1
|
Chen L, Fang MJ, Yu XE, Xu Y. Genetic analyses identify brain functional networks associated with the risk of Parkinson's disease and drug-induced parkinsonism. Cereb Cortex 2025; 35:bhae506. [PMID: 39820363 DOI: 10.1093/cercor/bhae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/01/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025] Open
Abstract
Brain functional networks are associated with parkinsonism in observational studies. However, the causal effects between brain functional networks and parkinsonism remain unclear. We aimed to assess the potential bidirectional causal associations between 191 brain resting-state functional magnetic resonance imaging (rsfMRI) phenotypes and parkinsonism including Parkinson's disease (PD) and drug-induced parkinsonism (DIP). We used Mendelian randomization (MR) to assess the bidirectional associations between brain rsfMRI phenotypes and parkinsonism, followed by several sensitivity analyses for robustness validation. In the forward MR analyses, we found that three rsfMRI phenotypes genetically determined the risk of parkinsonism. The connectivity in the visual network decreased the risk of PD (OR = 0.391, 95% CI = 0.235 ~ 0.649, P = 2.83 × 10-4, P_FDR = 0.039). The connectivity of salience and motor networks increased the risk of DIP (OR = 4.102, 95% CI = 1.903 ~ 8.845, P = 3.17 × 10-4, P_FDR = 0.044). The connectivity of limbic and default mode networks increased the risk of DIP (OR = 14.526, 95% CI = 3.130 ~ 67.408, P = 6.32 × 10-4, P_FDR = 0.0437). The reverse MR analysis indicated that PD and DIP had no effect on brain rsfMRI phenotypes. Our findings reveal causal relationships between brain functional networks and parkinsonism, providing important interventional and therapeutic targets for different parkinsonism.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Neurology, Anhui University of Chinese Medicine, No. 357 Changjiang Middle Road, Luyang District, Hefei 230061, China
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Ming-Juan Fang
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Xu-En Yu
- Institute of Neurology, Anhui University of Chinese Medicine, No. 357 Changjiang Middle Road, Luyang District, Hefei 230061, China
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Yin Xu
- Institute of Neurology, Anhui University of Chinese Medicine, No. 357 Changjiang Middle Road, Luyang District, Hefei 230061, China
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| |
Collapse
|
2
|
Huang M, Yu H, Lyu X, Pu W, Yin J, Gao B. Region-specific Cerebral Metabolic Alterations in Parkinson's Disease Patients With/without Mild Cognitive Impairment. Neuroscience 2024; 551:254-261. [PMID: 38848776 DOI: 10.1016/j.neuroscience.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.
Collapse
Affiliation(s)
- Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinyue Lyu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Pu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianhong Yin
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Zhang J, Zhu Q, Shi X, Huang Y, Yan L, Zhang G, Pei L, Liu J, Han X, Zhu X. NIR-II light therapy improves cognitive performance in MPTP induced Parkinson's disease rat models: A preliminary experimental study. Heliyon 2024; 10:e32800. [PMID: 38975234 PMCID: PMC11225833 DOI: 10.1016/j.heliyon.2024.e32800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Cognitive impairment is an important component of non motor symptoms in Parkinson's disease (PD), and if not addressed in a timely manner, it can easily progress to dementia. However, no effective method currently exists to completely prevent or reverse cognitive impairment associated with PD. We therefore aimed to investigate the therapeutic effect of near-infrared region II light (NIR-II) region illumination on cognitive impairment in PD through behavioral experiments (water maze and rotary rod) and multiple fluorescence immunohistochemistry techniques. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced group was compared with the MPTP- untreated rat group, showing a significant reduction in escape latency and significant increase in the fall latency in the MPTP-treated group. The horizontal analysis results indicated that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. Post-treatment, the MPTP rats showed significantly shortened, escape latency, prolonged target quadrant residence time, and prolonged fall latency compared with pre-treatment. The longitudinal analysis results reaffirmed that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. The multiple fluorescence immunohistochemistry analysis trend plot showed that the activated microglia and astrocytes in the hippocampus were highest in MPTP-induced PD untreated group, moderate in MPTP-induced PD treatment group, and lowest in the control group. Our data indicates that NIR-II illumination improves learning and cognitive impairment as well as coordination and balance abilities in PD rats by downregulating the activation of microglia and astrocytes in the hippocampus.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Qinqin Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
4
|
Carlisle TC, Medina LD, Holden SK. Original research: initial development of a pragmatic tool to estimate cognitive decline risk focusing on potentially modifiable factors in Parkinson's disease. Front Neurosci 2023; 17:1278817. [PMID: 37942138 PMCID: PMC10628974 DOI: 10.3389/fnins.2023.1278817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Cognitive decline is common in Parkinson's disease (PD). Calculating personalized risk of cognitive decline in PD would allow for appropriate counseling, early intervention with available treatments, and inclusion in disease-modifying trials. Methods Data were from the Parkinson's Progression Markers Initiative de novo cohort. Baseline scores were calculated for Lifestyle for Brain Health (LIBRA) and the Montreal Parkinson Risk of Dementia Scale (MoPaRDS) per prior literature and preliminary Parkinson's disease Risk Estimator for Decline In Cognition Tool (pPREDICT) by attributing a point for fourteen posited risk factors. Baseline and 5-year follow-up composite cognitive scores (CCSs) were calculated from a neuropsychological battery and used to define cognitive decliners (PD-decline) versus maintainers (PD-maintain). Results The PD-decline group (n = 44) had higher LIBRA (6.76 ± 0.57, p < 0.05), MoPaRDS (2.45 ± 1.41, p < 0.05) and pPREDICT (4.52 ± 1.66, p < 0.05) scores compared to the PD-maintain group (n = 263; LIBRA 4.98 ± 0.20, MoPaRDS 1.68 ± 1.16, pPREDICT 3.38 ± 1.69). Area-under-the-curve (AUC) for LIBRA was 0.64 (95% confidence interval [CI], 0.55-0.73), MoPaRDS was 0.66 (95% CI, 0.58-0.75) and for pPREDICT was 0.68 (95% CI, 0.61-0.76). In linear regression analyses, LIBRA (p < 0.05), MoPaRDS (p < 0.05) and pPREDICT (p < 0.05) predicted change in CCS. Only age stratified by sex (p < 0.05) contributed significantly to the model for LIBRA. Age and presence of hallucinations (p < 0.05) contributed significantly to the model for MoPaRDS. Male sex, older age, excessive daytime sleepiness, and moderate-severe motor symptoms (all p < 0.05) contributed significantly to the model for pPREDICT. Conclusion Although MoPaRDS is a PD-specific tool for predicting cognitive decline relying on only clinical features, it does not focus on potentially modifiable risk factors. LIBRA does focus on potentially modifiable risk factors and is associated with prediction of all-cause dementia in some populations, but pPREDICT potentially demonstrates improved performance in cognitive decline risk calculation in individuals with PD and may identify actionable risk factors. As pPREDICT incorporates multiple potentially modifiable risk factors that can be obtained easily in the clinical setting, it is a first step in developing an easily assessable tool for a personalized approach to reduce dementia risk in people with PD.
Collapse
Affiliation(s)
- Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, Aurora, CO, United States
- University of Colorado Movement Disorders Center, Aurora, CO, United States
| | - Luis D. Medina
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Samantha K. Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, Aurora, CO, United States
- University of Colorado Movement Disorders Center, Aurora, CO, United States
- Department of Neurology, Movement Disorders Section, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Yu Z, Pang H, Yu H, Wu Z, Ding Z, Fan G. Segmental disturbance of white matter microstructure in predicting mild cognitive impairment in idiopathic Parkinson's disease: An individualized study based on automated fiber quantification tractography. Parkinsonism Relat Disord 2023; 115:105802. [PMID: 37734997 DOI: 10.1016/j.parkreldis.2023.105802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE The neurobiological mechanisms and an early identification of MCI in idiopathic Parkinson's disease (IPD) remain unclear. To investigate the abnormalities of types of white matter (WM) fiber tracts segmentally and establish reliable indicator in IPD-MCI. METHODS Forty IPD with normal cognition (IPD-NCI), thirty IPD-MCI, and thirty healthy controls were included. Automated fiber quantification was applied to extract the fractional anisotropy (FA) and mean diffusivity (MD) values at 100 locations along the major fibers. Partial correlation was performed between diffusion values and cognitive performance. Furthermore, machine learning analyses were conducted to determine the imaging biomarker of MCI. Permutation tests were performed to evaluate the pointwise differences under the FWE correction. RESULTS IPD-MCI had similar but more severe and widespread WM degeneration in the association, projection, and commissural fibers compared with IPD-NCI. Meanwhile, IPD-MCI showed distinct degeneration pattern in the association fibers. The FA of the anterior segment of right inferior fronto-occipital fasciculus (IFOF) was positively correlated with MoCA (P < 0.05) and executive function (P < 0.05). The MD of the middle and posterior segment of left superior longitudinal fasciculus (SLF) was negatively correlated with MoCA P < 0.05), executive (P < 0.05), visuospatial function (P < 0.05). Furthermore, the AUC of support vector machine model was 0.80 in the validation dataset. The FA of anterior segment of right IFOF contribute the most. CONCLUSION This study demonstrated that regional tract-specific microstructural degeneration, especially the association fibers, can be used to predict MCI in IPD. Especially, the right IFOF may be a significant imaging biomarker in predicting IPD with MCI.
Collapse
Affiliation(s)
- Ziyang Yu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China; Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Huize Pang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hongmei Yu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Ziqian Wu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| | - Zhi Ding
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| | - Guoguang Fan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Tang S, Wang Y, Liu Y, Chau SW, Chan JW, Chu WC, Abrigo JM, Mok VC, Wing YK. Large-scale network dysfunction in α-Synucleinopathy: A meta-analysis of resting-state functional connectivity. EBioMedicine 2022; 77:103915. [PMID: 35259574 PMCID: PMC8904227 DOI: 10.1016/j.ebiom.2022.103915] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background Although dysfunction of large-scale brain networks has been frequently demonstrated in patients with α-Synucleinopathy (α-Syn, i.e., Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy), a consistent pattern of dysfunction remains unclear. We aim to investigate network dysfunction in patients with α-Syn through a meta-analysis. Methods Whole-brain seed-based resting-state functional connectivity studies (published before September 1st, 2020 in English) comparing α-Syn patients with healthy controls (HC) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE). Seeds from each study were categorized into networks by their location within a priori functional networks. Seed-based effect size mapping with Permutation of Subject Images analysis of between-group effects identified the network systems in which α-Syn was associated with hyperconnectivity (increased connectivity in α-Syn vs. HC) or hypoconnectivity (decreased connectivity in α-Syn vs. HC) within and between each seed-network. This study was registered on PROSPERO (CRD42020210133). Findings In total, 136 seed-based voxel-wise resting-state functional connectivity datasets from 72 publications (3093 α-Syn patients and 3331 HC) were included in the meta-analysis. We found that α-Syn patients demonstrated imbalanced connectivity among subcortical network, cerebellum, and frontal parietal networks that involved in motor functioning and executive control. The patient group was associated with hypoconnectivity in default mode network and ventral attention network that involved in cognition and attention. Additionally, the patient group exhibited hyperconnectivity between neural systems involved in top-down emotion regulation and hypoconnectivity between networks involved in bottom-up emotion processing. Interpretation These findings supported neurocognitive models in which network dysfunction is tightly linked to motor, cognitive and psychiatric symptoms observed in α-Syn patients.
Collapse
Affiliation(s)
- Shi Tang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanlin Wang
- Advanced Computing and Digital Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven Wh Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey Wy Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Li J, Liao H, Wang T, Zi Y, Zhang L, Wang M, Mao Z, Song C, Zhou F, Shen Q, Cai S, Tan C. Alterations of Regional Homogeneity in the Mild and Moderate Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:676899. [PMID: 34366823 PMCID: PMC8336937 DOI: 10.3389/fnagi.2021.676899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson's disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores. Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0-1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0-2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored. Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition. Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0-2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Pan C, Ren J, Li L, Li Y, Xu J, Xue C, Hu G, Yu M, Chen Y, Zhang L, Zhang W, Hu X, Sun Y, Liu W, Chen J. Differential functional connectivity of insular subdivisions in de novo Parkinson's disease with mild cognitive impairment. Brain Imaging Behav 2021; 16:1-10. [PMID: 33770371 DOI: 10.1007/s11682-021-00471-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023]
Abstract
The insula, consisting of functionally diverse subdivisions, plays a significant role in Parkinson's disease (PD)-related cognitive disorders. However, the functional connectivity (FC) patterns of insular subdivisions in PD remain unclear. Our aim is to investigate the changes in FC patterns of insular subdivisions and their relationships with cognitive domains. Three groups of participants were recruited in this study, including PD patients with mild cognitive impairment (PD-MCI, n = 25), PD patients with normal cognition (PD-NC, n = 13), and healthy controls (HCs, n = 17). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate the FC in insular subdivisions of the three groups. Moreover, all participants underwent a neuropsychological battery to assess cognition so that the relationship between altered FC and cognitive performance could be elucidated. Compared with the PD-NC group, the PD-MCI group exhibited increased FC between the left dorsal anterior insular (dAI) and the right superior parietal gyrus (SPG), and altered FC was negatively correlated with memory and executive function. Compared with the HC group, the PD-MCI group showed significantly increased FC between the right dAI and the right median cingulate and paracingulate gyri (DCG), and altered FC was positively related to attention/working memory, visuospatial function, and language. Our findings highlighted the different abnormal FC patterns of insular subdivisions in PD patients with different cognitive abilities. Furthermore, dysfunction of the dAI may partly contribute to the decline in executive function and memory in early drug-naïve PD patients.
Collapse
Affiliation(s)
- Chenxi Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Lanting Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Yuqian Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China
| | - Yong Chen
- Department of Laboratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Wenbing Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yu Sun
- School of Biology Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China.
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
9
|
Guo W, Jin W, Li N, Gao J, Wang J, Chang Y, Yin K, Chen Y, Zhang S, Wang T. Brain activity alterations in patients with Parkinson's disease with cognitive impairment based on resting-state functional MRI. Neurosci Lett 2021; 747:135672. [PMID: 33515623 DOI: 10.1016/j.neulet.2021.135672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to investigate the differences in regional homogeneity (ReHo) values in patients with Parkinson's disease (PD) with cognitive impairment (PD-CI) and thus explore the neuropathological mechanism of PD-CI. METHODS Resting-state functional magnetic resonance imaging scans were obtained from 36 patients with PD and 20 healthy controls (HCs) in this study. The PD group comprised 20 patients with PD-CI and 16 patients with PD with normal cognitive function (PD-NC). The data were analyzed using ReHo analysis to observe the changes in brain activity in patients with PD-CI and PD-NC. Statistical comparison was performed using covariance analysis and post hoc t tests. RESULTS The patients in the PD-CI group were older than those in the PD-NC and HC groups. Compared with the HC group, the PD-CI group showed that the ReHo value decreased in the right supplementary motor area, left lingual gyrus, left thalamus, and left precuneus, but increased in the left fusiform gyrus. Compared with the HC group, the PD-NC group showed that the ReHo value decreased in the right cerebellum_6, but increased in the left inferior temporal gyrus, left orbital inferior frontal gyrus, and left precentral gyrus. Compared with the PD-NC group, the PD-CI group showed that the ReHo value decreased in the right precuneus, left triangular inferior frontal gyrus, left middle frontal gyrus, right opercular inferior frontal gyrus, left orbital inferior frontal gyrus, left supramarginal gyrus, left angular gyrus, left inferior temporal gyrus, and right cerebelum_7b, but increased in the left precentral gyrus and left fusiform gyrus. CONCLUSIONS Age was a risk factor for cognitive decline in patients with PD. The ReHo value in the default mode network (DMN) was closely related to PD cognitive function, and the DMN was affected before CI and continuously deteriorated with disease progression. The disorder of visual conduction pathway was involved in CI in patients with PD, but these patients could recruit cognitive resources by improving visual-spatial ability. The cognitive function in such patients was related to the dopaminergic, cholinergic, and noradrenergic systems. The information transmission efficiency of the cerebellum-thalamus-cortex loop was reduced and involved in the cognitive decline process in patients with PD.
Collapse
Affiliation(s)
- Weina Guo
- Department of Graduate School of Hebei North University, Zhangjiakou, China; Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Junshu Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jiuxue Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yajun Chang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Kuochang Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yingmin Chen
- Department of Radiology, Hebei General Hospital, Shijiazhuang, China
| | - Shuqian Zhang
- Department of Radiology, Hebei General Hospital, Shijiazhuang, China
| | - Tianjun Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
10
|
Li MG, He JF, Liu XY, Wang ZF, Lou X, Ma L. Structural and Functional Thalamic Changes in Parkinson's Disease With Mild Cognitive Impairment. J Magn Reson Imaging 2020; 52:1207-1215. [PMID: 32557988 DOI: 10.1002/jmri.27195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The thalamus is a key node of deep gray matter and previous studies have demonstrated that it is involved in the modulation of cognition. PURPOSE To investigate the volume changes of the thalamus and its subregions and altered thalamus functional connectivity patterns in Parkinson's disease (PD) patients with and without mild cognitive impairment (MCI). STUDY TYPE Prospective. POPULATION Thirty-three patients with MCI (PD-MCI), 36 PD patients having no cognitive impairment (PD-NCI), 21 healthy controls (HCs). SEQUENCE 3.0T MRI scanner; 3D T1 -weighted fast spoiled gradient recalled echo (3D T1 -FSPGR); resting-state fMRI ASSESSMENT: Voxel-based morphometry (VBM) was performed to calculate the volume of the thalamus and its subregions. The left and right total thalamus were considered seeds and seed-based functional connectivity (FC) was analyzed. Additionally, correlations between volumes and cognitive performance and between FC values and cognitive performance were examined separately. STATISTICAL TEST Analysis of covariance (ANCOVA); two-sample t-tests; partial correlation analysis. RESULTS The volumes of the total thalamus (PD-MCI vs. PD-NCI vs. HCs: 18.39 ± 1.67 vs. 19.63 ± 1.79 vs. 19.47 ± 1.35) and its subregions were significantly reduced in PD-MCI as compared to PD-NCI (total thalamus: P = 0.002) and HCs (total thalamus: P = 0.012). Compared with PD-NCI, PD-MCI showed increased FC between the thalamus and bilateral middle cingulate cortex and left posterior cingulate cortex, and decreased FC between thalamus and the left superior occipital gyrus, left cuneus, left precuneus, and left middle occipital gyrus. Volumes of thalamus and the subregions, as well as the FC of thalamus with the identified regions, were significantly correlated (P < 0.05, FDR-corrected) with neuropsychological scores in PD patients. DATA CONCLUSION We noted volume loss and altered FC of thalamus in PD-MCI patients, and these changes were correlated with global cognitive performance. LEVEL OF EVIDENCE 2 TECHNICAL EFFICIENCY: Stage 2 J. Magn. Reson. Imaging 2020;52:1207-1215.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jian-Feng He
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin-Yun Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Li MG, Liu TF, Zhang TH, Chen ZY, Nie BB, Lou X, Wang ZF, Ma L. Alterations of regional homogeneity in Parkinson's disease with mild cognitive impairment: a preliminary resting-state fMRI study. Neuroradiology 2019; 62:327-334. [PMID: 31822931 DOI: 10.1007/s00234-019-02333-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Mild cognitive impairment (MCI) is commonly observed in Parkinson's disease (PD), even in the early stages. However, the neural substrates of cognitive impairment in PD remain unclear. The aim of the current study was to investigate the change of local brain function in PD patients with MCI. METHODS Fifty patients with PD, including 25 PD patients with MCI (PD-MCI) and 25 PD patients with normal cognition (PD-NC), and 25 age- and sex-matched healthy controls (HC) were enrolled. Conventional magnetic resonance imaging (MRI), 3D structural images, and resting state-functional MRI (rs-fMRI) were performed in all subjects. Regional homogeneity (ReHo) was measured based on the rs-fMRI images to investigate the altered local brain functions. RESULTS Brain regions with decreased ReHo were located in the left posterior cerebellar lobe in PD sub-groups compared to the HC group, and the brain regions with increased ReHo were located in the limbic lobe (right precuneus/bilateral middle cingulate cortex) in PD-MCI compared with HC group. PD-MCI presented with increased ReHo in the bilateral precuneus/left superior parietal lobe and decreased ReHo in the left insula compared to PD-NC. ReHo values for the left precuneus were negatively related to neuropsychological scores, and ReHo values for the left insula were positively related to neuropsychological scores in PD subjects. CONCLUSION The present study demonstrated abnormal spontaneous synchrony in the left insula and left precuneus in patients with PD-MCI compared to PD-NC, which might provide a novel insight into the diagnosis and clinical treatment of cognitive impairment in PD.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tie-Fang Liu
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tian-Hao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ye Chen
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Bin-Bin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, China. .,Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
12
|
Baiano C, Barone P, Trojano L, Santangelo G. Prevalence and Clinical Aspects of Mild Cognitive Impairment in Parkinson's Disease: A Meta‐Analysis. Mov Disord 2019; 35:45-54. [DOI: 10.1002/mds.27902] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Affiliation(s)
- Chiara Baiano
- Department of Psychology University of Campania Luigi Vanvitelli Caserta Italy
| | - Paolo Barone
- Centre for Neurodegenerative Disease‐CEMAND University of Salerno Salerno Italy
| | - Luigi Trojano
- Department of Psychology University of Campania Luigi Vanvitelli Caserta Italy
| | | |
Collapse
|