1
|
Gomyo M, Tsuchiya K, Yokoyama K. Noninvasive dynamic vascular imaging: arterial spin labeling-based noncontrast magnetic resonance digital subtraction angiography for cerebral disease diagnoses. Jpn J Radiol 2025:10.1007/s11604-025-01758-w. [PMID: 40072717 DOI: 10.1007/s11604-025-01758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Digital subtraction angiography (DSA) is the gold standard for assessing cerebrovascular hemodynamics. DSA is predominantly utilized to evaluate the hemodynamic information of various cerebral diseases. However, DSA is relatively invasive and involves radiation exposure and risks of allergic reactions or renal dysfunction related to iodine-based contrast agents. Magnetic resonance DSA (MRDSA) with a gadolinium-based contrast agent is a popular method for assessing hemodynamics without radiation exposure. However, it has the disadvantage of the risk of allergy due to the contrast agent and lower temporal and spatial resolution than DSA. In recent years, arterial spin labeling-based noncontrast MRDSA (ASL-MRDSA), which utilizes blood labeled with radiofrequency pulses as an endogenous tracer, has been developed. ASL-MRDSA exhibits the same temporal resolution as DSA; therefore, it can yield dynamic information about various cerebral diseases. Pulsed ASL has been used as the major labeling method. However, the recent development of the pseudocontinuous ASL method has enabled high ASL signal maintenance even at delayed phases. This advancement allows for a more detailed assessment of hemodynamic information about vascular diseases, including major artery severe stenosis, occlusion, and moyamoya disease. Furthermore, combining it with superselective labeling pulses also allows for a more detailed hemodynamic assessment of complex vascular malformations such as DSA. In addition, ASL-MRDSA using ultrashort-echo time can acquire signals before phase dispersion occurs, which reduces artifacts induced by metallic materials and blood flow. This technique is useful for assessing post-clipping, post-coiling, and pseudostenosis. Furthermore, ASL-MRDSA using a wheel scan mode without full sampling achieves higher temporal resolution than DSA, which enables blood flow evaluation within giant cerebral aneurysms. Herein, we introduce the basic principles and various novel techniques of ASL-MRDSA and demonstrate its clinical applications, pitfalls, and limitations in cerebral disease diagnoses.
Collapse
Affiliation(s)
- Miho Gomyo
- Department of Radiology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Kazuhiro Tsuchiya
- Department of Radiology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kenichi Yokoyama
- Department of Radiology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
2
|
Zhao T, Tang J, Krumpelman C, Moum SJ, Russin JJ, Ansari SA, Chen Z, Feng L, Yan L. Highly accelerated non-contrast-enhanced time-resolved 4D MRA using stack-of-stars golden-angle radial acquisition with a self-calibrated low-rank subspace reconstruction. Magn Reson Med 2025; 93:615-629. [PMID: 39344291 PMCID: PMC11604851 DOI: 10.1002/mrm.30304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE To develop a highly accelerated non-contrast-enhanced 4D-MRA technique by combining stack-of-stars golden-angle radial acquisition with a modified self-calibrated low-rank subspace reconstruction. METHODS A low-rank subspace reconstruction framework was introduced in radial 4D MRA (SUPER 4D MRA) by combining stack-of-stars golden-angle radial acquisition with control-label k-space subtraction-based low-rank subspace modeling. Radial 4D MRA data were acquired and reconstructed using the proposed technique on 12 healthy volunteers and 1 patient with steno-occlusive disease. The performance of SUPER 4D MRA was compared with two temporally constrained reconstruction methods (golden-angle radial sparse parallel [GRASP] and GRASP-Pro) at different acceleration rates in terms of image quality and delineation of blood dynamics. RESULTS SUPER 4D MRA outperformed the other two reconstruction methods, offering superior image quality with a clear background and detailed delineation of cerebrovascular structures as well as great temporal fidelity in blood flow dynamics. SUPER 4D MRA maintained excellent performance even at higher acceleration rates. CONCLUSIONS SUPER 4D MRA is a promising technique for highly accelerating 4D MRA acquisition without comprising both temporal fidelity and image quality.
Collapse
Affiliation(s)
- Tianrui Zhao
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Jianing Tang
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Chase Krumpelman
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sarah J. Moum
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Medical ImagingAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Jonathan J. Russin
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sameer A. Ansari
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Zhifeng Chen
- Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Lirong Yan
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
3
|
Suzuki Y, Koktzoglou I, Li Z, Jezzard P, Okell T. Improved visualization of intracranial distal arteries with multiple 2D slice dynamic ASL-MRA and super-resolution convolutional neural network. Magn Reson Med 2024; 92:2491-2505. [PMID: 39155401 DOI: 10.1002/mrm.30245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE To develop a novel framework to improve the visualization of distal arteries in arterial spin labeling (ASL) dynamic MRA. METHODS The attenuation of ASL blood signal due to the repetitive application of excitation RF pulses was minimized by splitting the acquisition volume into multiple thin 2D (M2D) slices, thereby reducing the exposure of the arterial blood magnetization to RF pulses while it flows within the brain. To improve the degraded vessel visualization in the slice direction due to the limited minimum achievable 2D slice thickness, a super-resolution (SR) convolutional neural network (CNN) was trained by using 3D time-of-flight (TOF)-MRA images from a large public dataset. And then, we applied domain transfer from 3D TOF-MRA to M2D ASL-MRA, while avoiding acquiring a large number of ASL-MRA data required for CNN training. RESULTS Compared to the conventional 3D ASL-MRA, far more distal arteries were visualized with higher signal intensity by using M2D ASL-MRA. In general, however, the vessel visualization with a conventional interpolation was prone to be blurry and unclear due to the limited spatial resolution in the slice direction, particularly in small vessels. Application of CNN-based SR transferred from 3D TOF-MRA to M2D ASL-MRA successfully addressed such a limitation and achieved clearer visualization of small vessels than conventional interpolation. CONCLUSION This study demonstrated that the proposed framework provides improved visualization of distal arteries in later dynamic phases, which will particularly benefit the application of this approach in patients with cerebrovascular disease who have slow blood flow.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Togao O, Obara M, Yamashita K, Kikuchi K, Wada T, Murazaki H, Arimura K, Nishimura A, Horie N, van de Ven K, Van Cauteren M, Ishigami K. Arterial Spin Labeling-Based MR Angiography for Cerebrovascular Diseases: Principles and Clinical Applications. J Magn Reson Imaging 2024; 60:1305-1324. [PMID: 37937684 DOI: 10.1002/jmri.29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Arterial spin labeling (ASL) is a noninvasive imaging technique that labels the proton spins in arterial blood and uses them as endogenous tracers. Brain perfusion imaging with ASL is becoming increasingly common in clinical practice, and clinical applications of ASL for intracranial magnetic resonance angiography (MRA) have also been demonstrated. Unlike computed tomography (CT) angiography and cerebral angiography, ASL-based MRA does not require contrast agents. ASL-based MRA overcomes most of the disadvantages of time-of-flight (TOF) MRA. Several schemes have been developed for ASL-based MRA; the most common method has been pulsed ASL, but more recently pseudo-continuous ASL, which provides a higher signal-to-noise ratio (SNR), has been used more frequently. New methods that have been developed include direct intracranial labeling methods such as velocity-selective ASL and acceleration-selective ASL. MRA using an extremely short echo time (eg, silent MRA) or ultrashort echo-time (TE) MRA can suppress metal susceptibility artifacts and is ideal for patients with a metallic device implanted in a cerebral vessel. Vessel-selective 4D ASL MRA can provide digital subtraction angiography (DSA)-like images. This review highlights the principles, clinical applications, and characteristics of various ASL-based MRA techniques. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Chauvet G, Cheddad El Aouni M, Magro E, Sabardu O, Ben Salem D, Gentric JC, Ognard J. Diagnostic Accuracy of Non-Contrast-Enhanced Time-Resolved MR Angiography to Assess Angioarchitectural Classification Features of Brain Arteriovenous Malformations. Diagnostics (Basel) 2024; 14:1656. [PMID: 39125532 PMCID: PMC11311491 DOI: 10.3390/diagnostics14151656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to assess the diagnostic accuracy of non-contrast-enhanced 4D MR angiography (NCE-4D-MRA) compared to contrast-enhanced 4D MR angiography (CE-4D-MRA) for the detection and angioarchitectural characterisation of brain arteriovenous malformations (bAVMs). Utilising a retrospective design, we examined 54 MRA pairs from 43 patients with bAVMs, using digital subtraction angiography (DSA) as the reference standard. Both NCE-4D-MRA and CE-4D-MRA were performed using a 3-T MR imaging system. The primary objectives were to evaluate the diagnostic performance of NCE-4D-MRA against CE-4D-MRA and DSA and to assess concordance between imaging modalities in grading bAVMs according to four main scales: Spetzler-Martin, Buffalo, AVM embocure score (AVMES), and R2eDAVM. Our results demonstrated that NCE-4D-MRA had a higher accuracy and specificity compared to CE-4D-MRA (0.85 vs. 0.83 and 95% vs. 85%, respectively) and similar agreement, with DSA detecting shunts in bAVMs or residuals. Concordance in grading bAVMs was substantial between NCE-4D-MRA and DSA, particularly for the Spetzler-Martin and Buffalo scales, with CE-4D-MRA showing slightly higher kappa values for interobserver agreement. The study highlights the potential of NCE-4D-MRA as a diagnostic tool for bAVMs, offering comparable accuracy to CE-4D-MRA while avoiding the risks associated with gadolinium-based contrast agents. The safety profile of imaging techniques is a significant concern in the long-term follow up of bAVMs, and further prospective research should focus on NCE-4D-MRA protocol improvement for clinical use.
Collapse
Affiliation(s)
- Grégoire Chauvet
- Department of Radiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France;
| | - Mourad Cheddad El Aouni
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
| | - Elsa Magro
- Department of Neurosurgery, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France;
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
| | - Ophélie Sabardu
- Service d’Imagerie Médicale, Hôpital d’Instruction des Armées Legouest, rue des Frères-Lacretelle, 57070 Metz, France;
| | - Douraied Ben Salem
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
- Department of Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France
| | - Jean-Christophe Gentric
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
- Inserm, UMR 1304 (GETBO), Western Brittany Thrombosis Study Group, Université de Bretagne Occidentale, 29238 Brest, France
| | - Julien Ognard
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
| |
Collapse
|
6
|
Nico E, Hossa J, McGuire LS, Alaraj A. Rupture-Risk Stratifying Patients with Cerebral Arteriovenous Malformations Using Quantitative Hemodynamic Flow Measurements. World Neurosurg 2023; 179:68-76. [PMID: 37597662 DOI: 10.1016/j.wneu.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Arteriovenous malformations (AVMs) are high-pressure, low-resistance arterial-venous shunts without intervening capillaries. Up to 60% of AVMs present with an intracranial hemorrhage; however, noninvasive neuroimaging has increasingly diagnosed incidental AVMs. AVM management depends on weighing the lifetime rupture risk against the risks of intervention. Although AVM rupture risk relies primarily on angioarchitectural features, measuring hemodynamic flow is gaining traction. Accurate understanding of AVM hemodynamic flow parameters will help endovascular neurosurgeons and interventional neuroradiologists stratify patients by rupture risk and select treatment plans. This review examines various neuroimaging modalities and their capabilities to quantify AVM flow, as well as the relationship between AVM flow and rupture risk. Quantitative hemodynamic studies on the relationship between AVM flow and rupture risk have not reached a clear consensus; however, the preponderance of data suggests that higher arterial inflow and lower venous outflow in the AVM nidus contribute to increased hemorrhagic risk. Future studies should consider using larger sample sizes and standardized definitions of hemodynamic parameters to reach a consensus. In the meantime, classic angioarchitectural features may be more strongly correlated with AVM rupture than the amount of blood flow.
Collapse
Affiliation(s)
- Elsa Nico
- University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Jessica Hossa
- University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Laura Stone McGuire
- Department of Neurosurgery, University of Illinois Hospital, Chicago, Illinois, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois Hospital, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Woods JG, Schauman SS, Chiew M, Chappell MA, Okell TW. Time-encoded pseudo-continuous arterial spin labeling: Increasing SNR in ASL dynamic angiography. Magn Reson Med 2023; 89:1323-1341. [PMID: 36255158 PMCID: PMC10091734 DOI: 10.1002/mrm.29491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Dynamic angiography using arterial spin labeling (ASL) can provide detailed hemodynamic information. However, the long time-resolved readouts require small flip angles to preserve ASL signal for later timepoints, limiting SNR. By using time-encoded ASL to generate temporal information, the readout can be shortened. Here, the SNR improvements from using larger flip angles, made possible by the shorter readout, are quantitatively investigated. METHODS The SNR of a conventional protocol with nine Look-Locker readouts and a 4 × $$ \times $$ 3 time-encoded protocol with three Look-Locker readouts (giving nine matched timepoints) were compared using simulations and in vivo data. Both protocols were compared using readouts with constant flip angles (CFAs) and variable flip angles (VFAs), where the VFA scheme was designed to produce a consistent ASL signal across readouts. Optimization of the background suppression to minimize physiological noise across readouts was also explored. RESULTS The time-encoded protocol increased in vivo SNR by 103% and 96% when using CFAs or VFAs, respectively. Use of VFAs improved SNR compared with CFAs by 25% and 21% for the conventional and time-encoded protocols, respectively. The VFA scheme also removed signal discontinuities in the time-encoded data. Preliminary data suggest that optimizing the background suppression could improve in vivo SNR by a further 16%. CONCLUSIONS Time encoding can be used to generate additional temporal information in ASL angiography. This enables the use of larger flip angles, which can double the SNR compared with a non-time-encoded protocol. The shortened time-encoded readout can also lead to improved background suppression, reducing physiological noise and further improving SNR.
Collapse
Affiliation(s)
- Joseph G Woods
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - S Sophie Schauman
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Mark Chiew
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Hernandez‐Garcia L, Aramendía‐Vidaurreta V, Bolar DS, Dai W, Fernández‐Seara MA, Guo J, Madhuranthakam AJ, Mutsaerts H, Petr J, Qin Q, Schollenberger J, Suzuki Y, Taso M, Thomas DL, van Osch MJP, Woods J, Zhao MY, Yan L, Wang Z, Zhao L, Okell TW. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88:2021-2042. [PMID: 35983963 PMCID: PMC9420802 DOI: 10.1002/mrm.29381] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.
Collapse
Affiliation(s)
| | | | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Weiying Dai
- Department of Computer ScienceState University of New York at BinghamtonBinghamtonNYUSA
| | | | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | | - Henk Mutsaerts
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Manuel Taso
- Division of MRI research, RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Lirong Yan
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityZhejiangPeople's Republic of China
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
9
|
Togao O, Obara M, Kikuchi K, Helle M, Arimura K, Nishimura A, Wada T, Murazaki H, Van Cauteren M, Hiwatashi A, Ishigami K. Vessel-Selective 4D-MRA Using Superselective Pseudocontinuous Arterial Spin-Labeling with Keyhole and View-Sharing for Visualizing Intracranial Dural AVFs. AJNR Am J Neuroradiol 2022; 43:368-375. [PMID: 35241425 PMCID: PMC8910818 DOI: 10.3174/ajnr.a7426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE An accurate assessment of the hemodynamics of an intracranial dural AVF is necessary for treatment planning. We aimed to investigate the utility of 4D-MRA based on superselective pseudocontinuous arterial spin-labeling with CENTRA-keyhole and view-sharing (4D-S-PACK) for the vessel-selective visualization of intracranial dural AVFs. MATERIALS AND METHODS We retrospectively analyzed the images of 21 patients (12 men and 9 women; mean age, 62.2 [SD,19.2] years) with intracranial dural AVFs, each of whom was imaged with DSA, 4D-S-PACK, and nonselective 4D-MRA based on pseudocontinuous arterial spin-labeling combined with CENTRA-keyhole and view-sharing (4D-PACK). The shunt location, venous drainage patterns, feeding artery identification, and Borden classification were evaluated by 2 observers using both MRA methods on separate occasions. Vessel selectivity was evaluated on 4D-S-PACK. RESULTS Shunt locations were correctly evaluated in all 21 patients by both observers on both MRA methods. With 4D-S-PACK, observers 1 and 2 detected 76 (80.0%, P < .001) and 73 (76.8%, P < .001) feeding arteries of the 95 feeding arteries identified on DSA but only 39 (41.1%) and 46 (48.4%) feeding arteries with nonselective 4D-PACK, respectively. Both observers correctly identified 10 of the 11 patients with cortical venous reflux confirmed by DSA with both 4D-S-PACK and 4D-PACK (sensitivity = 90.9%, specificity = 90.9% for each method), and they made accurate Borden classifications in 20 of the 21 patients (95.2%) on both MRA methods. Of the 84 vessel territories examined, vessel selectivity was graded 3 or 4 in 73 (91.2%) and 66 (88.0%) territories by observers 1 and 2, respectively. CONCLUSIONS 4D-S-PACK is useful for the identification of feeding arteries and accurate classifications of intracranial dural AVFs and can be a useful noninvasive clinical tool.
Collapse
Affiliation(s)
- O. Togao
- From the Departments of Molecular Imaging & Diagnosis (O.T.)
| | - M. Obara
- Philips Japan (M.O., M.V.C.), Tokyo, Japan
| | | | - M. Helle
- Philips Research (M.H.), Hamburg, Germany
| | - K. Arimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A. Nishimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T. Wada
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - H. Murazaki
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | |
Collapse
|
10
|
Arteriovenous Malformations and Other Vascular Anomalies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Shao X, Yan L, Ma SJ, Wang K, Wang DJJ. High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging. Magn Reson Imaging Clin N Am 2021; 29:53-65. [PMID: 33237015 PMCID: PMC7694883 DOI: 10.1016/j.mric.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ultrahigh field offers increased resolution and contrast for neurovascular imaging. Arterial spin labeling methods benefit from an increased intrinsic signal-to-noise ratio of MR imaging signal and a prolonged tracer half-life at ultrahigh field, allowing the visualization of layer-dependent microvascular perfusion. Arterial spin labeling-based time-resolved 4-dimensional MR angiography at 7T provides a detailed depiction of the vascular architecture and dynamic blood flow pattern with high spatial and temporal resolutions. High-resolution black blood MR imaging at 7T allows detailed characterization of small perforating arteries such as lenticulostriate arteries. All techniques benefit from advances in parallel radiofrequency transmission technologies at ultrahigh field.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Siemens Healthcare, Los Angeles, CA, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Togao O, Obara M, Helle M, Yamashita K, Kikuchi K, Momosaka D, Kikuchi Y, Nishimura A, Arimura K, Wada T, Murazaki H, Iihara K, Van Cauteren M, Hiwatashi A. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur Radiol 2020; 30:6452-6463. [PMID: 32696254 DOI: 10.1007/s00330-020-07057-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the usefulness of 4D-MR angiography based on super-selective pseudo-continuous ASL combined with keyhole and view-sharing (4D-S-PACK) for vessel-selective visualization and to examine the ability of this technique to visualize brain arteriovenous malformations (AVMs). METHODS In this retrospective study, 15 patients (ten men and five women, mean age 44.0 ± 16.9 years) with brain AVMs were enrolled. All patients were imaged with 4D-PACK (non-selective), 4D-S-PACK, and digital subtraction angiography (DSA). Observers evaluated vessel selectivity, identification of feeding arteries and venous drainage patterns, visualization scores, and contrast-to-noise ratio (CNR) for each AVM component. Measurements were compared between the MR methods. RESULTS Vessel selectivity was graded 4 in 43/45 (95.6%, observer 1) and 42/45 (93.3%, observer 2) territories and graded 3 in two (observer 1) and three (observer 2) territories. The sensitivity and specificity for identification of feeding arteries for both observers was 88.9% and 100% on 4D-PACK, and 100% and 100% on 4D-S-PACK, respectively. For venous drainage, the sensitivity and specificity was 100% on both methods for observer 1. The sensitivity and specificity for observer 2 was 94.4% and 83.3% on 4D-PACK, and 94.4% and 91.7% on 4D-S-PACK, respectively. The CNRs at the timepoint of 1600 ms were slightly lower in 4D-S-PACK than in 4D-PACK for all AVM components (Feeding artery, p = .02; nidus, p = .001; and draining artery, p = .02). The visualization scores for both observers were not significantly different between 4D-PACK and 4D-S-PACK for all components. CONCLUSIONS 4D-S-PACK could be a useful non-invasive clinical tool for assessing hemodynamics in brain AVMs. KEY POINTS • The 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) enabled excellent vessel selectivity. • The 4D-S-PACK enabled the perfect identification of feeding arteries of brain arteriovenous malformation (AVM). • 4D-S-PACK could be a non-invasive clinical tool for assessing hemodynamics in brain AVMs.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Obara
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Marc Van Cauteren
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation. Neuroradiology 2020; 62:455-461. [PMID: 31898767 DOI: 10.1007/s00234-019-02345-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE MR angiography using the silent MR angiography algorithm (silent MRA), which combines arterial spin labeling and an ultrashort time echo, has not been used for the evaluation of cerebral arteriovenous malformations (CAVMs). We aimed to determine the usefulness of silent MRA for the evaluation of CAVMs. METHODS Twenty-nine CAVMs of 28 consecutive patients diagnosed by 4D CT angiography or digital subtraction angiography, who underwent both time-of-flight (TOF) MRA and silent MRA, were enrolled. Two observers independently assessed the TOF-MRA and silent MRA images of CAVMs. Micro AVM was defined as AVM with a nidus diameter less than 10 mm. The detection rate, visualization of the components, and accuracy of Spetzler-Martin grade were evaluated with statistical software R. RESULTS For all 29 CAVMs, 23 (79%) lesions were detected for TOF-MRA and all for silent MRA. Of 10 micro AVMs, only 4 (40%) lesions were detectable on TOF-MRA and all (100%) on silent MRA. The visibility of the nidus and drainer was significantly better for silent MRA than TOF-MRA (p < 0.001), while there was no significant difference in the feeder between the two sequences. The accuracy rates of the Spetzler-Martin grade for the TOF and silent MRA were 38% (11/29) and 79.3% (23/29), respectively (p < 0.001). CONCLUSIONS Silent MRA is useful for evaluating CAVM components and detecting micro AVM.
Collapse
|
14
|
Non contrast, Pseudo-Continuous Arterial Spin Labeling and Accelerated 3-Dimensional Radial Acquisition Intracranial 3-Dimensional Magnetic Resonance Angiography for the Detection and Classification of Intracranial Arteriovenous Shunts. Invest Radiol 2018; 53:80-86. [PMID: 28937545 DOI: 10.1097/rli.0000000000000411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study was to assess the sensitivity and specificity of pseudo-continuous arterial spin labeling (PCASL) magnetic resonance angiography (MRA) with 3-dimensional (3D) radial acquisition for the detection of intracranial arteriovenous (AV) shunts. MATERIALS AND METHODS A total of 32 patients who underwent PCASL-MRA, clinical magnetic resonance imaging (MRI)/MRA exam, and digital subtraction angiography (DSA) were included in this retrospective analysis. Twelve patients presented with AV shunts. Among these were 8 patients with AV malformations (AVM) and 4 patients with AV fistulas (AVF). The clinical MRI/MRA included 3D time-of-flight MRA in all cases and time-resolved, contrast-enhanced MRA in 9 cases (6 cases with AV shunting). Research MRI and clinical MRI were independently evaluated by 2 neuroradiologists blinded to patient history. A third radiologist evaluated DSA imaging. A diagnostic confidence score was used for the presence of abnormalities associated with AV shunting (1-5). The AVMs were characterized using the Spetzler-Martin scale, whereas AVFs were characterized using the Borden classification. κ Statistics were applied to assess intermodality agreement. RESULTS Compared with clinical MRA, noncontrast PCASL-MRA with 3D radial acquisition yielded excellent sensitivity and specificity for the detection of intracranial AV shunts (reader 1: 100%/100%, clinical MRA: 91.7%, 94.4%; reader 2: 91.7%/100%, clinical MRA: 91.7%/100%). Diagnostic confidence was 4.8/4.66 with PCASL-MRA and 4.25/4.66 with clinical MRA. For AVM characterization with PCASL-MRA, intermodality agreement with DSA showed κ values of 0.43 and 0.6 for readers 1 and 2, respectively. For AVF characterization, intermodality agreement showed κ values of 0.56 for both readers. CONCLUSION Noncontrast PCASL-MRA with 3D radial acquisition is a potential tool for the detection and characterization of intracranial AV shunts with a sensitivity and specificity equivalent or higher than routine clinical MRA.
Collapse
|
15
|
Edelman RR, Serhal A, Pursnani A, Pang J, Koktzoglou I. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance. J Cardiovasc Magn Reson 2018; 20:12. [PMID: 29458384 PMCID: PMC5819298 DOI: 10.1186/s12968-018-0433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. MAIN BODY The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. CONCLUSION Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.
Collapse
Affiliation(s)
- Robert R. Edelman
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Northwestern Memorial Hospital, Chicago, IL USA
- Evanston, IL USA
| | - Ali Serhal
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Northwestern Memorial Hospital, Chicago, IL USA
| | - Amit Pursnani
- Medicine, Northshore University HealthSystem, Evanston, IL USA
- Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL USA
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Chicago, IL USA
| | - Ioannis Koktzoglou
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL USA
| |
Collapse
|
16
|
Cong F, Zhuo Y, Yu S, Zhang X, Miao X, An J, Wang S, Cao Y, Zhang Y, Song HK, Wang DJ, Yan L. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study. J Magn Reson Imaging 2017; 48:111-120. [PMID: 29232026 DOI: 10.1002/jmri.25923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) based-noncontrast-enhanced 4D MR angiography (NCE 4D MRA) shows potential in characterizing cerebrovascular hemodynamics in cerebrovascular disorders. Ultrahigh-field theoretically benefits ASL signal with increased inherent signal-to-noise ratio (SNR) and prolonged blood T1 , which may provide improved delineation of vasculature in 4D MRA. PURPOSE To investigate the feasibility of NCE 4D MRA using 3D Cartesian trajectory and stack-of-stars (SOS) golden angle radial trajectory at 7T. STUDY TYPE A prospective study. SUBJECTS Six normal volunteers and eight patients with arteriovenous malformation (AVM). FIELD STRENGTH/SEQUENCE NCE 4D MRA with Cartesian and radial trajectories were performed at 3T and 7T. ASSESSMENT Subjective image quality of 4D MRA was evaluated using a 4-point scale by two experienced neuroradiologists. The characterization of AVM components with 4D MRA and DSA was also graded using the Spetzler-Martin grading scale. STATISTICAL TESTS Cohen's kappa coefficient was calculated to evaluate the agreement between two readers within each 4D MRA technique (Cartesian and Radial). A Wilcoxon signed-rank test was performed to compare the subjective image quality scores of 4D MRA between Cartesian and radial trajectories, and between 7T and 3T, respectively. RESULTS Good-to-excellent image quality was achieved in 4D MRA with both Cartesian (3.83 ± 0.41) and radial (3.42 ± 0.49) acquisitions in healthy volunteers at 7T. However, markedly reduced scan time was needed with radial acquisition. 4D MRA at 7T (3.31 ± 0.59) shows better delineation of AVM lesion features, especially the vein drainage, compared with that of 3T (2.83 ± 0.75), although no statistical significance was achieved (P = 0.180). DATA CONCLUSION The feasibility of ASL based 4D MRA at 7T with Cartesian and SOS golden angle radial acquisition was demonstrated. The clinical evaluation of 4D MRA in AVMs between 3T and 7T suggested 7T 4D MRA images acquired with radial acquisition demonstrate excellent delineation of AVM features, especially the draining veins. LEVEL OF EVIDENCE 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Fei Cong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xianchang Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Miao
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen, Guangdong, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Danny Jj Wang
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
17
|
Li W, Xu F, Schär M, Liu J, Shin T, Zhao Y, van Zijl PCM, Wasserman BA, Qiao Y, Qin Q. Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains. Magn Reson Med 2017; 79:2014-2023. [PMID: 28799210 DOI: 10.1002/mrm.26864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 07/15/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop velocity-selective (VS) MR angiography (MRA) protocols for arteriography and venography with whole-brain coverage. METHODS Tissue suppression using velocity-selective saturation (VSS) pulse trains is sensitive to radiofrequency field (B1 +) inhomogeneity. To reduce its sensitivity, we replaced the low-flip-angle hard pulses in the VSS pulse train with optimal composite (OCP) pulses. Additionally, new pulse sequences for arteriography and venography were developed by placing spatially selective inversion pulses with a delay to null signals from either venous or arterial blood. The VS MRA techniques were compared to the time-of-flight (TOF) MRA in six healthy subjects and two patients at 3T. RESULTS More uniform suppression of stationary tissue was observed when the hard pulses were replaced by OCP pulses in the VSS pulse trains, which improved contrast ratios between blood vessels and tissue background for both arteries (0.87 vs. 0.77) and veins (0.80 vs. 0.59). Both arteriograms and venograms depicted all major cervical and intracranial arteries and veins, respectively. Compared to TOF MRA, VS MRA not only offers larger spatial coverage but also depicts more small vessels. Initial clinical feasibility was shown in two patients with comparisons to TOF protocols. CONCLUSION Noncontrast-enhanced whole-brain arteriography and venography can be obtained without losing sensitivity to small vessel detection. Magn Reson Med 79:2014-2023, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Developing Brain Research Lab, Children's National Medical Center, Washington, DC, USA
| | - Michael Schär
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiology, Guizhou Medical University Affiliated Hospital, Guiyang, Guizhou Province, China
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Bruce A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Derdeyn CP, Zipfel GJ, Albuquerque FC, Cooke DL, Feldmann E, Sheehan JP, Torner JC. Management of Brain Arteriovenous Malformations: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017. [DOI: 10.1161/str.0000000000000134] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Sugimori H, Fujima N, Suzuki Y, Hamaguchi H, Ishizaka K, Kudo K. Fast acceleration of ASL-based time-resolved magnetic resonance angiography by acquisition of control and labeled images in the same shot (fast ACTRESS): An optimization study. Magn Reson Imaging 2017; 43:136-143. [PMID: 28754270 DOI: 10.1016/j.mri.2017.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE To establish an optimized sequence design for fast acceleration of arterial spin labeling (ASL)-based time-resolved magnetic resonance angiography (MRA) by acquisition of control and labeled images in the same shot (fast ACTRESS) and a scan time of <1min, for the evaluation of intracranial vessels. MATERIALS AND METHODS Ten healthy volunteers with no unilateral symptomatic arterial stenosis, who underwent 3-tesla MRI, were investigated. Imaging parameters for the fast ACTRESS sequence were set with an acquisition time of 45s. During post-processing, the first phase in the multi-phase readout, which was defined as the control image, was subtracted from each of the other phases. Thus, four-dimensional (4D)-MRA images of each phase were obtained. The maximum intensity projection was used for the reconstruction of 4D-MRA images and time-to-signal intensity curves (TIC) obtained for each vessel. The area under the curve (AUC), peak time, and maximum signal intensity were obtained from TIC. The different labeling types were broadly divided into six groups: L1, L2, L3, L4, L5, and L6 according to the actual number of labeling pulse. RESULTS A total of 5040 regions of interest were evaluated. The peak SI of L3, except for those in the A2 segment of the anterior cerebral artery, was significantly higher than that of L5. However, there were no significant differences between L4 and L5. Although the AUCs of L3 and L4 for anterior circulation were relatively higher than that of the other subgroups, the AUC of L3 was significantly higher than that of L4. CONCLUSION The fast ACTRESS was optimized and indicated that the labeling type of L3 was the most appropriate for the well visualization of intracranial arteries. The fast ACTRESS sequence was useful to acquire well-delineated images of intracranial vessels in ˂1min.
Collapse
Affiliation(s)
- Hiroyuki Sugimori
- Faculty of Health Sciences, Hokkaido University, North- 12, West- 5, Kita- ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North- 15, West- 7, Kita- ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center (LUMC), C3-Q, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands.
| | - Hiroyuki Hamaguchi
- Department of Radiological Technology, Hokkaido University Hospital, North- 14, West- 5, Kita- ku, Sapporo, Hokkaido 060-8648, Japan.
| | - Kinya Ishizaka
- Department of Radiological Technology, Hokkaido University Hospital, North- 14, West- 5, Kita- ku, Sapporo, Hokkaido 060-8648, Japan.
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North- 15, West- 7, Kita- ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
20
|
Zhou Z, Han F, Yu S, Yu D, Rapacchi S, Song HK, Wang DJJ, Hu P, Yan L. Accelerated noncontrast-enhanced 4-dimensional intracranial MR angiography using golden-angle stack-of-stars trajectory and compressed sensing with magnitude subtraction. Magn Reson Med 2017; 79:867-878. [PMID: 28480537 DOI: 10.1002/mrm.26747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate the feasibility and performance of compressed sensing (CS) with magnitude subtraction regularization in accelerating non-contrast-enhanced dynamic intracranial MR angiography (NCE-dMRA). METHODS A CS algorithm was introduced in NCE-dMRA by exploiting the sparsity of the magnitude difference of the control and label images. The NCE-dMRA data were acquired using golden-angle stack-of-stars trajectory on six healthy volunteers and one patient with arteriovenous fistula. Images were reconstructed using (i) the proposed magnitude-subtraction CS (MS-CS); (ii) complex-subtraction CS; (iii) independent CS; and (iv) view-sharing with k-space weighted image contrast (KWIC). The dMRA image quality was compared across the four reconstruction strategies. The proposed MS-CS method was further compared with KWIC for temporal fidelity of depicting dynamic flow. RESULTS The proposed MS-CS method was able to reconstruct NCE-dMRA images with detailed vascular structures and clean background. It provided better subjective image quality than the other two CS strategies (P < 0.05). Compared with KWIC, MS-CS showed similar image quality, but reduced temporal blurring in delineating the fine distal arteries. CONCLUSIONS The MS-CS method is a promising CS technique for accelerating NCE-dMRA acquisition without compromising image quality and temporal fidelity. Magn Reson Med 79:867-878, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Songlin Yu
- Department of Neurology, University of California, Los Angeles, California, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dandan Yu
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Stanislas Rapacchi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Danny J J Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
21
|
Lang S, Gölitz P, Struffert T, Rösch J, Rössler K, Kowarschik M, Strother C, Doerfler A. 4D DSA for Dynamic Visualization of Cerebral Vasculature: A Single-Center Experience in 26 Cases. AJNR Am J Neuroradiol 2017; 38:1169-1176. [PMID: 28408632 DOI: 10.3174/ajnr.a5161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D DSA allows acquisition of time-resolved 3D reconstructions of cerebral vessels by using C-arm conebeam CT systems. The aim of our study was to evaluate this new method by qualitative and quantitative means. MATERIALS AND METHODS 2D and 4D DSA datasets were acquired in patients presenting with AVMs, dural arteriovenous fistulas, and cerebral aneurysms. 4D DSA was compared with 2D DSA in a consensus reading of qualitative and quantitative parameters of AVMs (eg, location, feeder, associated aneurysms, nidus size, drainage, Martin-Spetzler Score), dural arteriovenous fistulas (eg, fistulous point, main feeder, diameter of the main feeder, drainage), and cerebral aneurysms (location, neck configuration, aneurysmal size). Identifiability of perforators and diameters of the injection vessel (ICA, vertebral artery) were analyzed in 2D and 4D DSA. Correlation coefficients and a paired t test were calculated for quantitative parameters. The effective patient dose of the 4D DSA protocol was evaluated with an anthropomorphic phantom. RESULTS In 26 patients, datasets were acquired successfully (AVM = 10, cerebral aneurysm = 10, dural arteriovenous fistula = 6). Qualitative and quantitative evaluations of 4D DSA in AVMs (nidus size: r = 0.99, P = .001), dural arteriovenous fistulas (diameter of the main feeder: r = 0.954, P = .03), and cerebral aneurysms (aneurysmal size: r = 1, P = .001) revealed nearly complete accordance with 2D DSA. Perforators were comparably visualized with 4D DSA. Measurement of the diameter of the injection vessel in 4D DSA was equivalent to that in 2D DSA (P = .039). The effective patient dose of 4D DSA was 1.2 mSv. CONCLUSIONS 4D DSA is feasible for imaging of AVMs, dural arteriovenous fistulas, and cerebral aneurysms. 4D DSA offers reliable visualization of the cerebral vasculature and may improve the understanding and treatment of AVMs and dural arteriovenous fistulas. The number of 2D DSA acquisitions required for an examination may be reduced through 4D DSA.
Collapse
Affiliation(s)
- S Lang
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - P Gölitz
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - T Struffert
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - J Rösch
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - K Rössler
- Neurosurgery (K.R.), University of Erlangen-Nuremberg, Erlangen, Germany
| | - M Kowarschik
- Angiography & Interventional X-Ray Systems (M.K.), Siemens Healthcare GmbH, Forchheim, Germany
| | - C Strother
- Department of Radiology (C.S.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - A Doerfler
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| |
Collapse
|
22
|
Ozyurt O, Dincer A, Erdem Yildiz M, Peker S, Yilmaz M, Sengoz M, Ozturk C. Integration of arterial spin labeling into stereotactic radiosurgery planning of cerebral arteriovenous malformations. J Magn Reson Imaging 2017; 46:1718-1727. [DOI: 10.1002/jmri.25690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Onur Ozyurt
- Bogazici University; Institute of Biomedical Engineering; Istanbul Turkey
- Acibadem University; Neuroradiology Research Center; Istanbul Turkey
| | - Alp Dincer
- Acibadem University; Neuroradiology Research Center; Istanbul Turkey
- Acibadem University; Department of Radiology, School of Medicine; Istanbul Turkey
| | - Mehmet Erdem Yildiz
- Acibadem University; Neuroradiology Research Center; Istanbul Turkey
- Acibadem University; Department of Radiology, School of Medicine; Istanbul Turkey
| | - Selcuk Peker
- Acibadem University; Department of Neurosurgery, School of Medicine; Istanbul Turkey
| | - Meltem Yilmaz
- Acibadem Kozyatagi Hospital; Department of Radiation Oncology, School of Medicine; Istanbul Turkey
| | - Meric Sengoz
- Acibadem Kozyatagi Hospital; Department of Radiation Oncology, School of Medicine; Istanbul Turkey
| | - Cengizhan Ozturk
- Bogazici University; Institute of Biomedical Engineering; Istanbul Turkey
- Bogazici University; Center for Life Sciences and Technologies; Istanbul Turkey
| |
Collapse
|
23
|
Sakai M, Illies T, Jerusel N, Tateishi S, Uchikoshi M, Fiehler J, Watanabe Y, Nakanishi K, Tomiyama N. Feasibility of non-contrast-enhanced four dimensional (4D) MRA in head and neck tumors, comparison with contrast-enhanced 4D MRA. SPRINGERPLUS 2016; 5:1282. [PMID: 27547657 PMCID: PMC4977233 DOI: 10.1186/s40064-016-2953-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Information of tumor vascular architecture and hemodynamics is important in treating patients with head and neck tumors (HNTs). The purpose of this study is to investigate the feasibility of non-contrast-enhanced four-dimensional magnetic resonance angiography (non-CE 4DMRA) using arterial spin labeling for anatomical and hemodynamic evaluation of vascularity of head and neck tumors. RESULTS Non-CE 4DMRA images of 15 patients with HNTs were compared with those of contrast-enhanced 4DMRA (CE 4DMRA) by two independent observers. For qualitative evaluation, overall image quality, visualization of arterial branches and main arterial tumor feeders were assessed. For hemodynamic evaluation, signal-intensity-over-time curves within the tumors were compared. The sensitivity of non-CE 4DMRA for the identification of arterial branches and the main arterial tumor feeders was 75 and 20 %, respectively (interobserver agreement, κ = 0.56 and 0.54, respectively), while that of CE 4DMRA was 99 and 95 %, respectively (interobserver agreement, κ = 0.62 and 0.70, respectively). All three arterial/hypervascularized tumors determined on CE 4DMRA showed distinct signal-intensity-over-time curve pattern on non-CE 4DMRA, with distinct peak and wash out phases. Other tumors showed no wash out on non-CE 4DMRA. CONCLUSIONS Use of non-CE 4DMRA for the anatomical and hemodynamic evaluation of vascularity of head and neck tumors is feasible, although the technique needs to be improved.
Collapse
Affiliation(s)
- Mio Sakai
- Department of Diagnostic Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511 Japan
| | - Till Illies
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Jerusel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Souichirou Tateishi
- Department of Diagnostic Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511 Japan ; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiyuki Watanabe
- Department of Diagnostis and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511 Japan
| | - Noriyuki Tomiyama
- Department of Diagnostis and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Evaluation of Intracranial Arteriovenous Malformations With Four-Dimensional Arterial-Spin Labeling-Based 3-T Magnetic Resonance Angiography. J Comput Assist Tomogr 2016; 40:290-6. [PMID: 26599964 DOI: 10.1097/rct.0000000000000346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We aimed to assess the usefulness of 3-T 4-dimensional (4D) arterial spin-labeling (ASL)-based magnetic resonance angiography (MRA) with color-coded time-of-arrival (TOA) maps for the evaluation of cerebral arteriovenous malformations (AVMs). METHODS Our study included 6 patients with cerebral AVMs. They underwent 4D-ASL MRA at 3T and digital subtraction angiography. A pseudocontinuous arterial spin labeling protocol with look-locker sampling was used for spin labeling. Two independent readers reviewed the 4D-ASL MRA images with color-coded TOA maps for the nidus size, arterial feeders, and venous drainage. Two other readers consensually reviewed the digital subtraction angiography images. RESULTS The cerebral AVMs were demonstrated on all 4D-ASL MRA images. In 5 high-flow AVMs, the color-coded TOA maps were especially useful for identifying the feeder/drainer. Intermodality agreement was excellent for the nidus size (κ = 1.0), very good for arterial feeders (κ = 0.88), and good for venous drainage (κ = 0.80). CONCLUSIONS The 4D-ASL 3-T MRA with color-coded TOA maps is useful for assessing the gross angiographic characteristics of intracranial AVMs.
Collapse
|
25
|
Koktzoglou I, Walker MT, Meyer JR, Murphy IG, Edelman RR. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla. J Cardiovasc Magn Reson 2016; 18:18. [PMID: 27067840 PMCID: PMC4828773 DOI: 10.1186/s12968-016-0238-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate ungated nonenhanced hybridized arterial spin labeling (hASL) magnetic resonance angiography (MRA) of the extracranial carotid arteries using a fast low angle shot (FLASH) readout at 3 Tesla. METHODS In this retrospective, institutional review board-approved and HIPAA-compliant study, we evaluated the image quality (4-point scale) of nonenhanced hASL MRA using a FLASH readout with respect to contrast-enhanced MRA (CEMRA) in 37 patients presenting with neurologic symptoms. Two certified neuroradiologists independently evaluated 407 arterial segments (11 per patient) for image quality. The presence of vascular pathology was determined by consensus reading. Gwet's AC1 was used to assess inter-rater agreement in image quality scores, and image quality scores were correlated with age and body mass index. Objective measurements of arterial lumen area and sharpness in the carotid arteries were compared to values obtained with CEMRA. Comparisons were also made with conventional nonenhanced 2D time-of-flight (TOF) MRA. RESULTS CEMRA provided the best image quality, while nonenhanced hASL FLASH MRA provided image quality that exceeded 2D TOF at the carotid bifurcation and in the internal and external carotid arteries. All nine vascular abnormalities of the carotid and intracranial arteries detected by CEMRA were depicted with hASL MRA, with no false positives. Inter-rater agreement of image quality scores was highest for CEMRA (AC1 = 0.87), followed by hASL (AC1 = 0.61) and TOF (AC1 = 0.43) (P < 0.001, all comparisons). With respect to CEMRA, agreement in cross-sectional lumen area was significantly better with hASL than TOF in the common carotid artery (intraclass correlation (ICC) = 0.90 versus 0.66; P < 0.05) and at the carotid bifurcation (ICC = 0.87 versus 0.54; P < 0.05). Nonenhanced hASL MRA provided superior arterial sharpness with respect to CEMRA and 2D TOF (P < 0.001). CONCLUSION Although inferior to CEMRA in terms of image quality and inter-rater agreement, hASL FLASH MRA offers an alternative to 2D TOF for the nonenhanced evaluation of the extracranial carotid arteries at 3 Tesla. Compared with 2D TOF, nonenhanced hASL FLASH MRA provides improved quantification of arterial cross-sectional area, vessel sharpness, inter-rater agreement and image quality.
Collapse
Affiliation(s)
- Ioannis Koktzoglou
- />Department of Radiology, NorthShore University HealthSystem, Evanston, USA
- />University of Chicago Pritzker School of Medicine, Chicago, USA
| | - Matthew T. Walker
- />Department of Radiology, NorthShore University HealthSystem, Evanston, USA
- />University of Chicago Pritzker School of Medicine, Chicago, USA
| | - Joel R. Meyer
- />Department of Radiology, NorthShore University HealthSystem, Evanston, USA
- />University of Chicago Pritzker School of Medicine, Chicago, USA
| | - Ian G. Murphy
- />Department of Radiology, NorthShore University HealthSystem, Evanston, USA
- />Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Robert R. Edelman
- />Department of Radiology, NorthShore University HealthSystem, Evanston, USA
- />Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
26
|
Fujima N, Osanai T, Shimizu Y, Yoshida A, Harada T, Nakayama N, Kudo K, Houkin K, Shirato H. Utility of noncontrast-enhanced time-resolved four-dimensional MR angiography with a vessel-selective technique for intracranial arteriovenous malformations. J Magn Reson Imaging 2016; 44:834-45. [PMID: 26970348 DOI: 10.1002/jmri.25222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the utility of a vessel-selective four-dimensional (4D) magnetic resonance angiography (MRA) technique for the evaluation of intracranial arteriovenous malformations (AVMs). MATERIALS AND METHODS Twelve AVM patients were evaluated retrospectively. Time-of-flight (TOF) MRA, nonvessel-selective 4D-MRA (NS-4D-MRA), and vessel-selective 4D-MRA (VS-4D-MRA) were performed using a 3T MR unit in all patients, and used to identify feeding arteries and draining veins and measure nidus size. The diagnostic accuracy of the three techniques was compared using digital subtraction angiography (DSA). If a multifeeder was observed, the percentage of blood flow of each feeding artery to the entire nidus was evaluated and compared to the DSA findings using the "error value," defined as the degree of overestimation of the blood flow. All imaging findings were assessed by two neuroradiologists. RESULTS In both raters, the detectability of feeding arteries by VS-4D-MRA (12 and 11 patients) was significantly higher than those of TOF-MRA (7 and 6 patients) and NS-4D-MRA (8 and 7 patients) (P < 0.016). The detectability of drainer veins by TOF-MRA (10 and 10 patients) was significantly higher than that of VS-4D-MRA (7 and 6 patients). In the percentage of the blood flow of each feed artery to the entire nidus, the DSA findings (error value; 27.1 ± 5.7) indicated overestimations of the blood flow compared to the VS-4D-MRA (error value; 7.1 ± 3.9) (P < 0.001). CONCLUSION VS-4D-MRA was shown to be a useful technique for the evaluation of intracranial AVMs, especially for detecting feed arteries and estimating details of the nidus structure. J. MAGN. RESON. IMAGING 2016;44:834-845.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Yoshida
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for collaborative research and education, Sapporo, Japan
| |
Collapse
|
27
|
Qin Q, Shin T, Schär M, Guo H, Chen H, Qiao Y. Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: Improved immunity to B0/B1 inhomogeneity. Magn Reson Med 2016; 75:1232-41. [PMID: 25940706 PMCID: PMC4630207 DOI: 10.1002/mrm.25764] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a Fourier-transform based velocity-selective (VS) pulse train that offers improved robustness to B0/B1 inhomogeneity for non-contrast-enhanced cerebral MR angiography (MRA) at 3 Tesla (T). METHODS VS pulse train I and II with different saturation bands are proposed to incorporate paired and phase cycled refocusing pulses. Their sensitivity to B0/B1 inhomogeneity was estimated through simulation and compared with a single refocused VS pulse train. The implementation was compared to standard time of flight (TOF) among eight healthy subjects. RESULTS In contrast to single refocused VS pulse train, the simulated VS profiles from proposed pulse trains indicate much improved immunity to field inhomogeneity in the brain at 3T. Successive application of two identical VS pulse trains yields a better suppression of static tissue at the cost of 20 ∼ 30% signal loss within large vessels. Average relative contrast ratios of major cerebral arterial segments applying both pulse train I and II with two preparations are 0.81 ± 0.06 and 0.81 ± 0.05, respectively, significantly higher than 0.67 ± 0.07 of TOF-MRA. VS MRA, in particular, the pulse train II with the narrower saturation band, depicts more small vessels with slower flow. CONCLUSION VS magnetization-prepared cerebral MRA was demonstrated among normal subjects on a 3T scanner.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Taehoon Shin
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael Schär
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hua Guo
- Center for Biomedical imaging Research, Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hanwei Chen
- Department of Radiology, Panyu District Central Hospital, Guangzhou, China
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Yan L, Salamon N, Wang DJJ. Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med 2016; 71:551-60. [PMID: 23440649 DOI: 10.1002/mrm.24689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The goal of this study was to introduce a new noncontrast enhanced 4D dynamic MR angiography (dMRA) technique termed multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). METHODS Multibolus TrueFISP-based spin tagging with alternating radiofrequency was developed by taking advantage of the phenomenon that the steady-state signal of TrueFISP is minimally disturbed by periodically inserted magnetization preparations (e.g., spin tagging) that are sandwiched by two α/2 RF pulses. Both theoretical analysis and experimental studies were carried out to optimize the proposed method which was compared with both pulsed and pseudo-continuous arterial spin labeling-based dMRA in healthy volunteers. Optimized multibolus dMRA was also applied in a patient with arteriovenous malformation to demonstrate its potential clinical utility. RESULTS Multibolus dMRA offered a prolonged tagging bolus compared to the standard single-bolus dMRA, and allowed improved visualization of the draining veins in the arteriovenous malformation patient. Compared to pseudo-continuous arterial spin labeling-based dMRA, multibolus dMRA provided visualization of the full passage of the labeled blood with the flexibility for both static and dynamic magnetic resonance angiography. CONCLUSION By combining the benefits of pulsed and pseudo-continuous arterial spin labeling-based dMRA, multibolus TrueFISP-based spin tagging with alternating radiofrequency can prolong and enhance the tagging bolus without sacrificing imaging speed or temporal resolution.
Collapse
Affiliation(s)
- Lirong Yan
- Department of Neurology, Laboratory of Functional MRI Technology, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
29
|
Iryo Y, Hirai T, Nakamura M, Tateishi M, Hayashida E, Azuma M, Nishimura S, Kitajima M, Yamashita Y. Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T. Magn Reson Med Sci 2015; 15:335-9. [PMID: 26701696 PMCID: PMC5608130 DOI: 10.2463/mrms.tn.2015-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Contrast inherent inflow-enhanced multi-phase angiography combining multiple-phase flow-alternating inversion-recovery (CINEMA-FAIR) is an arterial-spin-labeling-based four-dimensional magnetic resonance angiography (4D-MRA) technique. Two neuroradiologists independently evaluated the depiction of the intracranial vasculatures in healthy subjects with 3T 4D-MRA using CINEMA-FAIR. Our results indicated that this technique can provide good visualization of the cerebral arteries with a high spatial and temporal resolution. It appears to have sufficient resolution for identifying flow difference in the anterior and posterior circulation in healthy subjects.
Collapse
Affiliation(s)
- Yasuhiko Iryo
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medical Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Raoult H, Bannier E, Maurel P, Neyton C, Ferré JC, Schmitt P, Barillot C, Gauvrit JY. Hemodynamic Quantification in Brain Arteriovenous Malformations With Time-Resolved Spin-Labeled Magnetic Resonance Angiography. Stroke 2014; 45:2461-4. [DOI: 10.1161/strokeaha.114.006080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hélène Raoult
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Elise Bannier
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Pierre Maurel
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Clément Neyton
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Jean-Christophe Ferré
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Peter Schmitt
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Christian Barillot
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| | - Jean-Yves Gauvrit
- From the CHU Rennes, Department of Neuroradiology, Rennes, France (H.R., J.-C.F., J.-Y.G.); Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France (H.R., E.B., P.M., C.N., J.-C.F., C.B., J.-Y.G); and MR Application & Workflow Development, Siemens AG, Healthcare Sector, Erlangen, Germany (P.S.)
| |
Collapse
|
31
|
Raoult H, Bannier E, Robert B, Barillot C, Schmitt P, Gauvrit JY. Time-resolved Spin-labeled MR Angiography for the Depiction of Cerebral Arteriovenous Malformations: A Comparison of Techniques. Radiology 2014; 271:524-33. [DOI: 10.1148/radiol.13131252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Jang J, Schmitt P, Kim BY, Choi HS, Jung SL, Ahn KJ, Kim I, Paek M, Kim BS. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural Arteriovenous Fistula. Neuroradiology 2014; 56:305-14. [PMID: 24526141 DOI: 10.1007/s00234-014-1336-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION This study aimed to evaluate the feasibility of non-contrast-enhanced 4D magnetic resonance angiography (NCE 4D MRA) with signal targeting with alternative radiofrequency (STAR) spin labeling and variable flip angle (VFA) sampling in the assessment of dural arteriovenous fistula (DAVF) in the transverse sinus. METHODS Nine patients underwent NCE 4D MRA for the evaluation of DAVF in the transverse sinus at 3 T. One patient was examined twice, once before and once after the interventional treatment. All patients also underwent digital subtraction angiography (DSA) and/or contrast-enhanced magnetic resonance angiography (CEMRA). For the acquisition of NCE 4D MRA, a STAR spin tagging method was used, and a VFA sampling was applied in the data readout module instead of a constant flip angle. Two readers evaluated the NCE 4D MRA data for the diagnosis of DAVF and its type with consensus. The results were compared with those from DSA and/or CEMRA. RESULTS All patients underwent NCE 4D MRA without any difficulty. Among seven patients with patent DAVFs, all cases showed an early visualization of the transverse sinus on NCE 4D MRA. Except for one case, the type of DAVF of NCE 4D MRA was agreed with that of reference standard study. Cortical venous reflux (CVR) was demonstrated in two cases out of three patients with CVR. CONCLUSION NCE 4D MRA with STAR tagging and VFA sampling is technically and clinically feasible and represents a promising technique for assessment of DAVF in the transverse sinus. Further technical developments should aim at improvements of spatial and temporal coverage.
Collapse
Affiliation(s)
- Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Song HK, Yan L, Smith RX, Xue Y, Rapacchi S, Srinivasan S, Ennis DB, Hu P, Pouratian N, Wang DJJ. Noncontrast enhanced four-dimensional dynamic MRA with golden angle radial acquisition and K-space weighted image contrast (KWIC) reconstruction. Magn Reson Med 2013; 72:1541-51. [PMID: 24338944 DOI: 10.1002/mrm.25057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore the feasibility of 2D and 3D golden-angle radial acquisition strategies in conjunction with k-space weighted image contrast (KWIC) temporal filtering to achieve noncontrast enhanced dynamic MRA (dMRA) with high spatial resolution, low streaking artifacts and high temporal fidelity. METHODS Simulations and in vivo examinations in eight normal volunteers and an arteriovenous malformation patient were carried out. Both 2D and 3D golden angle radial sequences, preceded by spin tagging, were used for dMRA of the brain. The radial dMRA data were temporally filtered using the KWIC strategy and compared with matched standard Cartesian techniques. RESULTS The 2D and 3D dynamic MRA image series acquired with the proposed radial techniques demonstrated excellent image quality without discernible temporal blurring compared with standard Cartesian based approaches. The image quality of radial dMRA was equivalent to or higher than that of Cartesian dMRA by visual inspection. A reduction factor of up to 10 and 3 in scan time was achieved for 2D and 3D radial dMRA compared with the Cartesian-based counterparts. CONCLUSION The proposed 2D and 3D radial dMRA techniques demonstrated image quality comparable or even superior to those obtained with standard Cartesian methods, but within a fraction of the scan time.
Collapse
Affiliation(s)
- Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
O'Connor TE, Friedman WA. Magnetic Resonance Imaging Assessment of Cerebral Arteriovenous Malformation Obliteration After Stereotactic Radiosurgery. Neurosurgery 2013; 73:761-6. [DOI: 10.1227/neu.0000000000000086] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Stereotactic radiosurgery is ideal for treating small cerebral arteriovenous malformations (AVMs) that are surgically inaccessible. However, given the inherent delay of AVM obliteration and the potential for radiosurgical failure, detailed evaluation of the neurovascular architecture is necessary to monitor persistence of residual flow. Modern imaging systems such as magnetic resonance imaging (MRI) and angiography allow clinicians to assess transnidus flow after radiosurgical intervention.
OBJECTIVE:
To determine the accuracy of an MRI diagnosis of complete thrombosis and to identify variables that affect the precision of MRI assessment.
METHODS:
One hundred twenty patients were reviewed after receiving radiosurgery at the University of Florida from 1990 to 2010. Each patient had an MRI demonstrating AVM obliteration and an angiogram either confirming or denying AVM thrombosis.
RESULTS:
MRI correctly predicted complete AVM obliteration in 82% of patients. There was a significant correlation between AVM volume and MRI accuracy in 2 separate models. In the first model, logistic regression analysis revealed a significant linear relationship between the natural log of AVM volume and MRI accuracy. The second model showed significant evidence of a cutoff point in MRI accuracy near an AVM volume of 2.80 cm3, above which MRI agreement with angiography is 90% and below which MRI agreement falls off sharply to remain constant at 70%.
CONCLUSION:
MRI is a useful diagnostic system for assessing AVM obliteration, but its accuracy is inherently linked to the nidus volume it is measuring. These results suggest that MRI may be able to take on an increasingly independent role in the evaluation of AVM regression.
Collapse
|
35
|
Illies T, Forkert ND, Ries T, Regelsberger J, Fiehler J. Classification of cerebral arteriovenous malformations and intranidal flow patterns by color-encoded 4D-hybrid-MRA. AJNR Am J Neuroradiol 2012; 34:46-53. [PMID: 22878012 DOI: 10.3174/ajnr.a3204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D MRA has been evolving as a noninvasive supplement for DSA. The purpose of this study was to evaluate the feasibility of a newly developed blood flow visualization technique for the classification of cerebral AVMs. We hypothesized that 4D-hMRA allows detection of different flow patterns within the nidus as well as differentiation of feeders and draining veins and has very good agreement with DSA regarding the Spetzler-Martin grade. MATERIALS AND METHODS Thirty-one consecutive patients with AVMs were evaluated by using 4D-hMRA and DSA by 2 blinded raters. Rating criteria included Spetzler-Martin score and other morphologic variables together with a new scale for 3 intranidal flow patterns (homogeneous = 1, unidirectional = 2, heterogeneous = 3). RESULTS The Spetzler-Martin grades were rated different from DSA in 5 cases by rater 1 and in 3 cases by rater 2 with an excellent interrater reliability of κ = 0.96 (4/31, 1 by size and 3 by drainage). Each reader missed 5 feeders on 4D-hMRA. Draining veins were distinguished in the temporal course in 7 on DSA but in 8 and 12 on 4D-hybrid-MRA (raters 1 and 2 respectively), with κ = 0.79. A type 1 intranidal flow pattern was recognizable in 9 (30%) patients; type 2, in 19 (60%); and type 3, in 3 (10%). CONCLUSIONS 4D-hMRA allows reliable Spetzler-Martin grading and detection of brain arteriovenous malformation feeding arteries and draining veins, with the drawback that for small vessels DSA is still needed. Draining veins might even be detected with higher sensitivity than on DSA. Discrimination of different intranidal flow patterns is possible, but their relevance for hemorrhage risk assessment and therapy planning requires further study.
Collapse
Affiliation(s)
- T Illies
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA). Magn Reson Imaging 2012; 30:869-77. [PMID: 22521994 DOI: 10.1016/j.mri.2012.02.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 11/20/2022]
Abstract
Digital subtraction angiography (DSA) remains the gold standard to diagnose intracranial arteriovenous malformations (AVMs) but is invasive. Existing magnetic resonance angiography (MRA) is suboptimal for assessing the hemodynamics of AVMs. The objective of this study was to evaluate the clinical utility of a novel noncontrast four-dimensional (4D) dynamic MRA (dMRA) in the evaluation of intracranial AVMs through comparison with DSA and time-of-flight (TOF) MRA. Nineteen patients (12 women, mean age 26.2±10.7 years) with intracranial AVMs were examined with 4D dMRA, TOF and DSA. Spetzler-Martin grading scale was evaluated using each of the above three methods independently by two raters. Diagnostic confidence scores for three components of AVMs (feeding artery, nidus and draining vein) were also rated. Kendall's coefficient of concordance was calculated to evaluate the reliability between two raters within each modality (dMRA, TOF, TOF plus dMRA). The Wilcoxon signed-rank test was applied to compare the diagnostic confidence scores between each pair of the three modalities. dMRA was able to detect 16 out of 19 AVMs, and the ratings of AVM size and location matched those of DSA. The diagnostic confidence scores by dMRA were adequate for nidus (3.5/5), moderate for feeding arteries (2.5/5) and poor for draining veins (1.5/5). The hemodynamic information provided by dMRA improved diagnostic confidence scores by TOF MRA. As a completely noninvasive method, 4D dMRA offers hemodynamic information with a temporal resolution of 50-100 ms for the evaluation of AVMs and can complement existing methods such as DSA and TOF MRA.
Collapse
|
37
|
Machet A, Portefaix C, Kadziolka K, Robin G, Lanoix O, Pierot L. Brain arteriovenous malformation diagnosis: value of time-resolved contrast-enhanced MR angiography at 3.0T compared to DSA. Neuroradiology 2012; 54:1099-108. [DOI: 10.1007/s00234-012-1024-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|