1
|
B Gowda SG, Shekhar C, Gowda D, Chen Y, Chiba H, Hui SP. Mass spectrometric approaches in discovering lipid biomarkers for COVID-19 by lipidomics: Future challenges and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:1041-1065. [PMID: 37102760 DOI: 10.1002/mas.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Bai X, Liu Y, Wang H, Zhang H. Natural Products from the Marine Sponge Subgenus Reniera. Molecules 2021; 26:1097. [PMID: 33669688 PMCID: PMC7922958 DOI: 10.3390/molecules26041097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are one of the prolific producers of bioactive natural products with therapeutic potential. As an important subgenus of Haliclona, Reniera sponges are mainly distributed in the Mediterranean Sea and Atlantic area, and had been chemically investigated for over four decades. By an extensive literature search, this review first makes a comprehensive summary of all natural products from Reniera sponges and their endozoic microbes, as well as biological properties. Perspectives on strengthening the chemical study of Reniera sponges for new drug-lead discovery are provided in this work.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.L.); (H.W.)
| | - Hao Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.L.); (H.W.)
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.L.); (H.W.)
| |
Collapse
|
3
|
Mi J, Han Y, Xu Y, Kou J, Li WJ, Wang JR, Jiang ZH. Deep Profiling of Immunosuppressive Glycosphingolipids and Sphingomyelins in Wild Cordyceps. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8991-8998. [PMID: 30059214 DOI: 10.1021/acs.jafc.8b02706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Deep profiling of glycosphingolipids and sphingomyelins in wild Cordyceps was carried out by using offline chromatographic enrichment followed by ultrahigh performance liquid chromatography-ultrahigh definition-quadrupole time-of-flight mass spectrometry (UHPLC-UHD-Q-TOF-MS). A total of 119 glycosphingolipids (72 new ones) and 87 sphingomyelins (43 new ones) were identified from wild Cordyceps on the basis of the accurate mass and MS/MS fragmentations, isotope patterns, sphingolipid (SPL) database matching, confirmation by SPL standards, and the reversed-phase liquid chromatographic retention rule. This study is the most comprehensive report on the identification of glycosphingolipids and sphingomyelins from fungus. A subsequent lipopolysaccharide-induced mouse splenic lymphocyte proliferation assay showed that the Cordyceps glycosphingolipid fraction exhibits higher immunosuppressive activity compared to that of Cordyceps sphingomyelins. Our findings provided insight into the chemical diversity of sphingolipids in Cordyceps and chemical evidence for the therapeutic application of wild Cordyceps.
Collapse
Affiliation(s)
- Jianing Mi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Macau , China
| | - Yuwei Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , 639 Longmian Road , Nanjing 211198 , China
| | - Yingqiong Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , 639 Longmian Road , Nanjing 211198 , China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , 639 Longmian Road , Nanjing 211198 , China
| | - Wen-Jia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine , China HEC Pharm Co. Ltd , Guangdong 523850 , China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Macau , China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Macau , China
- International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , China
| |
Collapse
|
4
|
Singh A, Del Poeta M. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Front Microbiol 2016; 7:501. [PMID: 27148190 PMCID: PMC4830811 DOI: 10.3389/fmicb.2016.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids form of a unique and complex group of bioactive lipids in fungi. Structurally, sphingolipids of fungi are quite diverse with unique differences in the sphingoid backbone, amide linked fatty acyl chain and the polar head group. Two of the most studied and conserved sphingolipid classes in fungi are the glucosyl- or galactosyl-ceramides and the phosphorylinositol containing phytoceramides. Comprehensive structural characterization and quantification of these lipids is largely based on advanced analytical mass spectrometry based lipidomic methods. While separation of complex lipid mixtures is achieved through high performance liquid chromatography, the soft - electrospray ionization tandem mass spectrometry allows a high sensitivity and selectivity of detection. Herein, we present an overview of lipid extraction, chromatographic separation and mass spectrometry employed in qualitative and quantitative sphingolipidomics in fungi.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| |
Collapse
|
5
|
Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z. Mass spectrometry methodology in lipid analysis. Int J Mol Sci 2014; 15:10492-507. [PMID: 24921707 PMCID: PMC4100164 DOI: 10.3390/ijms150610492] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.
Collapse
Affiliation(s)
- Lin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jian'an Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Shaoxiang Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| |
Collapse
|