1
|
Mathew E, Dortch R, Damon B, Ragunathan S, Quarles CC. Repeatability of diffusion kurtosis tensor parameters in muscles of the lower legs. Magn Reson Med 2025; 93:1306-1313. [PMID: 39529224 DOI: 10.1002/mrm.30344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The aim of this study was to provide measurements from and investigate the repeatability of diffusion kurtosis tensor parameters in the muscles of the lower legs. METHODS Test-retest acquisition of a kurtosis tensor sequence was performed in 13 healthy volunteers. Quantitative kurtosis tensor parameters were derived, and repeatability of each parameter was evaluated by muscle group and over the whole muscle through intraclass correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Bland-Altman analysis was also conducted. Differences in parameter values by muscle group were investigated through an analysis of variance. RESULTS Axial kurtosis and radial kurtosis values from the test data were 0.63 ± 0.04 and 0.70 ± 0.05, respectively. Kurtosis tensor parameters from all muscle groups and over the whole muscle had wsCV below 15%. ICC for the parameters from most muscle groups was above 85%, with the lowest ICC over the whole muscle being 88.39%. The medial gastrocnemius and extensor digitorum longus showed highest repeatability. Mean, axial, and radial diffusivity had higher wsCV despite being lower-order terms than kurtosis. CONCLUSION This study sought to examine the repeatability of diffusion kurtosis tensor-derived parameters in the legs and verify that they could potentially be used as longitudinal imaging metrics. wsCV values from test-retest data indicated high repeatability throughout all examined muscle groups. There were minimal differences in kurtosis and diffusivity parameters between muscle groups in this healthy volunteer cohort.
Collapse
Affiliation(s)
- Ethan Mathew
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Richard Dortch
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Bruce Damon
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
- Department of Bioengineering, Department of Biomedical and Translational Medical Sciences, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering and Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - C Chad Quarles
- Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Yamauchi K, Someya K, Kato C, Kato T. Acute changes in diffusion tensor imaging parameters of the quadriceps femoris muscle after stretching and their relationship with intramuscular adipose tissue. Eur J Appl Physiol 2025:10.1007/s00421-025-05719-z. [PMID: 39891712 DOI: 10.1007/s00421-025-05719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE Whether stretch exercise improves muscle anisotropy in relation to intramuscular adipose tissue (IntraMAT) is unclear. This study aimed to compare the diffusion tensor imaging (DTI) parameters of the quadriceps before and after stretching and to investigate correlations between the magnitudes of changes and IntraMAT ratios. METHODS Twenty young males were included. Single axial DTI and T1-weighted imaging of the right mid-thigh region were conducted before and after rest and stretching. Individual quadriceps were segmented, λ1-3 and fractional anisotropy (FA) were measured using DTI, and the IntraMAT ratios were measured using T1-weighted imaging. To test an intervention-by-time interaction effect, two-way repeated-measures analysis of variance was conducted. The correlation coefficients between the changing λ1-3 and FA magnitude by stretching and the IntaMAT ratio were assessed. RESULTS There was a significant interventions-by-time interaction effect in the λ1-3 and FA in the vastus medialis (VM). After stretching, in the VM, the λ1-3 values significantly decreased (mean difference, 0.07 mm2∙s-1∙10-3 for λ1-3), and the FA significantly increased (mean difference, 0.021). Furthermore, the decreasing λ2 and λ3 in the VM were significantly inversely correlated with the IntraMAT ratio (r = - 0.50 for both), and the increasing FA magnitude was significantly positively correlated with the IntraMAT ratio (r = 0.45). CONCLUSION Stretching the quadriceps acutely decreased λ1-3 and increased FA in the VM, and the magnitude of the λ2, λ3, and FA changes were correlated with the IntraMAT ratio. Stretching the quadriceps could improve VM function, particularly in overweight and obese people.
Collapse
Affiliation(s)
- Koun Yamauchi
- Department of Orthopaedic Surgery, Akita Hospital, Chiryu, 2-6-12 Takara, Chiryu, Aichi, 472-0056, Japan.
| | - Keita Someya
- Department of Radiology, Akita Hospital, 2-6-12 Takara, Chiryu, Aichi, 472-0056, Japan
| | - Chisato Kato
- Department of Orthopaedic Surgery, Akita Hospital, Chiryu, 2-6-12 Takara, Chiryu, Aichi, 472-0056, Japan
| | - Takayuki Kato
- Department of Orthopaedic Surgery, Akita Hospital, Chiryu, 2-6-12 Takara, Chiryu, Aichi, 472-0056, Japan
| |
Collapse
|
3
|
Lavalle S, Scapaticci R, Masiello E, Messina C, Aliprandi A, Mario Salerno V, Russo A, Pegreffi F. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1467155. [PMID: 39445171 PMCID: PMC11496100 DOI: 10.3389/fmedt.2024.1467155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sarcopenia is a prevalent condition with significant clinical implications, and it is expected to escalate globally, demanding for effective diagnostic strategies, possibly at an early stage of the disease. Imaging techniques play a pivotal role in comprehensively evaluating sarcopenia, offering insights into both muscle quantity and quality. Among all the imaging techniques currently used for the diagnosis and follow up of sarcopenia, it is possible to distinguish two classes: Rx based techniques, using ionizing radiations, and non-invasive techniques, which are based on the use of safe and low risk diagnostic procedures. Dual-energy x-ray Absorptiometry and Computed Tomography, while widely utilized, entail radiation exposure concerns. Ultrasound imaging offers portability, real-time imaging, and absence of ionizing radiation, making it a promising tool Magnetic Resonance Imaging, particularly T1-weighted and Dixon sequences, provides cross- sectional and high-resolution images and fat-water separation capabilities, facilitating precise sarcopenia quantification. Bioelectrical Impedance Analysis (BIA), a non-invasive technique, estimates body composition, including muscle mass, albeit influenced by hydration status. Standardized protocols, such as those proposed by the Sarcopenia through Ultrasound (SARCUS) Working Group, are imperative for ensuring consistency across assessments. Future research should focus on refining these techniques and harnessing the potential of radiomics and artificial intelligence to enhance diagnostic accuracy and prognostic capabilities in sarcopenia.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Rosa Scapaticci
- Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, Naples, Italy
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Messina
- Department of Radiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Arcangelo Russo
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| |
Collapse
|
4
|
Zellers JA, Edalati M, Eekhoff JD, McNish R, Tang SY, Lake SP, Mueller MJ, Hastings MK, Zheng J. Quantative MRI predicts tendon mechanical behavior, collagen composition, and organization. J Orthop Res 2023; 41:2329-2338. [PMID: 36324161 PMCID: PMC10151441 DOI: 10.1002/jor.25471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/06/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Quantitative magnetic resonance imaging (qMRI) measures have provided insights into the composition, quality, and structure-function of musculoskeletal tissues. Low signal-to-noise ratio has limited application to tendon. Advances in scanning sequences and sample positioning have improved signal from tendon allowing for evaluation of structure and function. The purpose of this study was to elucidate relationships between tendon qMRI metrics (T1, T2, T1ρ and diffusion tensor imaging [DTI] metrics) with tendon tissue mechanics, collagen concentration and organization. Sixteen human Achilles tendon specimens were collected, imaged with qMRI, and subjected to mechanical testing with quantitative polarized light imaging. T2 values were related to tendon mechanics [peak stress (rsp = 0.51, p = 0.044), equilibrium stress (rsp = 0.54, p = 0.033), percent relaxation (rsp = -0.55, p = 0.027), hysteresis (rsp = -0.64, p = 0.007), linear modulus (rsp = 0.67, p = 0.009)]. T1ρ had a statistically significant relationship with percent relaxation (r = 0.50, p = 0.048). Collagen content was significantly related to DTI measures (range of r = 0.56-0.62). T2 values from a single slice of the midportion of human Achilles tendons were strongest predictors of tendon tensile mechanical metrics. DTI diffusivity indices (mean diffusivity, axial diffusivity, radial diffusivity) were strongly correlated with collagen content. These findings build on a growing body of literature supporting the feasibility of qMRI to characterize tendon tissue and noninvasively measure tendon structure and function. Statement of Clinical Significance: Quantitative MRI can be applied to characterize tendon tissue and is a noninvasive measure that relates to tendon composition and mechanical behavior.
Collapse
Affiliation(s)
- Jennifer A. Zellers
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Masoud Edalati
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| | - Jeremy D. Eekhoff
- Department of Biomedical Engineering; Washington University in St. Louis
| | - Reika McNish
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
| | - Simon Y. Tang
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Spencer P. Lake
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
- Department of Mechanical Engineering & Materials Science; Washington University in St. Louis
| | - Michael J. Mueller
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| | - Mary K. Hastings
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Jie Zheng
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| |
Collapse
|
5
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. Clinical applications of skeletal muscle diffusion tensor imaging. Skeletal Radiol 2023; 52:1639-1649. [PMID: 37083977 DOI: 10.1007/s00256-023-04350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Diffusion tensor imaging (DTI) may allow the determination of new threshold values, based on water anisotropy, to differentiate between healthy muscle and various pathological processes. Additionally, it may quantify treatment monitoring or training effects. Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy, and training monitoring. Another critical area of application of this technique is the characterization and monitoring of primary and secondary myopathies. In this manuscript, we review the application of DTI in the evaluation of skeletal muscle in these and other novel clinical scenarios, with emphasis on the use of quantitative imaging-derived biomarkers. Finally, the main limitations of the introduction of DTI in the clinical setting and potential areas of future use are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Médica, Jaén, Spain
| |
Collapse
|
7
|
Yamauchi K, Someya K, Kato C, Kato T. The Relationship Between Quadriceps Femoris Muscle Function and
MRI
‐Derived Water Diffusion and Adipose Tissue Measurements in Young Healthy Males. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Koun Yamauchi
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| | - Keita Someya
- Department of Radiology Akita Hospital Chiryu City Aichi Japan
| | - Chisato Kato
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| | - Takayuki Kato
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| |
Collapse
|
8
|
Zhao Y, Guo L, Jiang Y, Wu H, Dai J, Cui Y, Mao H, Ju S, Wei Q, Peng XG. Assessment of Calf Skeletal Muscle in Male Type 2 Diabetes Mellitus Patients With Different Courses Using T1ρ Mapping. J Clin Endocrinol Metab 2022; 107:e1699-e1709. [PMID: 34747996 DOI: 10.1210/clinem/dgab817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The current clinical methods for detecting skeletal muscle complications of type 2 diabetes mellitus (T2DM) are invasive and insensitive. There is an urgent need for noninvasive assessment of skeletal muscle microstructure changes during the disease progression and treatment to assist the clinical management. OBJECTIVE This work aimed to investigate the T2DM caused changes in the fast-twitch tibialis anterior (TA) and slow-twitch soleus (SOL) skeletal muscles using T1ρ magnetic resonance imaging (MRI). METHODS This cross-sectional study took place from December 2014 to December 2020 at Zhongda Hospital Southeast University. A total of 26 new-onset and 15 long-term T2DM patients were enrolled, with the addition of 20 young and 13 older healthy volunteers as age-matched controls. T1ρ relaxation times of SOL and TA muscles in different groups were measured. Parametric and nonparametric tests were used to analyze the relationship between the T1ρ values in SOL and TA muscles and the length of illness, level of fasting blood glucose, and status of homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS T1ρ relaxation times of SOL and TA muscles both of new-onset and long-term T2DM patients were significantly higher than those of the young (P < .01, P < .05) and older healthy controls (P < .05, P < .01). Positive correlations were observed between the T1ρ relaxation times of the TA or SOL and the duration of T2DM (R2 = 0.420, R2 = 0.326), the level of fasting blood glucose (R2 = 0.253, R2 = 0.071) and HOMA-IR (R2 = 0.232, R2 = 0.414). CONCLUSION Quantitative MRI measurement of T1ρ provides a noninvasive tool to assess T2DM-induced changes in the skeletal muscles of T2DM patients.
Collapse
Affiliation(s)
- Yufei Zhao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Li Guo
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Yang Jiang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Honghong Wu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Jingyue Dai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Xin-Gui Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
9
|
Stouge A, Khan KS, Kristensen AG, Tankisi H, Schlaffke L, Froeling M, Væggemose M, Andersen H. MRI of Skeletal Muscles in Participants with Type 2 Diabetes with or without Diabetic Polyneuropathy. Radiology 2020; 297:608-619. [PMID: 33048033 DOI: 10.1148/radiol.2020192647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDiabetic polyneuropathy (DPN) is associated with loss of muscle strength. MRI including diffusion-tensor imaging (DTI) may enable detection of muscle abnormalities related to type 2 diabetes mellitus (DM2) and DPN.PurposeTo assess skeletal muscle abnormalities in participants with DM2 with or without DPN by using MRI.Materials and MethodsThis prospective cross-sectional study included participants with DM2 and DPN (DPN positive), participants with DM2 without DPN (DPN negative), and healthy control (HC) participants enrolled between August 2017 and June 2018. Muscle strength at the knee and ankle was determined with isokinetic dynamometry. MRI of the lower extremities included the Dixon sequence, multicomponent T2 mapping, and DTI calculated fat fractions (FFs), T2 relaxation of muscle (T2water), fractional anisotropy (FA), and diffusivity (mean, axial, and radial). One-way analysis of variance and Tukey honestly significant difference were applied for comparison between groups, and multivariate regression models were used for association between MRI parameters, nerve conduction, strength, and body mass index (BMI).ResultsTwenty participants with DPN (mean age, 65 years ± 9 [standard deviation]; 70% men; mean BMI, 34 kg/m2 ± 5), 20 participants without DPN (mean age, 64 years ± 9; 55% men; mean BMI, 30 kg/m2 ± 6), and 20 HC participants (mean age, 61 years ± 10; 55% men; mean BMI, 27 kg/m2 ± 5) were enrolled in this study. Muscle strength adjusted for age, sex, and BMI was lower in participants with DPN than in DPN-negative and HC participants in the upper and lower leg (plantar flexors [PF], 62% vs 78% vs 89%; P < .001; knee extensors [KE], 73% vs 95% vs 93%; P < .001). FF was higher in leg muscle groups of participants with DPN than in DPN-negative and HC participants (PF, 20% vs 10% vs 8%; P < .001; KE, 13% vs 8% vs 6%; P < .001). T2water was prolonged in leg muscle groups of participants with DPN when compared with HC participants (PF, 33 msec vs 31 msec; P < .001; KE, 32 msec vs 31 msec; P = .002) and in the lower leg when compared with participants without DPN (PF, 33 msec vs 32 msec; P = .03). In multivariate regression models, strength was associated with FA (b = -0.0004), T2water (b = -0.03 msec), and FF (b = -0.1%) at thigh level (P < .001). Furthermore, FA (b = -0.007), T2water (b = -0.53 msec), and FF (b = -4.0%) were associated with nerve conduction at calf level (P < .001).ConclusionMRI of leg muscle groups revealed fat accumulation, differences in water composition, and structural changes in participants with type 2 diabetes mellitus and neuropathy. Abnormalities were most pronounced in the plantar flexors.© RSNA, 2020Online supplemental material is available for this article.See also the editorial by Sneag and Tan in this issue.
Collapse
Affiliation(s)
- Anders Stouge
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Karolina S Khan
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Alexander G Kristensen
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Hatice Tankisi
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Lara Schlaffke
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Martijn Froeling
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Michael Væggemose
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Henning Andersen
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| |
Collapse
|
10
|
Diffusion tensor imaging of the human thigh: consideration of DTI-based fiber tracking stop criteria. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:343-355. [DOI: 10.1007/s10334-019-00791-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
|
11
|
Farrow M, Grainger AJ, Tan AL, Buch MH, Emery P, Ridgway JP, Feiweier T, Tanner SF, Biglands J. Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle. Br J Radiol 2019; 92:20190143. [PMID: 31298948 DOI: 10.1259/bjr.20190143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the test-retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. METHODS 29 healthy volunteers (mean age 37 years, range 20-60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test-retest variability of the measurements. RESULTS Intraclass correlation coefficients (ICCs) for test-retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10-3 mm2s-1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. CONCLUSIONS This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. ADVANCES IN KNOWLEDGE Test-retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew J Grainger
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maya H Buch
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Paul Emery
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John P Ridgway
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Steven F Tanner
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John Biglands
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|