analysis. Furthermore, this work demonstrates the reliability and compatibility of silicone in the delayed postoperative time period and includes its unique imaging appearance on high-resolution 11.7 MRI. CONCLUSION Semi-cylindrical silicone tubing can be used as a safe, reliable, and readily available radiological marker to visualize and monitor a region of interest on a rodent's peripheral nerve for aiding assessments with diffusion tensor imaging.
Collapse
|
24
|
MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN). J Neurol 2019; 266:975-981. [DOI: 10.1007/s00415-019-09224-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
|
25
|
Kim HS, Yoon YC, Choi BO, Jin W, Cha JG, Kim JH. Diffusion tensor imaging of the sciatic nerve in Charcot-Marie-Tooth disease type I patients: a prospective case-control study. Eur Radiol 2019; 29:3241-3252. [PMID: 30635758 DOI: 10.1007/s00330-018-5958-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVES This study aimed to evaluate whether diffusion tensor imaging (DTI) parameters and cross-sectional area (CSA) can differentiate between the sciatic nerve of Charcot-Marie-Tooth (CMT) disease type I (demyelinating form) patients and that of controls. METHODS This prospective comparison study included 18 CMT type I patients and 18 age/sex-matched volunteers. Magnetic resonance imaging including DTI and axial T2-weighted Dixon sequence was performed for each subject. Region of interest analysis was independently performed by two radiologists on each side of the sciatic nerve at four levels: hamstring tendon origin (level 1), lesser trochanter of the femur (level 2), gluteus maximus tendon insertion (level 3), and mid-femur (level 4). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated. The CSA of the sciatic nerve bundle was measured using axial water-only image at each level. Comparisons of DTI parameters between the two groups were performed using the two-sample t test and Mann-Whitney U test. Interobserver agreement analysis was also conducted. RESULTS Interobserver agreement was excellent for all DTI parameter analyses. FA was significantly lower at all four levels in CMT patients than controls. RD, MD, and CSA were significantly higher at all four levels in CMT patients. AD was significantly higher at level 2 in CMT patients. CONCLUSION DTI assessment of the sciatic nerve is reproducible and can discriminate the demyelinating nerve pathology of CMT type I patients from normal nerves. The CSA of the sciatic nerve is also a potential parameter for diagnosing nerve abnormality in CMT type I patients. KEY POINTS • Diffusion tensor imaging parameters of the sciatic nerve at proximal to mid-femur level revealed significant differences between the Charcot-Marie-Tooth disease patients and controls. • The cross-sectional area of the sciatic nerve was significantly larger in the Charcot-Marie-Tooth disease patients. • Interobserver agreement was excellent (intraclass coefficient > 0.8) for all diffusion tensor imaging parameter analyses.
Collapse
Affiliation(s)
- Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jang Gyu Cha
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea
| |
Collapse
|
26
|
Cao J, He B, Wang S, Zhou Z, Gao F, Xiao L, Luo X, Wu C, Gong T, Chen W, Wang G. Diffusion Tensor Imaging of Tibial and Common Peroneal Nerves in Patients With Guillain-Barre Syndrome: A Feasibility Study. J Magn Reson Imaging 2018; 49:1356-1364. [PMID: 30252994 DOI: 10.1002/jmri.26324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The development of a noninvasive, objective, and accurate method to assess peripheral nerve disorders in Guillain-Barre syndrome (GBS) is of clinical significance. Diffusion tensor imaging (DTI) has been used to evaluate some peripheral nerve disorders. PURPOSE To investigate the feasibility of DTI in evaluating the peripheral nerve disorders in patients with GBS. STUDY TYPE Case control. SUBJECTS Twenty GBS patients and 16 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T, T1 WI-SE, T2 WI-SPAIR, DTI; electrophysiology. ASSESSMENT MRI data were analyzed by two radiologists blindly and independently. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusion coefficient (AD), and radial diffusion coefficient (RD) values of tibial nerve (TN) and common peroneal nerve (CPN) were recorded. Motor nerve conduction velocity (MCV) and motor nerve conduction amplitude of TN and CPN were recorded. STATISTICAL TESTS Intraclass correlation coefficient (ICC), t-test, receiver-operating characteristic (ROC), and area under the curve (AUC) analysis, Pearson correlation coefficient. RESULTS The FA and AD values of TN and CPN in the GBS group were significantly lower and the ADC and RD values were higher than those in the controls (P <0.05). The AUC of the FA values (0.970 for TN and 0.927 for CPN) were higher than that of the ADC, AD, and RD values. FA and AD values were positively correlated and ADC, RD values were negatively correlated with MCV and motor nerve conduction amplitude, respectively (P <0.05). The correlations between FA value and electrophysiology parameters were the highest. DATA CONCLUSION DTI quantitative parameters could evaluate the disorders of peripheral nerves in patients with GBS. A moderate correlation was observed between DTI and electrophysiology parameters. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1356-1364.
Collapse
Affiliation(s)
- Jinfeng Cao
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong, P.R. China
| | - Bing He
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong, P.R. China
| | - Shanshan Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Zhongmin Zhou
- Department of Nephrology, Zibo Central Hospital, Shandong, P.R. China
| | - Fei Gao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Lianxiang Xiao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Xin Luo
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong, P.R. China
| | - Chao Wu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tao Gong
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| | - Weibo Chen
- Philips Healthcare, Shanghai, P.R. China
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
27
|
In vivo Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, and Tractography of a Sciatic Nerve Injury Model in Rat at 9.4T. Sci Rep 2018; 8:12911. [PMID: 30150697 PMCID: PMC6110718 DOI: 10.1038/s41598-018-30961-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
Peripheral nerve injuries result in severe loss of sensory and motor functions in the afflicted limb. There is a lack of standardised models to non-invasively study degeneration, regeneration, and normalisation of neuronal microstructure in peripheral nerves. This study aimed to develop a non-invasive evaluation of peripheral nerve injuries, using diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and tractography on a rat model of sciatic nerve injury. 10 female Sprague Dawley rats were exposed to sciatic nerve neurotmesis and studied using a 9.4 T magnet, by performing DTI and DKI of the sciatic nerve before and 4 weeks after injury. The distal nerve stump showed a decrease in fractional anisotropy (FA), mean kurtosis (MK), axonal water fraction (AWF), and radial and axonal kurtosis (RK, AK) after injury. The proximal stump showed a significant decrease in axial diffusivity (AD) and increase of MK and AK as compared with the uninjured nerve. Both mean diffusivity (MD) and radial diffusivity (RD) increased in the distal stump after injury. Tractography visualised the sciatic nerve and the site of injury, as well as local variations of the diffusion parameters following injury. In summary, the described method detects changes both proximal and distal to the nerve injury.
Collapse
|
28
|
Evaluation of two collagen conduits and autograft in rabbit sciatic nerve regeneration with quantitative magnetic resonance DTI, electrophysiology, and histology. Eur Radiol Exp 2018; 2:19. [PMID: 30148252 PMCID: PMC6091702 DOI: 10.1186/s41747-018-0049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Background We compared different surgical techniques for nerve regeneration in a rabbit sciatic nerve gap model using magnetic resonance diffusion tensor imaging (DTI), electrophysiology, limb function, and histology. Methods A total of 24 male New Zealand white rabbits were randomized into three groups: autograft (n = 8), hollow conduit (n = 8), and collagen-filled conduit (n = 8). A 10-mm segment of the rabbit proximal sciatic nerve was cut, and autograft or collagen conduit was used to bridge the gap. DTI on a 3-T system was performed preoperatively and 13 weeks after surgery using the contralateral, nonoperated nerve as a control. Results Overall, autograft performed better compared with both conduit groups. Differences in axonal diameter were significant (autograft > hollow conduit > collagen-filled conduit) at 13 weeks (autograft vs. hollow conduit, p = 0.001, and hollow conduit vs. collagen-filled conduit, p < 0.001). Significant group differences were found for axial diffusivity but not for any of the other DTI metrics (autograft > hollow conduit > collagen-filled conduit) (autograft vs. hollow conduit, p = 0.001 and hollow conduit vs. collagen-filled conduit, p = 0.021). As compared with hollow conduit (autograft > collagen-filled conduit > hollow conduit), collagen-filled conduit animals demonstrated a nonsignificant increased maximum tetanic force. Conclusions Autograft-treated rabbits demonstrated improved sciatic nerve regeneration compared with collagen-filled and hollow conduits as assessed by histologic, functional, and DTI parameters at 13 weeks.
Collapse
|
29
|
Zheng CS, Zhang X, Chen YY, Zhang F, Duan XH, Chen MW, Lu LJ, Shen J. Assessment of the synergic effect of immunomodulation on nerve repair using multiparametric magnetic resonance imaging. Muscle Nerve 2018; 57:E38-E45. [PMID: 28445921 DOI: 10.1002/mus.25674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. METHODS Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. RESULTS Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. DISCUSSION Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values. Muscle Nerve 57: E38-E45, 2018.
Collapse
Affiliation(s)
- Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
30
|
Lichtenstein T, Sprenger A, Weiss K, Slebocki K, Cervantes B, Karampinos D, Maintz D, Fink GR, Henning TD, Lehmann HC. MRI biomarkers of proximal nerve injury in CIDP. Ann Clin Transl Neurol 2017; 5:19-28. [PMID: 29376089 PMCID: PMC5771316 DOI: 10.1002/acn3.502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022] Open
Abstract
Objective To evaluate the utility of nerve diffusion tensor imaging (DTI), nerve cross‐sectional area, and muscle magnetic resonance imaging (MRI) multiecho Dixon for assessing proximal nerve injury in chronic inflammatory demyelinating polyneuropathy (CIDP). Methods In this prospective observational cohort study, 11 patients with CIDP and 11 healthy controls underwent a multiparametric MRI protocol with DTI of the sciatic nerve and assessment of muscle proton‐density fat fraction of the biceps femoris and the quadriceps femoris muscles by multiecho Dixon MRI. Patients were longitudinally evaluated by MRI, clinical examination, and nerve conduction studies at baseline and after 6 months. Results In sciatic nerves of CIDP patients, mean cross‐sectional area was significantly higher and fractional anisotropy value was significantly lower, compared to controls. In contrast, muscle proton‐density fat fraction was significantly higher in thigh muscles of patients with CIDP, compared to controls. MRI parameters showed high reproducibility at baseline and 6 months. Interpretation Advanced MRI parameters demonstrate subclinical proximal nerve damage and intramuscular fat accumulation in CIDP. Data suggest DTI and multiecho Dixon MRI might be useful in estimating axonal damage and neurogenic muscle changes in CIDP.
Collapse
Affiliation(s)
- Thorsten Lichtenstein
- Institute of Diagnostic and Interventional Radiology University Hospital of Cologne Cologne Germany
| | - Alina Sprenger
- Department of Neurology University Hospital of Cologne Cologne Germany
| | - Kilian Weiss
- Institute of Diagnostic and Interventional Radiology University Hospital of Cologne Cologne Germany.,Philips Healthcare Germany Hamburg Germany
| | - Karin Slebocki
- Institute of Diagnostic and Interventional Radiology University Hospital of Cologne Cologne Germany
| | - Barbara Cervantes
- Cognitive Neuroscience Institute of Diagnostic and Interventional Radiology Technical University Munich Munich Germany
| | - Dimitrios Karampinos
- Cognitive Neuroscience Institute of Diagnostic and Interventional Radiology Technical University Munich Munich Germany
| | - David Maintz
- Institute of Diagnostic and Interventional Radiology University Hospital of Cologne Cologne Germany
| | - Gereon R Fink
- Department of Neurology University Hospital of Cologne Cologne Germany.,Institute of Neuroscience and Medicine (INM-3) Research Centre Juelich Jülich Germany
| | - Tobias D Henning
- Institute of Diagnostic and Interventional Radiology University Hospital of Cologne Cologne Germany.,Department of Neuroradiology Krankenhaus der Barmherzigen Brüder Trier Germany
| | - Helmar C Lehmann
- Department of Neurology University Hospital of Cologne Cologne Germany
| |
Collapse
|
31
|
Hill BJ, Padgett KR, Kalra V, Marcillo A, Bowen B, Pattany P, Dietrich D, Quencer R. Gadolinium DTPA Enhancement Characteristics of the Rat Sciatic Nerve after Crush Injury at 4.7T. AJNR Am J Neuroradiol 2017; 39:177-183. [PMID: 29097415 DOI: 10.3174/ajnr.a5437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/24/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic peripheral nerve injury is common and results in loss of function and/or neuropathic pain. MR neurography is a well-established technique for evaluating peripheral nerve anatomy and pathology. However, the Gd-DTPA enhancement characteristics of acutely injured peripheral nerves have not been fully examined. This study was performed to determine whether acutely crushed rat sciatic nerves demonstrate Gd-DTPA enhancement and, if so, to evaluate whether enhancement is affected by crush severity. MATERIALS AND METHODS In 26 rats, the sciatic nerve was crushed with either surgical forceps (6- to 20-N compressive force) or a microvascular/microaneurysm clip (0.1-0.6 N). Animals were longitudinally imaged at 4.7T for up to 30 days after injury. T1WI, T2WI, and T1WI with Gd-DTPA were performed. RESULTS Forceps crush injury caused robust enhancement between days 3 and 21, while clip crush injury resulted in minimal-to-no enhancement. Enhancement after forceps injury peaked at 7 days and was seen a few millimeters proximal to, in the region of, and several centimeters distal to the site of crush injury. Enhancement after forceps injury was statistically significant compared with clip injury between days 3 and 7 (P < .04). CONCLUSIONS Gd-DTPA enhancement of peripheral nerves may only occur above a certain crush-severity threshold. This phenomenon may explain the intermittent observation of Gd-DTPA enhancement of peripheral nerves after traumatic injury. The observation of enhancement may be useful in judging the severity of injury after nerve trauma.
Collapse
Affiliation(s)
- B J Hill
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - K R Padgett
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.) .,Radiation Oncology (K.R.P.).,Biomedical Engineering (K.R.P.)
| | - V Kalra
- Miller School of Medicine (V.K.), University of Miami, Miami, Florida
| | - A Marcillo
- Miami Project to Cure Paralysis (A.M., D.D.)
| | - B Bowen
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - P Pattany
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - D Dietrich
- Miami Project to Cure Paralysis (A.M., D.D.)
| | - R Quencer
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| |
Collapse
|
32
|
Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: Overview, pitfalls, and future directions. J Magn Reson Imaging 2017; 47:1171-1189. [DOI: 10.1002/jmri.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tina Jeon
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| | - Maggie M. Fung
- MR Apps & Workflow; GE Healthcare; New York New York USA
| | - Kevin M. Koch
- Department of Radiology; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Ek T. Tan
- GE Global Research Center; Niskayuna New York USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| |
Collapse
|
33
|
Martín Noguerol T, Barousse R, Socolovsky M, Luna A. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg 2017; 7:398-421. [PMID: 28932698 DOI: 10.21037/qims.2017.08.01] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traumatic conditions of peripheral nerves and plexus have been classically evaluated by morphological imaging techniques and electrophysiological tests. New magnetic resonance imaging (MRI) studies based on 3D fat-suppressed techniques are providing high accuracy for peripheral nerve injury evaluation from a qualitative point of view. However, these techniques do not provide quantitative information. Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are functional MRI techniques that are able to evaluate and quantify the movement of water molecules within different biological structures. These techniques have been successfully applied in other anatomical areas, especially in the assessment of central nervous system, and now are being imported, with promising results for peripheral nerve and plexus evaluation. DWI and DTI allow performing a qualitative and quantitative peripheral nerve analysis, providing valuable pathophysiological information about functional integrity of these structures. In the field of trauma and peripheral nerve or plexus injury, several derived parameters from DWI and DTI studies such as apparent diffusion coefficient (ADC) or fractional anisotropy (FA) among others, can be used as potential biomarkers of neural damage providing information about fiber organization, axonal flow or myelin integrity. A proper knowledge of physical basis of these techniques and their limitations is important for an optimal interpretation of the imaging findings and derived data. In this paper, a comprehensive review of the potential applications of DWI and DTI neurographic studies is performed with a focus on traumatic conditions, including main nerve entrapment syndromes in both peripheral nerves and brachial or lumbar plexus.
Collapse
Affiliation(s)
| | - Rafael Barousse
- Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina
| | - Mariano Socolovsky
- Peripheral Nerve and Plexus Surgery Unit, Department of Neurosurgery, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Antonio Luna
- MRI Unit, Neuroradiology Section, Clínica Las Nieves, SERCOSA, Health Time, Jaén, Spain.,Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
34
|
Chiou SY, Hellyer PJ, Sharp DJ, Newbould RD, Patel MC, Strutton PH. Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology. Neuroradiology 2017; 59:893-903. [PMID: 28744730 PMCID: PMC5559579 DOI: 10.1007/s00234-017-1869-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
Abstract
Purpose Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Methods Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. Results DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. Conclusion The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function.
Collapse
Affiliation(s)
- S Y Chiou
- The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - P J Hellyer
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - D J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | | | - M C Patel
- Imaging Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - P H Strutton
- The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
35
|
Chen YY, Zhang X, Lin XF, Zhang F, Duan XH, Zheng CS, Chen MW, Wang DY, Zeng WK, Shen J. DTI metrics can be used as biomarkers to determine the therapeutic effect of stem cells in acute peripheral nerve injury. J Magn Reson Imaging 2017; 45:855-862. [PMID: 27448779 DOI: 10.1002/jmri.25395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To determine the role of diffusion tensor imaging (DTI) metrics as biomarkers for the therapeutic effects of mesenchymal stem cells (MSCs) in acute peripheral nerve injury. MATERIALS AND METHODS Forty-four adult rats received subepineurial microinjection of MSCs (n = 22) or phosphate buffered saline (PBS, n = 22) 1 week after the sciatic nerve trunk crush injury. Sequential fat-suppressed T2-weighted imaging, T2 measurement, DTI and sciatic nerve functional assessment were performed at a 3.0 Tesla MR unit over an 8-week follow-up, with histological assessments performed at regular intervals. The sciatic nerve function index, T2 value, and DTI metrics, including fractional anisotropy (FA), axial diffusivity, radial diffusivity (RD), and mean diffusivity values of the distal stumps of crushed nerves were measured and compared between the two groups. RESULTS Nerves treated with MSCs showed better functional recovery and exhibited more pronounced nerve regeneration compared with nerves treated with PBS. T2 values in nerves treated with MSCs or PBS showed a similar change pattern (P = 0.174), while FA and RD values in nerves treated with MSCs showed more rapid return (one week earlier) to baseline level than nerves treated with PBS (P = 0.045; 0.035). Nerves treated with MSCs had higher FA and lower RD values than nerves treated with PBS during the period from 2 to 3 weeks after surgery (P ≤ 0.0001, 0.004; P = 0.004, 0.006). CONCLUSION FA and RD values derived from DTI might be used as sensitive biomarkers for detecting the therapeutic effect of stem cells in acute peripheral nerve crush injuries. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:855-862.
Collapse
Affiliation(s)
- Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Feng Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dong-Ye Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Ke Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Bernabeu Á, López-Celada S, Alfaro A, Mas JJ, Sánchez-González J. Is diffusion tensor imaging useful in the assessment of the sciatic nerve and its pathologies? Our clinical experience. Br J Radiol 2016; 89:20150728. [PMID: 27459247 DOI: 10.1259/bjr.20150728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the usefulness of diffusion tensor imaging (DTI) in the clinical setting as a complementary tool to conventional MRI in the study and assessment of the sciatic nerve and its pathologies. METHODS 17 patients diagnosed with different types of sciatic neuropathy and 10 healthy controls underwent a conventional MRI and a DTI study in a 3-T MR scanner (Achieva(®) 3-T X-Series; Philips Healthcare, Netherlands). RESULTS In the control group, we were able to track and visualize the common sciatic nerve and its main branches from hip to foot. In the patient group, the affected sciatic nerves presented statistically significant lower fractional anisotropy values and higher apparent diffusion coefficient values when compared with controls, suggesting nerve damage. In all cases, DTI offered complementary information for diagnosis and/or confirmation of the suspected pathology. When compared with conventional MRI, DTI showed higher sensitivity for nerve damage detection. CONCLUSION DTI offers a significant improvement and an important complement to visualize the sciatic nerve and its main branches. In patients with sciatic nerve pathology DTI allows to a better detection and characterization of the nerve damage. ADVANCES IN KNOWLEDGE DTI enables in vivo dissection of the sciatic nerve white matter fibres; its use offers a significant improvement and complement to conventional MRI.
Collapse
Affiliation(s)
- Ángela Bernabeu
- 1 Magnetic Resonance Department, Inscanner SL, Alicante, Spain
| | | | - Arantxa Alfaro
- 2 Department of Neurology, Hospital Vega Baja de Orihuela, Alicante, Spain.,3 CIBER-BBN, Madrid, Spain
| | - Jesús J Mas
- 4 Orthopaedic Surgery Department, Clinica Vistahermosa, Alicante, Spain
| | | |
Collapse
|
37
|
Wan Q, Wang S, Zhou J, Zou Q, Deng Y, Wang S, Zheng X, Li X. Evaluation of radiation-induced peripheral nerve injury in rabbits with MR neurography using diffusion tensor imaging and T2 measurements: Correlation with histological and functional changes. J Magn Reson Imaging 2016; 43:1492-1499. [PMID: 26691400 DOI: 10.1002/jmri.25114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the potential of diffusion tensor imaging (DTI) and T2 measurements in the evaluation of radiation-induced peripheral nerve injury (RIPNI). MATERIALS AND METHODS RIPNI was produced in a randomly selected side of sciatic nerve in each of 21 rabbits while the contralateral side served as the control. The limb function and MR parameters were evaluated over a 4-month period. Fractional anisotropy (FA), axial diffusivity (λ∥ ), radial diffusivity (λ⊥ ) and T2 values were obtained using 3T MR for quantitative analysis. Two animals were randomly killed for histological evaluation at each timepoint. RESULTS The T2 value of irradiated nerve increased at 1 day (63.95 ± 15.60, P = 0.012) and was restored at 1 month (52.34 ± 5.38, P = 0.105). It increased progressively at 2 to 4 months (60.39 ± 10.60, 66.96 ± 6.08, 75.51 ± 7.39, all P < 0.01). λ⊥ significantly increased at 1 day (0.82 ± 0.44, P = 0.046) and slightly decreased at 1 month (0.61 ± 0.17, P < 0.001). It increased gradually from 2 to 3 months (0.84 ± 0.29, 1.13 ± 0.33, both P < 0.001) followed by a decline at 4 months (0.83 ± 0.17, P < 0.001). FA was statistically lower than the contralateral sides at 1 to 4 months (0.72 ± 0.08, 0.60 ± 0.12, 0.51 ± 0.11, 0.62 ± 0.06, all P < 0.01). Changes in FA and λ⊥ correlated well with the functional and pathological changes in irradiated nerve. CONCLUSION DTI may be a more sensitive and accurate method to evaluate RIPNI compared with T2 measurements. FA and λ⊥ are promising quantitative indices in monitoring RIPNI. J. Magn. Reson. Imaging 2016;43:1492-1499.
Collapse
Affiliation(s)
- Qi Wan
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyang Wang
- Department of Radiology, Medical Center of University of Chicago, Chicago, Illinois, USA
| | - Jiaxuan Zhou
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiao Zou
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingshi Deng
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shouyang Wang
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Xinchun Li
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Boyer RB, Kelm ND, Riley DC, Sexton KW, Pollins AC, Shack RB, Dortch RD, Nanney LB, Does MD, Thayer WP. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury. Neurosurg Focus 2016; 39:E9. [PMID: 26323827 DOI: 10.3171/2015.6.focus1590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.
Collapse
Affiliation(s)
- Richard B Boyer
- Departments of 1 Biomedical Engineering and.,Plastic Surgery, Vanderbilt University Medical Center
| | - Nathaniel D Kelm
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | | | - Kevin W Sexton
- Plastic Surgery, Vanderbilt University Medical Center;,Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - R Bruce Shack
- Plastic Surgery, Vanderbilt University Medical Center
| | - Richard D Dortch
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | | | - Mark D Does
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | - Wesley P Thayer
- Departments of 1 Biomedical Engineering and.,Plastic Surgery, Vanderbilt University Medical Center
| |
Collapse
|
39
|
Hwang M, Zuccoli G, Panigrahy A, Rodriguez D, Poe MD, Escolar ML. Thickening of the cauda equina roots: a common finding in Krabbe disease. Eur Radiol 2016; 26:3377-82. [DOI: 10.1007/s00330-016-4233-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
|
40
|
Hou ZJ, Huang Y, Fan ZW, Li XC, Cao BY. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis. Neural Regen Res 2016; 10:1860-4. [PMID: 26807125 PMCID: PMC4705802 DOI: 10.4103/1673-5374.170317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.
Collapse
Affiliation(s)
- Zhong-Jun Hou
- Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yong Huang
- Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zi-Wen Fan
- Department of Orthopedics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xin-Chun Li
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bing-Yi Cao
- Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Niu XK, Bhetuwal A, Yang HF. Diffusion-Weighted Imaging for Pretreatment Evaluation and Prediction of Treatment Effect in Patients Undergoing CT-Guided Injection for Lumbar Disc Herniation. Korean J Radiol 2015; 16:874-880. [PMID: 26175588 PMCID: PMC4499553 DOI: 10.3348/kjr.2015.16.4.874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/12/2015] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To determine whether a change in apparent diffusion coefficient (ADC) value could predict early response to CT-guided Oxygen-Ozone (O2-O3) injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation. MATERIALS AND METHODS A total of 52 patients with unilateral mono-radiculopathy received a single intradiscal (3 mL) and periganglionic (5 mL) injection of an O2-O3 mixture. An ADC index of the involved side to the intact side was calculated using the following formula: pre-treatment ADC index = ([ADC involved side - ADC intact side] / ADC intact side) × 100. We analyzed the relationship between the pre-treatment Oswestry Disability Index (ODI) and the ADC index. In addition, the correlation between ODI recovery ratio and ADC index was investigated. The sensitivity and specificity of the ADC index for predicting response in O2-O3 therapy was determined. RESULTS Oswestry Disability Index and the ADC index was not significantly correlated (r = -0.125, p = 0.093). The ADC index and ODI recovery ratio was significantly correlated (r = 0.819, p < 0.001). When using 7.10 as the cut-off value, the ADC index obtained a sensitivity of 86.3% and a specificity of 82.9% for predicting successful response to therapy around the first month of follow-up. CONCLUSION This preliminary study demonstrates that the patients with decreased ADC index tend to show poor improvement of clinical symptoms. The ADC index may be a useful indicator to predict early response to CT-guided O2-O3 injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation.
Collapse
Affiliation(s)
- Xiang-Ke Niu
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan Province 610000, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province 637000, China
| | - Han-Feng Yang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province 637000, China
| |
Collapse
|
42
|
Rangavajla G, Mokarram N, Masoodzadehgan N, Pai SB, Bellamkonda RV. Noninvasive imaging of peripheral nerves. Cells Tissues Organs 2015; 200:69-77. [PMID: 25766202 DOI: 10.1159/000369451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 12/19/2022] Open
Abstract
Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as magnetic resonance imaging (MRI) and its derivative diffusion tensor imaging (DTI), ultrasound (US) and positron emission tomography (PET) are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. US extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application.
Collapse
|
43
|
In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 2015; 33:95-101. [DOI: 10.1016/j.mri.2014.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/23/2014] [Accepted: 09/22/2014] [Indexed: 11/21/2022]
|
44
|
Sun C, Hou Z, Hong G, Wan Q, Li X. In vivo evaluation of sciatic nerve crush injury using diffusion tensor imaging: correlation with nerve function and histology. J Comput Assist Tomogr 2014; 38:790-796. [PMID: 24943253 DOI: 10.1097/rct.0000000000000118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to prospectively estimate magnetic resonance diffusion tensor imaging parameters in distal portions of crushed sciatic nerves in rabbits and correlation with neurological function and histology. METHODS Thirty-two rabbits were randomly divided into 8 groups and followed up at 10 weeks. The right sciatic nerves were crushed, and the left sciatic nerves served as the control group with sham operation. Another 4 rabbits were chosen in the normal control group. Diffusion tensor imaging scan was obtained on bilateral sciatic nerves using spin-echo single-shot echo planar imaging. The values of fractional anisotropy (FA), apparent diffusion coefficient, and eigenvalue (λ║ and λ⊥) were measured on diffusion tensor imaging. Quantitative assessment of functional recovery in crushed nerves included toe-spreading reflex and modified Tarlov score, as well as pathology of the injured nerves. RESULTS Fractional anisotropy of distal portions in injured nerves reduced slightly on the first day and dropped to the minimum at the fourth day after surgery. Then, FA increased gradually from the eighth day to the eighth week. After that, FA recovered nearly normal in the 10th week after injury. There was statistical significance in FA during 4 days to the eighth week and λ⊥ values between distal portions of injured nerves and normal control nerves (P < 0.05). Fractional anisotropy of distal portions to injured nerves correlated significantly with the nerve function score(r = 0.898, P < 0.01), whereas λ⊥ of distal portions of injured nerves demonstrated negative correlation with the nerve function score(r = -0.820, <0.01). Fractional anisotropy values of distal portions of injured nerves formed a similar time course as functional recovery, whereas λ⊥ indicated a opposite trend. CONCLUSIONS The changes in FA and λ⊥ of distal portions of injured sciatic nerves correlate well with functional recovery and histology. Therefore, FA and λ⊥ of distal portions of injured sciatic nerves can be used as a marker to monitor Wallerian degeneration and regeneration of crushed sciatic nerves.
Collapse
Affiliation(s)
- Chongpeng Sun
- From the *Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University; and †Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou; and ‡Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | | | | | | | | |
Collapse
|
45
|
Chhabra A, Ahlawat S, Belzberg A, Andreseik G. Peripheral nerve injury grading simplified on MR neurography: As referenced to Seddon and Sunderland classifications. Indian J Radiol Imaging 2014. [PMID: 25114384 DOI: 10.4103/0971-3026.137025.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Seddon and Sunderland classifications have been used by physicians for peripheral nerve injury grading and treatment. While Seddon classification is simpler to follow and more relevant to electrophysiologists, the Sunderland grading is more often used by surgeons to decide when and how to intervene. With increasing availability of high-resolution and high soft-tissue contrast imaging provided by MR neurography, the surgical treatment can be guided following the above-described grading systems. The article discusses peripheral nerve anatomy, pathophysiology of nerve injury, traditional grading systems for classifying the severity of nerve injury, and the role of MR neurography in this domain, with respective clinical and surgical correlations, as one follows the anatomic paths of various nerve injury grading systems.
Collapse
Affiliation(s)
- Avneesh Chhabra
- Department of Radiology and Orthopaedic Surgery, University of Texas Southwestern Medical Center, Baltimore, MD, USA
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Belzberg
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gustav Andreseik
- Department of Radiology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Chhabra A, Ahlawat S, Belzberg A, Andreseik G. Peripheral nerve injury grading simplified on MR neurography: As referenced to Seddon and Sunderland classifications. Indian J Radiol Imaging 2014; 24:217-24. [PMID: 25114384 PMCID: PMC4126136 DOI: 10.4103/0971-3026.137025] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Seddon and Sunderland classifications have been used by physicians for peripheral nerve injury grading and treatment. While Seddon classification is simpler to follow and more relevant to electrophysiologists, the Sunderland grading is more often used by surgeons to decide when and how to intervene. With increasing availability of high-resolution and high soft-tissue contrast imaging provided by MR neurography, the surgical treatment can be guided following the above-described grading systems. The article discusses peripheral nerve anatomy, pathophysiology of nerve injury, traditional grading systems for classifying the severity of nerve injury, and the role of MR neurography in this domain, with respective clinical and surgical correlations, as one follows the anatomic paths of various nerve injury grading systems.
Collapse
Affiliation(s)
- Avneesh Chhabra
- Department of Radiology and Orthopaedic Surgery, University of Texas Southwestern Medical Center, Baltimore, MD, USA
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Belzberg
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gustav Andreseik
- Department of Radiology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
Defining Peripheral Nervous System Dysfunction in the SOD-1G93ATransgenic Rat Model of Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2014; 73:658-70. [DOI: 10.1097/nen.0000000000000081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Budzik JF, Balbi V, Verclytte S, Pansini V, Thuc VL, Cotten A. Diffusion Tensor Imaging in Musculoskeletal Disorders. Radiographics 2014; 34:E56-72. [DOI: 10.1148/rg.343125062] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014; 227:166-80. [DOI: 10.1016/j.jneumeth.2014.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
|
50
|
Chen YY, Lin XF, Zhang F, Zhang X, Hu HJ, Wang DY, Lu LJ, Shen J. Diffusion tensor imaging of symptomatic nerve roots in patients with cervical disc herniation. Acad Radiol 2014; 21:338-344. [PMID: 24361075 DOI: 10.1016/j.acra.2013.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES Cervical disc degeneration can result in nerve root compression and severe symptoms that significantly impair the patient's quality of life. The purpose of this study is to investigate multiple diffusion metrics changes in the diffusion tensor imaging (DTI) of cervical nerve roots and their relationship with the clinical severity of patients with cervical disc herniation. MATERIALS AND METHODS High directional DTI of the cervical nerve roots was performed in 18 symptomatic patients and 10 healthy volunteers with a 3.0-T magnetic resonance system after a routine cervical disc scanning. The fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the DTI data and compared between the affected and unaffected sides in the same patient and between healthy volunteers and symptomatic patients. The correlation between the side-to-side diffusion metric differences and the clinical International Standards for Neurological Classification of Spinal Cord Injury scores was analyzed. RESULTS C5-C8 nerve roots were clearly delineated with DTI. The FA, MD, AD, and RD of compressed nerve roots were 0.31 ± 0.091, 2.06 ± 0.536, 2.69 ± 0.657, and 1.75 ± 0.510 mm(2)/s, respectively. Compared to the unaffected side or healthy volunteers, the nerve roots of the affected side showed decreased FA (P < .022) and increased MD (P < .035), AD (P < .047), and RD (P < .012). The clinical International Standards for Neurological Classification of Spinal Cord Injury scores of the patients were negatively correlated with MD (r = -0.57, P = .002), AD (r = -0.451, P = .021), and RD (r = -0.564, P = .003) but not with FA (r = 0.004, P = .984). CONCLUSIONS DTI can potentially be used to assess microstructural abnormalities in the cervical nerve roots in patients with disc herniation.
Collapse
Affiliation(s)
- Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Xiao-Feng Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Hui-Jun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Dong-Ye Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China 2702.
| |
Collapse
|