1
|
Karakas AB, Govsa F, Ozer MA, Biceroglu H, Eraslan C, Tanir D. From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas. Neurosurg Rev 2025; 48:396. [PMID: 40299088 DOI: 10.1007/s10143-025-03515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Gliomas are the most common primary tumors of the central nervous system, and advances in genetics and molecular medicine have significantly transformed their classification and treatment. This study aims to predict the IDH1 genotype in gliomas using radiomics and machine learning (ML) methods. Retrospective data from 108 glioma patients were analyzed, including MRI data supported by demographic details such as age, sex, and comorbidities. Tumor segmentation was manually performed using 3D Slicer software, and 112 radiomic features were extracted with the PyRadiomics library. Feature selection using the mRMR algorithm identified 17 significant radiomic features. Various ML algorithms, including KNN, Ensemble, DT, LR, Discriminant and SVM, were applied to predict the IDH1 genotype. The KNN and Ensemble models achieved the highest sensitivity (92-100%) and specificity (100%), emerging as the most successful models. Comparative analyses demonstrated that KNN achieved an accuracy of 92.59%, sensitivity of 92.38%, specificity of 100%, precision of 100%, and an F1-score of 95.02%. Similarly, the Ensemble model achieved an accuracy of 90.74%, sensitivity of 90.65%, specificity of 100%, precision of 100%, and an F1-score of 95.13%. To evaluate their effectiveness, KNN and Ensemble models were compared with commonly used machine learning approaches in glioma classification. LR, a conventional statistical approach, exhibited lower predictive performance with an accuracy of 79.63%, while SVM, a frequently utilized ML model for radiomics-based tumor classification, achieved an accuracy of 85.19%. Our findings are consistent with previous research indicating that radiomics-based ML models achieve high accuracy in IDH1 mutation prediction, with reported performances typically exceeding 80%. These findings suggest that KNN and Ensemble models are more effective in capturing the non-linear radiomic patterns associated with IDH1 status, compared to traditional ML approaches. Our findings indicate that radiomic analyses provide comprehensive genotypic classification by assessing the entire tumor and present a safer, faster, and more patient-friendly alternative to traditional biopsies. This study highlights the potential of radiomics and ML techniques, particularly KNN, Ensemble, and SVM, as powerful tools for predicting the molecular characteristics of gliomas and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Asli Beril Karakas
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, 37200, Turkey.
| | - Figen Govsa
- Department of Anatomy, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mehmet Asim Ozer
- Department of Anatomy, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Biceroglu
- Department of Neurosurgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cenk Eraslan
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Deniz Tanir
- Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Li X, Song L, Zhang H, Ji X, Song P, Liu J, An P. Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study. World J Surg Oncol 2025; 23:104. [PMID: 40155892 PMCID: PMC11951543 DOI: 10.1186/s12957-025-03760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVE This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics. METHODS In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions. RESULTS The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01). CONCLUSION Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Lina Song
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Haidong Zhang
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xianqun Ji
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Ping Song
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Junjie Liu
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China.
| | - Peng An
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China.
| |
Collapse
|
3
|
Hexem E, Taha TAEA, Dhemesh Y, Baqar MA, Nada A. Deciphering glioblastoma: Unveiling imaging markers for predicting MGMT promoter methylation status. Curr Probl Cancer 2025; 54:101156. [PMID: 39531875 DOI: 10.1016/j.currproblcancer.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma, the most common primary malignant tumor of the central nervous system in adults, is also among the most lethal. Despite a comprehensive treatment approach which utilizes surgery and postoperative chemoradiation, prognosis typically remains dismal. However certain epigenetic modifications, such as methylation of the MGMT promoter, have been proven to correlate with improved post-treatment outcomes. The 2021 WHO classification emphasizes molecular characteristics, highlighting shared genomic alterations across different grades and positioning MGMT methylation as a key influencer of outcomes. A combined diagnostic approach involving current imaging technology and emerging radiomics and deep learning models may allow for timely and accurate prediction of MGMT methylation status and therefore earlier and more individualized treatment and prognostication. Though these advanced radiomics models are rapidly emerging, additional development, standardization, and implementation may lead to a higher and more individualized level of patient care. This review explores the potential of imaging features in predicting MGMT promoter methylation, a critical determinant of therapeutic response and patient outcomes.
Collapse
Affiliation(s)
- Eric Hexem
- University of Missouri-Columbia Diagnostic Radiology Department, Columbia, MO, United States
| | | | - Yaseen Dhemesh
- School of Medicine, Washington University in Saint Louis, St. Louis, MO, United States
| | - Mohammad Aneel Baqar
- University of Missouri-Columbia Diagnostic Radiology Department, Columbia, MO, United States
| | - Ayman Nada
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in Saint Louis, St. Louis, MO, United States.
| |
Collapse
|
4
|
Leone A, Di Napoli V, Fochi NP, Di Perna G, Spetzger U, Filimonova E, Angileri F, Carbone F, Colamaria A. Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI. Diagnostics (Basel) 2025; 15:251. [PMID: 39941181 PMCID: PMC11816478 DOI: 10.3390/diagnostics15030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter in gliomas has emerged as a critical biomarker for prognosis and treatment response. Conventional methods for assessing MGMT promoter methylation, such as methylation-specific PCR, are invasive and require tissue sampling. Methods: A comprehensive literature search was performed in compliance with the updated PRISMA 2020 guidelines within electronic databases MEDLINE/PubMed, Scopus, and IEEE Xplore. Search terms, including "MGMT", "methylation", "glioma", "glioblastoma", "machine learning", "deep learning", and "radiomics", were adopted in various MeSH combinations. Original studies in the English, Italian, German, and French languages were considered for inclusion. Results: This review analyzed 34 studies conducted in the last six years, focusing on assessing MGMT methylation status using radiomics (RD), deep learning (DL), or combined approaches. These studies utilized radiological data from the public (e.g., BraTS, TCGA) and private institutional datasets. Sixteen studies focused exclusively on glioblastoma (GBM), while others included low- and high-grade gliomas. Twenty-seven studies reported diagnostic accuracy, with fourteen achieving values above 80%. The combined use of DL and RD generally resulted in higher accuracy, sensitivity, and specificity, although some studies reported lower minimum accuracy compared to studies using a single model. Conclusions: The integration of RD and DL offers a powerful, non-invasive tool for precisely recognizing MGMT promoter methylation status in gliomas, paving the way for enhanced personalized medicine in neuro-oncology. The heterogeneity of study populations, data sources, and methodologies reflected the complexity of the pipeline and machine learning algorithms, which may require general standardization to be implemented in clinical practice.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
- Faculty of Human Medicine, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Veronica Di Napoli
- Department of Neurosurgery, University of Turin, 10124 Turin, Italy; (V.D.N.); (N.P.F.)
| | - Nicola Pio Fochi
- Department of Neurosurgery, University of Turin, 10124 Turin, Italy; (V.D.N.); (N.P.F.)
| | - Giuseppe Di Perna
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| | - Uwe Spetzger
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
| | - Elena Filimonova
- Department of Neuroradiology, Federal Neurosurgical Center, 630048 Novosibirsk, Russia;
| | - Flavio Angileri
- Department of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Francesco Carbone
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| | - Antonio Colamaria
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| |
Collapse
|
5
|
Yang X, Niu W, Wu K, Li X, Hou H, Tan Y, Wang X, Yang G, Wang L, Zhang H. Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas. Ann Clin Transl Neurol 2024; 11:2073-2087. [PMID: 38887966 PMCID: PMC11330218 DOI: 10.1002/acn3.52128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE High-risk types of diffuse gliomas in adults include isocitrate dehydrogenase (IDH) wild-type glioblastomas and grade 4 astrocytomas. Achieving noninvasive prediction of high-risk molecular subtypes of gliomas is important for personalized and precise diagnosis and treatment. METHODS We retrospectively collected data from 116 patients diagnosed with adult diffuse gliomas. Multiple high-risk molecular markers were tested, and various habitat models and whole-tumor models were constructed based on preoperative routine and diffusion kurtosis imaging (DKI) sequences to predict high-risk molecular subtypes of gliomas. Feature selection and model construction utilized Least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). Finally, the Wilcoxon rank-sum test was employed to explore the correlation between habitat quantitative features (intra-tumor heterogeneity score,ITH score) and heterogeneity, as well as high-risk molecular subtypes. RESULTS The results showed that the habitat analysis model based on DKI performed remarkably well (with AUC values reaching 0.977 and 0.902 in the training and test sets, respectively). The model's performance was further enhanced when combined with clinical variables. (The AUC values were 0.994 and 0.920, respectively.) Additionally, we found a close correlation between ITH score and heterogeneity, with statistically significant differences observed between high-risk and non-high-risk molecular subtypes. INTERPRETATION The habitat model based on DKI is an ideal means for preoperatively predicting high-risk molecular subtypes of gliomas, holding significant value for noninvasively alerting malignant gliomas and those with malignant transformation potential.
Collapse
Affiliation(s)
- Xiangli Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuan030032China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Wenju Niu
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Kai Wu
- Department of Information ManagementFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiang Li
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Heng Hou
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Yan Tan
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Wang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoqiang Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Lei Wang
- Beijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Hui Zhang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Intelligent Imaging Big Data and Functional Nano‐imaging Engineering Research Center of Shanxi ProvinceFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
6
|
Al-Rahbi A, Al-Mahrouqi O, Al-Saadi T. Uses of artificial intelligence in glioma: A systematic review. MEDICINE INTERNATIONAL 2024; 4:40. [PMID: 38827949 PMCID: PMC11140312 DOI: 10.3892/mi.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
Collapse
Affiliation(s)
- Adham Al-Rahbi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Omar Al-Mahrouqi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Tariq Al-Saadi
- Department of Neurosurgery, Khoula Hospital, Muscat 123, Sultanate of Oman
- Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Zheng F, Zhang L, Chen H, Zang Y, Chen X, Li Y. Radiomics for predicting MGMT status in cerebral glioblastoma: comparison of different MRI sequences. JOURNAL OF RADIATION RESEARCH 2024; 65:350-359. [PMID: 38650477 PMCID: PMC11115443 DOI: 10.1093/jrr/rrae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Indexed: 04/25/2024]
Abstract
Using radiomics to predict O6-methylguanine-DNA methyltransferase promoter methylation status in patients with newly diagnosed glioblastoma and compare the performances of different MRI sequences. Preoperative MRI scans from 215 patients were included in this retrospective study. After image preprocessing and feature extraction, two kinds of machine-learning models were established and compared for their performances. One kind was established using all MRI sequences (T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient), and the other kind was based on single MRI sequence as listed above. For the machine-learning model based on all sequences, a total of seven radiomic features were selected with the Maximum Relevance and Minimum Redundancy algorithm. The predictive accuracy was 0.993 and 0.750 in the training and validation sets, respectively, and the area under curves were 1.000 and 0.754 in the two sets, respectively. For the machine-learning model based on single sequence, the numbers of selected features were 8, 10, 10, 13, 9, 7 and 6 for T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient, respectively, with predictive accuracies of 0.797-1.000 and 0.583-0.694 in the training and validation sets, respectively, and the area under curves of 0.874-1.000 and 0.538-0.697 in the two sets, respectively. Specifically, T1-weighted image-based model performed best, while contrast enhancement-based model performed worst in the independent validation set. The machine-learning models based on seven different single MRI sequences performed differently in predicting O6-methylguanine-DNA methyltransferase status in glioblastoma, while the machine-learning model based on the combination of all sequences performed best.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
- Department of Radiology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Lingling Zhang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Hongyan Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yuying Zang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Xuzhu Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yiming Li
- Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| |
Collapse
|
8
|
Cui L, Qin Z, Sun S, Feng W, Hou M, Yu D. Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses. J Cancer Res Clin Oncol 2024; 150:132. [PMID: 38492096 PMCID: PMC10944436 DOI: 10.1007/s00432-024-05642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.
Collapse
Affiliation(s)
- Linyang Cui
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Radiology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China
| | - Zheng Qin
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Siyuan Sun
- Qilu Pharmaceutical Co., Ltd, Jinan, 250100, Shandong, China
| | - Weihua Feng
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mingyuan Hou
- Department of Imaging, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, Shandong, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
10
|
Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol 2024; 150:57. [PMID: 38291266 PMCID: PMC10827977 DOI: 10.1007/s00432-023-05566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of accurate non-invasive MGMT estimation on GBM patient care and treatment decisions. METHODS Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including PubMed, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize them into low-bias and high-bias groups. RESULTS By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as low-bias (73%), while 27% fell into the high-bias category. CONCLUSION Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while lowering the risk of bias in clinical decision-making.
Collapse
Affiliation(s)
- Mullapudi Venkata Sai Samartha
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management, Lucknow, 226013, India
| | - Biswajit Jena
- Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, 751030, India
| | - Gorantla Maheswar
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Wen-Cheng Lo
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
11
|
Zhang S, Yin L, Ma L, Sun H. Artificial Intelligence Applications in Glioma With 1p/19q Co-Deletion: A Systematic Review. J Magn Reson Imaging 2023; 58:1338-1352. [PMID: 37083159 DOI: 10.1002/jmri.28737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
As an important genomic marker for oligodendrogliomas, early determination of 1p/19q co-deletion status is critical for guiding therapy and predicting prognosis in patients with glioma. The purpose of this study is to systematically review the literature concerning the magnetic resonance imaging (MRI) with artificial intelligence (AI) methods for predicting 1p/19q co-deletion status in glioma. PubMed, Scopus, Embase, and IEEE Xplore were searched in accordance with the Preferred Reporting Items for systematic reviews and meta-analyses guidelines. Methodological quality of studies was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2. Finally, 28 studies were included in the quantitative analysis. Diagnostic test accuracy reached an area under the ROC curve of 0.71-0.98 were reported in 24 studies. The remaining four studies with no available AUC provided an accuracy of 0.75-0. 89. The included studies varied widely in terms of imaging sequences, input features, and modeling methods. The current review highlighted that integrating MRI with AI technology is a potential tool for determination 1p/19q status pre-operatively and noninvasively, which can possibly help clinical decision-making. However, the reliability and feasibility of this approach still need to be further validated and improved in a real clinical setting. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Tabassum M, Suman AA, Suero Molina E, Pan E, Di Ieva A, Liu S. Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review. Cancers (Basel) 2023; 15:3845. [PMID: 37568660 PMCID: PMC10417709 DOI: 10.3390/cancers15153845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.
Collapse
Affiliation(s)
- Mehnaz Tabassum
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Abdulla Al Suman
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Eric Suero Molina
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Department of Neurosurgery, University Hospital of Münster, 48149 Münster, Germany
| | - Elizabeth Pan
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| |
Collapse
|
13
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
14
|
Sha Y, Yan Q, Tan Y, Wang X, Zhang H, Yang G. Prediction of the Molecular Subtype of IDH Mutation Combined with MGMT Promoter Methylation in Gliomas via Radiomics Based on Preoperative MRI. Cancers (Basel) 2023; 15:cancers15051440. [PMID: 36900232 PMCID: PMC10001198 DOI: 10.3390/cancers15051440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The molecular subtype of IDH mut combined with MGMT meth in gliomas suggests a good prognosis and potential benefit from TMZ chemotherapy. The aim of this study was to establish a radiomics model to predict this molecular subtype. METHOD The preoperative MR images and genetic data of 498 patients with gliomas were retrospectively collected from our institution and the TCGA/TCIA dataset. A total of 1702 radiomics features were extracted from the tumour region of interest (ROI) of CE-T1 and T2-FLAIR MR images. Least absolute shrinkage and selection operator (LASSO) and logistic regression were used for feature selection and model building. Receiver operating characteristic (ROC) curves and calibration curves were used to evaluate the predictive performance of the model. RESULTS Regarding clinical variables, age and tumour grade were significantly different between the two molecular subtypes in the training, test and independent validation cohorts (p < 0.05). The areas under the curve (AUCs) of the radiomics model based on 16 selected features in the SMOTE training cohort, un-SMOTE training cohort, test set and independent TCGA/TCIA validation cohort were 0.936, 0.932, 0.916 and 0.866, respectively, and the corresponding F1-scores were 0.860, 0.797, 0.880 and 0.802. The AUC of the independent validation cohort increased to 0.930 for the combined model when integrating the clinical risk factors and radiomics signature. CONCLUSIONS radiomics based on preoperative MRI can effectively predict the molecular subtype of IDH mut combined with MGMT meth.
Collapse
Affiliation(s)
- Yongjian Sha
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Qianqian Yan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
15
|
Xie Z, Li J, Zhang Y, Zhou R, Zhang H, Duan C, Liu S, Niu L, Zhao J, Liu Y, Song S, Liu X. The diagnostic value of ADC histogram and direct ADC measurements for coexisting isocitrate dehydrogenase mutation and O6-methylguanine-DNA methyltransferase promoter methylation in glioma. Front Neurosci 2023; 16:1099019. [PMID: 36711137 PMCID: PMC9875074 DOI: 10.3389/fnins.2022.1099019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives To non-invasively predict the coexistence of isocitrate dehydrogenase (IDH) mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in adult-type diffuse gliomas using apparent diffusion coefficient (ADC) histogram and direct ADC measurements and compare the diagnostic performances of the two methods. Materials and methods A total of 118 patients with adult-type diffuse glioma who underwent preoperative brain magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) were included in this retrospective study. The patient group included 40 patients with coexisting IDH mutation and MGMT promoter methylation (IDHmut/MGMTmet) and 78 patients with other molecular status, including 32 patients with IDH wildtype and MGMT promoter methylation (IDHwt/MGMTmet), one patient with IDH mutation and unmethylated MGMT promoter (IDHmut/MGMTunmet), and 45 patients with IDH wildtype and unmethylated MGMT promoter (IDHwt/MGMTunmet). ADC histogram parameters of gliomas were extracted by delineating the region of interest (ROI) in solid components of tumors. The minimum and mean ADC of direct ADC measurements were calculated by placing three rounded or elliptic ROIs in solid components of gliomas. Receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC) were used to evaluate the diagnostic performances of the two methods. Results The 10th percentile, median, mean, root mean squared, 90th percentile, skewness, kurtosis, and minimum of ADC histogram analysis and minimum and mean ADC of direct measurements were significantly different between IDHmut/MGMTmet and the other glioma group (P < 0.001 to P = 0.003). In terms of single factors, 10th percentile of ADC histogram analysis had the best diagnostic efficiency (AUC = 0.860), followed by mean ADC obtained by direct measurements (AUC = 0.844). The logistic regression model combining ADC histogram parameters and direct measurements had the best diagnostic efficiency (AUC = 0.938), followed by the logistic regression model combining the ADC histogram parameters with statistically significant difference (AUC = 0.916) and the logistic regression model combining minimum ADC and mean ADC (AUC = 0.851). Conclusion Both ADC histogram analysis and direct measurements have potential value in predicting the coexistence of IDHmut and MGMTmet in adult-type diffuse glioma. The diagnostic performance of ADC histogram analysis was better than that of direct ADC measurements. The combination of the two methods showed the best diagnostic performance.
Collapse
Affiliation(s)
- Zhiyan Xie
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jixian Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizhi Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongfeng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Niu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiping Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuangshuang Song
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Shuangshuang Song,
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China,Xuejun Liu,
| |
Collapse
|
16
|
Wang H, Zhang S, Xing X, Yue Q, Feng W, Chen S, Zhang J, Xie D, Chen N, Liu Y. Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas. Cancer Med 2022; 12:2524-2537. [PMID: 36176070 PMCID: PMC9939206 DOI: 10.1002/cam4.5097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Gliomas with comutations of isocitrate dehydrogenase (IDH) genes and telomerase reverse transcriptase (TERT) gene promoter (IDHmut pTERTmut) show distinct biological features and respond to first-line treatment differently in comparison with other gliomas. This study aimed to characterize the IDHmut pTERTmut gliomas in multimodal MRI using the radiomic method and establish a precise diagnostic model identifying this group of gliomas. METHODS A total of 140 patients with untreated primary gliomas were admitted between 2016 and 2020 to West China Hospital as a discovery cohort, including 22 IDHmut pTERTmut patients. Thirty-four additional cases from a different hospital were included in the study as an independent validation cohort. A total of 3654 radiomic features were extracted from the preoperative multimodal MRI images (T1c, FLAIR, and ADC maps) and filtered in a data-driven approach. The discovery cohort was split into training and test sets by a 4:1 ratio. A diagnostic model (multilayer perceptron classifier) for detecting the IDHmut pTERTmut gliomas was trained using an automatic machine-learning algorithm named tree-based pipeline optimization tool (TPOT). The most critical radiomic features in the model were identified and visualized. RESULTS The model achieved an area under the receiver-operating curve (AUROC) of 0.971 (95% CI, 0.902-1.000), the sensitivity of 0.833 (95% CI, 0.333-1.000), and the specificity of 0.966 (95% CI, 0.931-1.000) in the test set. The area under the precision-recall curve (AUCPR) was 0.754 (95% CI, 0.572-0.833) and the F1 score was 0.833 (95% CI, 0.500-1.000). In the independent validation set, the model reached 0.952 AUROC, 0.714 sensitivity, 0.963 specificity, 0.841 AUCPR, and 0.769 F1 score. MR radiomic features of the IDHmut pTERTmut gliomas represented homogenous low-complexity texture in three modalities. CONCLUSIONS An accurate diagnostic model was constructed for detecting IDHmut pTERTmut gliomas using multimodal radiomic features. The most important features were associated with the homogenous simple texture of IDHmut pTERTmut gliomas in MRI images transformed using Laplacian of Gaussian and wavelet filters.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of NeurosurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuxin Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiang Xing
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qiang Yue
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Wentao Feng
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Siliang Chen
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Ni Chen
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yanhui Liu
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
17
|
Deng DB, Liao YT, Zhou JF, Cheng LN, He P, Wu SN, Wang WS, Zhou Q. Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features. Front Neurol 2022; 13:866274. [PMID: 35585843 PMCID: PMC9108285 DOI: 10.3389/fneur.2022.866274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To explore the feasibility of predicting overall survival (OS) of patients with midline glioma using multi-parameter magnetic resonance imaging (MRI) features. METHODS Data of 84 patients with midline gliomas were retrospectively collected, including 40 patients with OS > 12 months (28 cases were adults, 14 cases were H3 K27M-mutation) and 44 patients with OS < 12 months (29 cases were adults, 31 cases were H3 K27M-mutation). Features were extracted from the largest slice of tumors, which were manually segmented on T2-weighted (T2w), T2 fluid-attenuated inversion recovery (T2 FLAIR), and contrast-enhanced T1-weighted (T1c) images. Data were randomly divided into training (70%) and test cohorts (30%) and normalized and standardized using Z-scores. Feature dimensionality reduction was performed using the variance method and maximum relevance and minimum redundancy (mRMR) algorithm. We used the logistic regression algorithm to construct three models for T2w, T2 FLAIR, and T1c images as well as one combined model. The test cohort was used to evaluate the models, and receiver operating characteristic (ROC) curves, areas under the curve (AUCs), sensitivity, specificity, and accuracy were calculated. The nomogram of the combined model was built and evaluated using a calibration curve. Decision curve analysis (DCA) was used to evaluate the clinical application value of the four models. RESULTS A total of 1,316 features were extracted from T2w, T2 FLAIR, and T1c images, respectively. And then the best non-redundant features were selected from the extracted features using the variance method and mRMR. Finally, five features were extracted each from T2w, T2 FLAIR, and T1c images, and 12 features were extracted for the combined model. Four models were established using the optimal features. In the test cohort, the combined model performed the best out of all models. The AUCs of the T2w, T2 FLAIR, T1c, and combined models were 0.73, 0.78, 0.74, and 0.87, respectively, and accuracies were 0.72, 0.76, 0.72, and 0.84, respectively. The ROC curves and DCA showed that the combined model had the highest efficiency and most favorable clinical benefits. CONCLUSION The combined radiomics model based on multi-parameter MRI features provided a reliable non-invasive method for the prognostic prediction of midline gliomas.
Collapse
Affiliation(s)
- Da-Biao Deng
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong), Guangzhou, China
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | | | - Jiang-Fen Zhou
- Department of Neuro-Oncology of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Li-Na Cheng
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Peng He
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Sheng-Nan Wu
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wen-Sheng Wang
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong), Guangzhou, China
| |
Collapse
|
18
|
Advances in computed tomography-based prognostic methods for intracerebral hemorrhage. Neurosurg Rev 2022; 45:2041-2050. [DOI: 10.1007/s10143-022-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
19
|
Haubold J, Hosch R, Parmar V, Glas M, Guberina N, Catalano OA, Pierscianek D, Wrede K, Deuschl C, Forsting M, Nensa F, Flaschel N, Umutlu L. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers (Basel) 2021; 13:cancers13246186. [PMID: 34944806 PMCID: PMC8699054 DOI: 10.3390/cancers13246186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic accuracy of a radiomics analysis based on a fully automated segmentation and a simplified and robust MR imaging protocol to provide a comprehensive analysis of the genetic profile and grading of cerebral gliomas for everyday clinical use. METHODS MRI examinations of 217 therapy-naïve patients with cerebral gliomas, each comprising a non-contrast T1-weighted, FLAIR and contrast-enhanced T1-weighted sequence, were included in the study. In addition, clinical and laboratory parameters were incorporated into the analysis. The BraTS 2019 pretrained DeepMedic network was used for automated segmentation. The segmentations generated by DeepMedic were evaluated with 200 manual segmentations with a DICE score of 0.8082 ± 0.1321. Subsequently, the radiomics signatures were utilized to predict the genetic profile of ATRX, IDH1/2, MGMT and 1p19q co-deletion, as well as differentiating low-grade glioma from high-grade glioma. RESULTS The network provided an AUC (validation/test) for the differentiation between low-grade gliomas vs. high-grade gliomas of 0.981 ± 0.015/0.885 ± 0.02. The best results were achieved for the prediction of the ATRX expression loss with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for the prediction of IDH1/2. The prediction of 1p19q and MGMT achieved moderate results, with AUCs of 0.999 ± 0.005/0.711 ± 0.128 for 1p19q and 0.854 ± 0.046/0.742 ± 0.050 for MGMT. CONCLUSION This fully automated approach utilizing simplified MR protocols to predict the genetic profile and grading of cerebral gliomas provides an easy and efficient method for non-invasive tumor decoding.
Collapse
Affiliation(s)
- Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
- Correspondence: ; Tel.: +49-201-723-84528; Fax: +49-201-723-1548
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nika Guberina
- Department of Radiotherapy, University Hospital Essen, D-45147 Essen, Germany;
| | - Onofrio Antonio Catalano
- Department of Radiology, Division of Abdominal Imaging, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University Medical School, Boston 02114, MA, USA;
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Nils Flaschel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| |
Collapse
|
20
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
22
|
Xiong F, Wang Y, You T, Li HH, Fu TT, Tan H, Huang W, Jiang Y. The clinical classification of patients with COVID-19 pneumonia was predicted by Radiomics using chest CT. Medicine (Baltimore) 2021; 100:e25307. [PMID: 33761733 PMCID: PMC9282117 DOI: 10.1097/md.0000000000025307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/06/2021] [Indexed: 01/05/2023] Open
Abstract
In 2020, the new type of coronal pneumonitis became a pandemic in the world, and has firstly been reported in Wuhan, China. Chest CT is a vital component in the diagnostic algorithm for patients with suspected or confirmed COVID-19 infection. Therefore, it is necessary to conduct automatic and accurate detection of COVID-19 by chest CT.The clinical classification of patients with COVID-19 pneumonia was predicted by Radiomics using chest CT.From the COVID-19 cases in our institution, 136 moderate patients and 83 severe patients were screened, and their clinical and laboratory data on admission were collected for statistical analysis. Initial CT Radiomics were modeled by automatic machine learning, and diagnostic performance was evaluated according to AUC, TPR, TNR, PPV and NPV of the subjects. At the same time, the initial CT main features of the two groups were analyzed semi-quantitatively, and the results were statistically analyzed.There was a statistical difference in age between the moderate group and the severe group. The model cohort showed TPR 96.9%, TNR 99.1%, PPV98.4%, NPV98.2%, and AUC 0.98. The test cohort showed TPR 94.4%, TNR100%, PPV100%, NPV96.2%, and AUC 0.97. There was statistical difference between the two groups with grade 1 score (P = .001), the AUC of grade 1 score, grade 2 score, grade 3 score and CT score were 0.619, 0.519, 0.478 and 0.548, respectively.Radiomics' Auto ML model was built by CT image of initial COVID -19 pneumonia, and it proved to be effectively used to predict the clinical classification of COVID-19 pneumonia. CT features have limited ability to predict the clinical typing of Covid-19 pneumonia.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Ye Wang
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Tao You
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Han han Li
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Ting ting Fu
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Huibin Tan
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Weicai Huang
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| | - Yuanliang Jiang
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, Hubei, China
| |
Collapse
|