1
|
Gong Z, Faulkner ME, Akhonda MABS, Guo A, Bae J, Laporte JP, Church S, D'Agostino J, Bergeron J, Bergeron CM, Ferrucci L, Bouhrara M. White matter integrity and motor function: a link between cerebral myelination and longitudinal changes in gait speed in aging. GeroScience 2025; 47:1441-1454. [PMID: 39476324 PMCID: PMC11979058 DOI: 10.1007/s11357-024-01392-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/11/2024] [Indexed: 04/09/2025] Open
Abstract
Gait speed is a robust health biomarker in older adults, correlating with the risk of physical and cognitive impairments, including dementia. Myelination plays a crucial role in neurotransmission and consequently affects various functions, yet the connection between myelination and motor functions such as gait speed is not well understood. Understanding this link could offer insights into diagnosing and treating neurodegenerative diseases that impair mobility. This study analyzed 437 longitudinal observations from 138 cognitively unimpaired adults, aged 22 to 94 years, to investigate the relationship between myelin content and changes in gait speed over an average of 6.42 years. Myelin content was quantified using a novel multicomponent magnetic resonance relaxometry method, and both usual and rapid gait speeds (UGS, RGS) were measured following standard protocols. Adjusting for covariates, we found a significant fixed effect of myelin content on UGS and RGS. Longitudinally, lower myelin content was linked to a greater decline in UGS, particularly in brain regions associated with motor planning. These results suggest that changes in UGS may serve as a reliable marker of neurodegeneration, particularly in cognitively unimpaired adults. Interestingly, the relationship between myelin content and changes in RGS was only observed in a limited number of brain regions, although the reason for such local susceptibility remains unknown. These findings enhance our understanding of the critical role of myelination in gait performance in unimpaired adults and provide evidence of the interconnection between myelin content and motor function impairment.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Mohammad A B S Akhonda
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Sarah Church
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jarod D'Agostino
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jan Bergeron
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Gong Z, de Rouen A, Zhang N, Alisch JSR, Bilgel M, An Y, Bae J, Fox NY, Guo A, Resnick SM, Mazucanti C, Klistorner S, Klistorner A, Egan JM, Bouhrara M. Age-Related Differences in the Choroid Plexus Structural Integrity Are Associated with Changes in Cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323022. [PMID: 40061356 PMCID: PMC11888513 DOI: 10.1101/2025.02.27.25323022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The choroid plexus (CP) plays a critical role in maintaining central nervous system (CNS) homeostasis, producing cerebrospinal fluid, and regulating the entry of specific substances into the CNS from blood. CP dysfunction has been implicated in various neurological and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This study investigates the relationship between CP structural integrity and cognitive decline in normative aging, using structural and advanced magnetic resonance imaging techniques, including CP volume, diffusion tensor imaging indices (mean diffusivity, MD, and fractional anisotropy, FA) and relaxometry metrics (longitudinal, T1, and transverse, T2, relaxation times). Our results show that diminished CP microstructural integrity, as reflected by higher T1, T2, and MD values, or lower FA values, is associated with lower cognitive performance in processing speed and fluency. Notably, CP microstructural measures demonstrated greater sensitivity to cognitive decline than macrostructural measures, i.e. CP volume. Longitudinal analysis revealed that individuals with reduced CP structural integrity exhibit steeper cognitive decline over time. Furthermore, structural equation modeling revealed that a latent variable representing CP integrity predicts faster overall cognitive decline, with an effect size comparable to that of age. These findings highlight the importance of CP integrity in maintaining cognitive health and suggest that a holistic approach to assessing CP integrity could serve as a sensitive biomarker for early detection of cognitive decline. Further research is needed to elucidate the mechanisms underlying the relationship between CP structural integrity and cognitive decline and to explore the potential therapeutic implications of targeting CP function to prevent or treat age-related cognitive deficits.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Angelique de Rouen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan Zhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noam Y Fox
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Caio Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Kirk TF, McConnell FAK, Toner J, Craig MS, Carone D, Li X, Suzuki Y, Coalson TS, Harms MP, Glasser MF, Chappell MA. Arterial spin labelling perfusion MRI analysis for the Human Connectome Project Lifespan Ageing and Development studies. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00444. [PMID: 40084116 PMCID: PMC11905292 DOI: 10.1162/imag_a_00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The Human Connectome Project Lifespan studies cover the Development (5-21) and Aging (36-100+) phases of life. Arterial spin labelling (ASL) was included in the imaging protocol, resulting in one of the largest datasets collected to-date of high spatial resolution multiple delay ASL covering 3,000 subjects. The HCP-ASL minimal processing pipeline was developed specifically for this dataset to pre-process the image data and produce perfusion estimates in both volumetric and surface template space, though quality control is not performed. Applied to the whole dataset, the outputs of the pipeline revealed significant and expected differences in perfusion between the Development and Ageing cohorts. Visual inspection of the group average surface maps showed that cortical perfusion often followed cortical areal boundaries, suggesting differential regulation of cerebral perfusion within brain areas at rest. Group average maps of arterial transit time also showed differential transit times in core and watershed areas of the cerebral cortex, which are useful for interpreting haemodynamics of functional MRI images. The pre-processed dataset will provide a valuable resource for understanding haemodynamics across the human lifespan.
Collapse
Affiliation(s)
- Thomas F Kirk
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Quantified Imaging, London, UK
| | | | - Jack Toner
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Martin S Craig
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Quantified Imaging, London, UK
| | - Davide Carone
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xiufeng Li
- Centre for Magnetic Resonance Research, University of Minnesota, MN, USA
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Timothy S Coalson
- Departments of Radiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael A Chappell
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Quantified Imaging, London, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Gong Z, Bilgel M, An Y, Bergeron CM, Bergeron J, Zukley L, Ferrucci L, Resnick SM, Bouhrara M. Cerebral white matter myelination is associated with longitudinal changes in processing speed across the adult lifespan. Brain Commun 2024; 6:fcae412. [PMID: 39697833 PMCID: PMC11653079 DOI: 10.1093/braincomms/fcae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Myelin's role in processing speed is pivotal, as it facilitates efficient neural conduction. Its decline could significantly affect cognitive efficiency during ageing. In this work, myelin content was quantified using our advanced MRI method of myelin water fraction mapping. We examined the relationship between myelin water fraction at the time of MRI and retrospective longitudinal change in processing speed among 121 cognitively unimpaired participants, aged 22-94 years, from the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (a mean follow-up duration of 4.3 ± 6.3 years) using linear mixed-effects models, adjusting for demographics. We found that higher myelin water fraction values correlated with longitudinally better-maintained processing speed, with particularly significant associations in several white matter regions. Detailed voxel-wise analysis provided further insight into the specific white matter tracts involved. This research underscores the essential role of myelin in preserving processing speed and highlights its potential as a sensitive biomarker for interventions targeting age-related cognitive decline, thereby offering a foundation for preventative strategies in neurological health.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jan Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Linda Zukley
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 PMCID: PMC11951035 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Faulkner ME, Gong Z, Bilgel M, Laporte JP, Guo A, Bae J, Palchamy E, Kaileh M, Bergeron CM, Bergeron J, Church S, D’Agostino J, Ferrucci L, Bouhrara M. Evidence of association between higher cardiorespiratory fitness and higher cerebral myelination in aging. Proc Natl Acad Sci U S A 2024; 121:e2402813121. [PMID: 39159379 PMCID: PMC11363304 DOI: 10.1073/pnas.2402813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested. Among cognitively normal participants from two well-characterized studies spanning a wide age range, we assessed CRF operationalized as the maximum rate of oxygen consumption (VO2max) and myelin content defined by myelin water fraction (MWF) estimated through our advanced multicomponent relaxometry MRI method. We found significant positive correlations between VO2max and MWF across several white matter regions. Interestingly, the effect size of this association was higher in brain regions susceptible to early degeneration, including the frontal lobes and major white matter fiber tracts. Further, the interaction between age and VO2max exhibited i) a steeper positive slope in the older age group, suggesting that the association of VO2max with MWF is stronger at middle and older ages and ii) a steeper negative slope in the lower VO2max group, indicating that lower VO2max levels are associated with lower myelination with increasing age. Finally, the nonlinear pattern of myelin maturation and decline is VO2max-dependent with the higher VO2max group reaching the MWF peak at later ages. This study provides evidence of an interconnection between CRF and cerebral myelination and suggests therapeutic strategies for promoting brain health and attenuating white matter degeneration.
Collapse
Affiliation(s)
- Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD21224
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mary Kaileh
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | | | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Sarah Church
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jarod D’Agostino
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| |
Collapse
|
7
|
Li Y, Hou S, Li F, Long S, Yang Y, Li Y, Zhao L, Yu Y. Preoperative recovery sleep ameliorates postoperative cognitive dysfunction aggravated by sleep fragmentation in aged mice by enhancing EEG delta-wave activity and LFP theta oscillation in hippocampal CA1. Brain Res Bull 2024; 211:110945. [PMID: 38608544 DOI: 10.1016/j.brainresbull.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shaowei Hou
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Siwen Long
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yue Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
8
|
Alsameen MH, Gong Z, Qian W, Kiely M, Triebswetter C, Bergeron CM, Cortina LE, Faulkner ME, Laporte JP, Bouhrara M. C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter. Front Neurol 2023; 14:1205426. [PMID: 37602266 PMCID: PMC10435293 DOI: 10.3389/fneur.2023.1205426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Laporte JP, Faulkner ME, Gong Z, Akhonda MA, Ferrucci L, Egan JM, Bouhrara M. Hypertensive Adults Exhibit Lower Myelin Content: A Multicomponent Relaxometry and Diffusion Magnetic Resonance Imaging Study. Hypertension 2023; 80:1728-1738. [PMID: 37283066 PMCID: PMC10355798 DOI: 10.1161/hypertensionaha.123.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.
Collapse
Affiliation(s)
- John P. Laporte
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mohammad A.B.S. Akhonda
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch (L.F.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
10
|
Niu X, Guo Y, Chang Z, Li T, Chen Y, Zhang X, Ni H. The correlation between changes in gray matter microstructure and cerebral blood flow in Alzheimer's disease. Front Aging Neurosci 2023; 15:1205838. [PMID: 37333456 PMCID: PMC10272452 DOI: 10.3389/fnagi.2023.1205838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To investigate the relationship between changes in cerebral blood flow (CBF) and gray matter (GM) microstructure in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods A recruited cohort of 23 AD patients, 40 MCI patients, and 37 normal controls (NCs) underwent diffusional kurtosis imaging (DKI) for microstructure evaluation and pseudo-continuous arterial spin labeling (pCASL) for CBF assessment. We investigated the differences in diffusion- and perfusion-related parameters across the three groups, including CBF, mean diffusivity (MD), mean kurtosis (MK), and fractional anisotropy (FA). These quantitative parameters were compared using volume-based analyses for the deep GM and surface-based analyses for the cortical GM. The correlation between CBF, diffusion parameters, and cognitive scores was assessed using Spearman coefficients, respectively. The diagnostic performance of different parameters was investigated with k-nearest neighbor (KNN) analysis, using fivefold cross-validation to generate the mean accuracy (mAcc), mean precision (mPre), and mean area under the curve (mAuc). Results In the cortical GM, CBF reduction primarily occurred in the parietal and temporal lobes. Microstructural abnormalities were predominantly noted in the parietal, temporal, and frontal lobes. In the deep GM, more regions showed DKI and CBF parametric changes at the MCI stage. MD showed most of the significant abnormalities among all the DKI metrics. The MD, FA, MK, and CBF values of many GM regions were significantly correlated with cognitive scores. In the whole sample, the MD, FA, and MK were associated with CBF in most evaluated regions, with lower CBF values associated with higher MD, lower FA, or lower MK values in the left occipital lobe, left frontal lobe, and right parietal lobe. CBF values performed best (mAuc = 0.876) for distinguishing the MCI from the NC group. Last, MD values performed best (mAuc = 0.939) for distinguishing the AD from the NC group. Conclusion Gray matter microstructure and CBF are closely related in AD. Increased MD, decreased FA, and MK are accompanied by decreased blood perfusion throughout the AD course. Furthermore, CBF values are valuable for the predictive diagnosis of MCI and AD. GM microstructural changes are promising as novel neuroimaging biomarkers of AD.
Collapse
Affiliation(s)
- Xiaoxi Niu
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ying Guo
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tongtong Li
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuanyuan Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | | | - Hongyan Ni
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
11
|
Laporte JP, Faulkner ME, Gong Z, Palchamy E, Akhonda MA, Bouhrara M. Investigation of the association between central arterial stiffness and aggregate g-ratio in cognitively unimpaired adults. Front Neurol 2023; 14:1170457. [PMID: 37181577 PMCID: PMC10167487 DOI: 10.3389/fneur.2023.1170457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|