• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5065085)   Today's Articles (264)
For: Newman D, Kelly-Morland C, Leinhard OD, Kasmai B, Greenwood R, Malcolm PN, Romu T, Borga M, Toms AP. Test-retest reliability of rapid whole body and compartmental fat volume quantification on a widebore 3T MR system in normal-weight, overweight, and obese subjects. J Magn Reson Imaging 2016;44:1464-1473. [DOI: 10.1002/jmri.25326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]  Open
Number Cited by Other Article(s)
1
Wu T, Estrada S, van Gils R, Su R, Jaddoe VWV, Oei EHG, Klein S. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study. AJR Am J Roentgenol 2024;222:e2329570. [PMID: 37584508 DOI: 10.2214/ajr.23.29570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
2
A Combined Region- and Pixel-Based Deep Learning Approach for Quantifying Abdominal Adipose Tissue in Adolescents Using Dixon Magnetic Resonance Imaging. Tomography 2023;9:139-149. [PMID: 36648999 PMCID: PMC9844424 DOI: 10.3390/tomography9010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]  Open
3
Fabry V, Mamalet F, Laforet A, Capelle M, Acket B, Sengenes C, Cintas P, Faruch-Bilfeld M. A deep learning tool without muscle-by-muscle grading to differentiate myositis from facio-scapulo-humeral dystrophy using MRI. Diagn Interv Imaging 2022;103:353-359. [DOI: 10.1016/j.diii.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
4
Huber FA, Chaitanya K, Gross N, Chinnareddy SR, Gross F, Konukoglu E, Guggenberger R. Whole-body Composition Profiling Using a Deep Learning Algorithm: Influence of Different Acquisition Parameters on Algorithm Performance and Robustness. Invest Radiol 2022;57:33-43. [PMID: 34074943 DOI: 10.1097/rli.0000000000000799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
5
Borga M, Ahlgren A, Romu T, Widholm P, Dahlqvist Leinhard O, West J. Reproducibility and repeatability of MRI‐based body composition analysis. Magn Reson Med 2020;84:3146-3156. [DOI: 10.1002/mrm.28360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
6
Kjønigsen LJ, Harneshaug M, Fløtten AM, Karterud LK, Petterson K, Skjolde G, Eggesbø HB, Weedon-Fekjær H, Henriksen HB, Lauritzen PM. Reproducibility of semiautomated body composition segmentation of abdominal computed tomography: a multiobserver study. Eur Radiol Exp 2019;3:42. [PMID: 31664547 PMCID: PMC6820626 DOI: 10.1186/s41747-019-0122-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]  Open
7
Procter AJ, Sun JY, Malcolm PN, Toms AP. Measuring liver fat fraction with complex-based chemical shift MRI: the effect of simplified sampling protocols on accuracy. BMC Med Imaging 2019;19:14. [PMID: 30736759 PMCID: PMC6368805 DOI: 10.1186/s12880-019-0311-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]  Open
8
Andersson T, Borga M, Dahlqvist Leinhard O. Geodesic registration for interactive atlas-based segmentation using learned multi-scale anatomical manifolds. Pattern Recognit Lett 2018. [DOI: 10.1016/j.patrec.2018.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
9
Borga M. MRI adipose tissue and muscle composition analysis-a review of automation techniques. Br J Radiol 2018;91:20180252. [PMID: 30004791 PMCID: PMC6223175 DOI: 10.1259/bjr.20180252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]  Open
10
Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB, Dahlqvist Leinhard O. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med 2018;66:1-9. [PMID: 29581385 PMCID: PMC5992366 DOI: 10.1136/jim-2018-000722] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
11
West J, Romu T, Thorell S, Lindblom H, Berin E, Holm ACS, Åstrand LL, Karlsson A, Borga M, Hammar M, Leinhard OD. Precision of MRI-based body composition measurements of postmenopausal women. PLoS One 2018;13:e0192495. [PMID: 29415060 PMCID: PMC5802932 DOI: 10.1371/journal.pone.0192495] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]  Open
12
Automatic Measurement of the Total Visceral Adipose Tissue From Computed Tomography Images by Using a Multi-Atlas Segmentation Method. J Comput Assist Tomogr 2018;42:139-145. [PMID: 28708717 DOI: 10.1097/rct.0000000000000652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
13
Henson J, Edwardson CL, Morgan B, Horsfield MA, Khunti K, Davies MJ, Yates T. Sedentary Time and MRI-Derived Measures of Adiposity in Active Versus Inactive Individuals. Obesity (Silver Spring) 2018;26:29-36. [PMID: 29265769 DOI: 10.1002/oby.22034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 11/12/2022]
14
Ulbrich EJ, Nanz D, Leinhard OD, Marcon M, Fischer MA. Whole-body adipose tissue and lean muscle volumes and their distribution across gender and age: MR-derived normative values in a normal-weight Swiss population. Magn Reson Med 2017;79:449-458. [PMID: 28432747 DOI: 10.1002/mrm.26676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA