1
|
Chileh-Chelh T, da Cunha-Chiamolera TPL, Urrestarazu M, Ezzaitouni M, López-Ruiz R, Nájera C, Rincón-Cervera MÁ, Guil-Guerrero JL. London Rocket ( Sisymbrium irio L.) as Healthy Green: Bioactive Compounds and Bioactivity of Plants Grown in Wild and Controlled Environments. Molecules 2024; 30:31. [PMID: 39795089 PMCID: PMC11721195 DOI: 10.3390/molecules30010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
London rocket (Sisymbrium irio) is a wild green consumed globally, yet its phytochemical composition remains underexplored. In this study, we analyzed the leaves of wild S. irio plants and those grown in controlled environments (GCE) with varying electrical conductivities (EC) and light spectra. Plants were assessed for growth, phenolic content, vitamin C, antioxidant activity, glucosinolates, and antiproliferative effects against HT-29 human colorectal cancer cells. The optimal biomass yield occurred at the EC levels of 3.0-3.5 dS m-1 under Valoya® LED light. Wild plants showed higher antioxidant activity (DPPH and ABTS assays) than GCE samples, with values of 8.03-8.67 and 6.49-6.81 mmol TE per 100 g dry weight, respectively. The vitamin C range was 50.7-84.3 and 84.5-186.9 mg 100 g-1 fresh weight for GCE and wild samples, respectively. Phenolic content was higher in wild plants than in the GCE ones, with apigetrin as the primary phenolic compound. The MTT assay showed that ethanol extracts from wild plants weakly inhibited HT-29 cell growth, with a GI50 of 210-380 µg mL-1 after 72 h of cells exposure to plant extracts. Principal Component Analysis suggested that EC and UV exposure increase the antioxidant activity, total phenolics, and glucosinolates in wild plants, offering insights into the bioactive profiles of S. irio leaves.
Collapse
Affiliation(s)
- Tarik Chileh-Chelh
- Food Technology Division, University of Almería, 04120 Almeria, Spain; (T.C.-C.); (M.E.); (M.Á.R.-C.)
| | | | - Miguel Urrestarazu
- Vegetal Production Division, University of Almería, 04120 Almeria, Spain; (T.P.L.d.C.-C.); (M.U.); (C.N.)
| | - Mohamed Ezzaitouni
- Food Technology Division, University of Almería, 04120 Almeria, Spain; (T.C.-C.); (M.E.); (M.Á.R.-C.)
| | - Rosalía López-Ruiz
- Department of Chemistry-Physics, Analytical Chemistry of Contaminants, University of Almería, 04120 Almeria, Spain;
| | - Cinthia Nájera
- Vegetal Production Division, University of Almería, 04120 Almeria, Spain; (T.P.L.d.C.-C.); (M.U.); (C.N.)
| | - Miguel Ángel Rincón-Cervera
- Food Technology Division, University of Almería, 04120 Almeria, Spain; (T.C.-C.); (M.E.); (M.Á.R.-C.)
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile
| | - José Luis Guil-Guerrero
- Food Technology Division, University of Almería, 04120 Almeria, Spain; (T.C.-C.); (M.E.); (M.Á.R.-C.)
| |
Collapse
|
2
|
Carlo MJ, Nanney ALM, Patrick AL. Energy-Resolved In-Source Collison-Induced Dissociation for Isomer Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2631-2641. [PMID: 39016059 DOI: 10.1021/jasms.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
While mass spectrometry remains a gold-standard tool for analyte detection, characterization, and quantitation, isomer differentiation is often a challenge. Tandem mass spectrometry is a common approach to increase the selectivity of mass spectrometry and energy-resolved measurements can provide further improvements. However, not all mass spectrometers, especially those that are very compact and affordable, are amenable to such experiments. For instance, single-stage mass spectrometers with soft ionization provide no dissociation information and quadrupole ion trap instruments with resonant excitation do not necessarily provide as informative of energy-resolved curves, for instance when extensive sequential dissociation is responsible for much of the "fingerprint". In-source collision-induced dissociation (IS-CID) is one approach to overcoming these barriers to exploit the analytical selectivity of energy-resolved CID without the need for additional instrumentation; this approach could broaden the reach of these selectivity gains to additional user bases (e.g., educational settings, field portable devices). Here, we specifically investigate energy-resolved IS-CID with the goal of (1) comparing between energy-resolved appearance curves measured with true tandem mass spectrometry on a quadrupole time-of-flight instrument and those obtained using IS-CID, (2) evaluating the approach as a means of differentiating isomers/isobar sets, especially those with similar dissociation patterns, and (3) exploring additional analytical considerations relevant to method development and implementation. This proof-of-concept work establishes the analytical potential of this approach, opening doors for future method development for specific applications.
Collapse
Affiliation(s)
- Matthew J Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Andie L M Nanney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
3
|
Alves MF, Katchborian-Neto A, Bueno PCP, Carnevale-Neto F, Casoti R, Ferreira MS, Murgu M, de Paula ACC, Dias DF, Soares MG, Chagas-Paula DA. LC-MS/DIA-based strategy for comprehensive flavonoid profiling: an Ocotea spp. applicability case. RSC Adv 2024; 14:10481-10498. [PMID: 38567345 PMCID: PMC10985591 DOI: 10.1039/d4ra01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
We introduce a liquid chromatography - mass spectrometry with data-independent acquisition (LC-MS/DIA)-based strategy, specifically tailored to achieve comprehensive and reliable glycosylated flavonoid profiling. This approach facilitates in-depth and simultaneous exploration of all detected precursors and fragments during data processing, employing the widely-used open-source MZmine 3 software. It was applied to a dataset of six Ocotea plant species. This framework suggested 49 flavonoids potentially newly described for these plant species, alongside 45 known features within the genus. Flavonols kaempferol and quercetin, both exhibiting O-glycosylation patterns, were particularly prevalent. Gas-phase fragmentation reactions further supported these findings. For the first time, the apigenin flavone backbone was also annotated in most of the examined Ocotea species. Apigenin derivatives were found mainly in the C-glycoside form, with O. porosa displaying the highest flavone : flavonol ratio. The approach also allowed an unprecedented detection of kaempferol and quercetin in O. porosa species, and it has underscored the untapped potential of LC-MS/DIA data for broad and reliable flavonoid profiling. Our study annotated more than 50 flavonoid backbones in each species, surpassing the current literature.
Collapse
Affiliation(s)
- Matheus Fernandes Alves
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Albert Katchborian-Neto
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Paula Carolina Pires Bueno
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) Theodor-Echtermeyer-Weg 1 14979 Großbeeren Germany
| | - Fausto Carnevale-Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington 850 Republican Street Seattle Washington 98109 USA
| | - Rosana Casoti
- Antibiotics Department, Federal University of Pernambuco 50670-901 Recife Pernambuco Brazil
| | - Miller Santos Ferreira
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Michael Murgu
- Waters Corporation Alameda Tocantins 125, Alphaville 06455-020 São Paulo Brazil
| | | | - Danielle Ferreira Dias
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | | |
Collapse
|
4
|
Maroto A, Fouque DJD, Lartia R, Memboeuf A. LC-MS accurate quantification of a tryptic peptide co-eluted with an isobaric interference by using in-source collisional purification. Anal Bioanal Chem 2023; 415:7211-7221. [PMID: 37864586 DOI: 10.1007/s00216-023-04989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Interferences from isobaric and isomeric compounds represent a common problem in liquid chromatography coupled to mass spectrometry (LC-MS). In this paper, in-source purification and chromatographic separation were combined with the aim of identifying isobaric contamination and quantifying accurately a compound despite the presence of an isobaric co-eluted interference. This is achieved by totally fragmenting in-source the precursor ions of the isobaric interference providing then LC-pseudo-MS2 capability, which allows an accurate quantification without the need for optimizing the chromatographic conditions to separate the co-eluted interference. To illustrate this concept, mixtures of tryptic and non-tryptic peptides were used. The ratio of peak areas of the tryptic peptide and its isotopically labelled internal standard was used not only for quantification with an internal standard calibration curve but also to know (1) if an isobaric interference co-eluted with the tryptic peptide; and (2) what is the minimum cone voltage necessary to ensure the complete removal of isobaric interference. This strategy was applied to quantify the tryptic peptide of two standards with known concentrations and, intentionally contaminated with the isobaric interference. The confidence intervals of the concentrations calculated with the internal standard calibration curve were 8.0 ± 0.5 μM (prepared at 8.0 μM) and 15.7 ± 0.5 μM (prepared at 16.1 μM) that confirm the tryptic peptide can be correctly quantified by in-source purification without the need for improving the chromatographic separation from its isobaric interference.
Collapse
Affiliation(s)
- Alicia Maroto
- Univ Brest, CNRS, UMR 6521 CEMCA, F-29200, Brest, France
| | | | - Rémy Lartia
- Univ Grenoble-Alpes, CNRS, UMR 5250 DCM, F-38058, Grenoble, France
| | | |
Collapse
|
5
|
Rodríguez EP, Li Y, Vaniya A, Shih PM, Fiehn O. Alternative Identification of Glycosides Using MS/MS Matching with an In Silico-Modified Aglycone Mass Spectra Library. Anal Chem 2023; 95:10618-10624. [PMID: 37390485 PMCID: PMC11493435 DOI: 10.1021/acs.analchem.3c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.
Collapse
Affiliation(s)
- Elys P Rodríguez
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Yuanyue Li
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Arpana Vaniya
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 97420, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Feng T, Pucker B, Kuang T, Song B, Yang Y, Lin N, Zhang H, Moore MJ, Brockington SF, Wang Q, Deng T, Wang H, Sun H. The genome of the glasshouse plant noble rhubarb (Rheum nobile) provides a window into alpine adaptation. Commun Biol 2023; 6:706. [PMID: 37429977 DOI: 10.1038/s42003-023-05044-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Glasshouse plants are species that trap warmth via specialized morphology and physiology, mimicking a human glasshouse. In the Himalayan alpine region, the highly specialized glasshouse morphology has independently evolved in distinct lineages to adapt to intensive UV radiation and low temperature. Here we demonstrate that the glasshouse structure - specialized cauline leaves - is highly effective in absorbing UV light but transmitting visible and infrared light, creating an optimal microclimate for the development of reproductive organs. We reveal that this glasshouse syndrome has evolved at least three times independently in the rhubarb genus Rheum. We report the genome sequence of the flagship glasshouse plant Rheum nobile and identify key genetic network modules in association with the morphological transition to specialized glasshouse leaves, including active secondary cell wall biogenesis, upregulated cuticular cutin biosynthesis, and suppression of photosynthesis and terpenoid biosynthesis. The distinct cell wall organization and cuticle development might be important for the specialized optical property of glasshouse leaves. We also find that the expansion of LTRs has likely played an important role in noble rhubarb adaptation to high elevation environments. Our study will enable additional comparative analyses to identify the genetic basis underlying the convergent occurrence of glasshouse syndrome.
Collapse
Affiliation(s)
- Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
- CeBiTec & Faculty of Biology, Bielefeld University, Universitaetsstrasse, Bielefeld, 33615, Germany
- Institute of Plant Biology & BRICS, TU Braunschweig, 38106, Braunschweig, Germany
| | - Tianhui Kuang
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Song
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, MN, 55108, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Michael J Moore
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Tao Deng
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Hang Sun
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
7
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
8
|
Mardani M, Badakné K, Farmani J, Shahidi F. Enzymatic lipophilization of bioactive compounds with high antioxidant activity: a review. Crit Rev Food Sci Nutr 2022; 64:4977-4994. [PMID: 36419380 DOI: 10.1080/10408398.2022.2147268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food products contain bioactive compounds such as phenolic and polyphenolic compounds and vitamins, resulting in a myriad of biological characteristics such as antimicrobial, anticarcinogenic, and antioxidant activities. However, their application is often restricted because of their relatively low solubility and stability in emulsions and oil-based products. Therefore, chemical, enzymatic, or chemoenzymatic lipophilization of these compounds can be achieved by grafting a non-polar moiety onto their polar structures. Among different methods, enzymatic modification is considered environmentally friendly and may require only minor downstream processing and purification steps. In recent years, different systems have been suggested to design the synthetic reaction of these novel products. This review presents the new trends in this area by summarizing the essential enzymatic modifications in the last decade that led to the synthesis of bioactive compounds with attractive antioxidative properties for the food industry by emphasizing on optimization of the reaction conditions to maximize the production yields. Lastly, recent developments regarding characterization, potential applications, emerging research areas, and needs are highlighted.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Liu G, Zhu W, Li S, Zhou W, Zhang H, Wang J, Liu X, Zhang J, Liang L, Xu X. Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil. Food Chem 2021; 376:131940. [PMID: 34968910 DOI: 10.1016/j.foodchem.2021.131940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
Endogenous phenols play a significant role in delaying oil rancidity. In this study, the profile of 22 endogenous phenols was determined from tea seed oil by UPLC-MS/MS, of which 15 phenols were identified for the first time. Then seven phenols with high content and strong antioxidant capacity were selected to investigate interaction using the DPPH· and Rancimat. It was found that the interaction of combinations was inconsistent in different media. Combined quercetin + esculetin, caffeoyl tartaric acid + esculetin, caffeoyl tartaric acid + gentisic acid and esculetin + gentisic acid showed synergistic antioxidant effects in oil and ethanol systems. Moreover, through the evaluation of the lipid oxidation process, combined esculetin + gentisic acid exhibited the greatest synergistic antioxidant effect. Notably, combined quercetin + esculetin had an inhibitory effect on the formation of volatile compounds. These findings may provide a basis for explaining the oxidation stability of tea seed oil.
Collapse
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Wenqi Zhu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Sitong Li
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Wanli Zhou
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, 225127 Yangzhou, Jiangsu Province, China.
| |
Collapse
|
10
|
Beszterda M, Frański R. Elucidation of glycosylation sites of kaempferol di-O-glycosides from methanolic extract of the leaves of Prunus domestica subsp. syriaca. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9100. [PMID: 33830532 DOI: 10.1002/rcm.9100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Flavonol glycosides containing the glycosylation patterns 3,4'-di-O and 4',7-di-O are rare in nature and they have not yet been studied in detail by electrospray ionization mass spectrometry (ESI-MS(+/-), in contrast to the flavonol glycosides containing the glycosylation pattern 3,7-di-O. METHOD The leaves from Prunus domestica L. subsp. syriaca were extracted with pure methanol or, in order to perform hydrolysis and extraction simultaneously, with a 5% methanolic solution of hydrochloric acid. The high-performance liquid chromatography (HPLC)/ESI-MS(+/-) analyses were performed using a Waters model 2690 HPLC pump and a Waters/Micromass ZQ2000 mass spectrometer. RESULTS Three kinds of kaempferol di-O-glycosides have been identified, namely kaempferol-3-O-hexoside-7-O-rhamnosides, kaempferol-3-O-pentoside-4'-O-rhamnosides and kaempferol 4',7-di-O-rhamnoside. The identification was performed on the basis of the abundances of the respective Y-type product ions. CONCLUSIONS The abundances of [Yn 0 - H]-· , Yn 0 - and Yn 0 + product ions were of crucial importance for the determination of glycosylation patterns. The obtained results can be useful for HPLC/ESI-MS identification of rare flavonol-di-O-glycosides.
Collapse
Affiliation(s)
- Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Mazowiecka 48, Poznań, 60-623, Poland
| | - Rafał Frański
- Faculty of Chemistry, Uniwersytetu Poznańskiego 8, Adam Mickiewicz University, Poznań, 61-614, Poland
| |
Collapse
|
11
|
Beszterda M, Frański R. Electrospray ionisation mass spectrometric behaviour of flavonoid 5-O-glucosides and their positional isomers detected in the extracts from the bark of Prunus cerasus L. and Prunus avium L. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:433-439. [PMID: 32929795 DOI: 10.1002/pca.2991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Literature data concerning the electrospray ionisation mass spectrometry (ESI-MS) behaviour of flavonoid 5-O-glycosides are poor and sometimes disputable. Therefore, we decided to analyse the compounds of this kind present in the bark of Prunus cerasus and Prunus avium by using high-performance liquid chromatography HPLC/ESI-MS. OBJECTIVE The aim of this study is to obtain the comprehensive information about the ESI-MS(+/-) behaviour of flavonoid 5-O-glucosides, to compare their behaviour with that of their positional isomers, to confirm that the known susceptibility of flavonoid 5-O-glucosides to hydrolysis may be successfully used for their identification. METHOD The bark from Prunus trees was extracted with pure methanol or, in order to perform hydrolysis and extraction simultaneously, with 5% methanolic solution of hydrochloric acid. The HPLC-ESI-MS analyses were performed using a Waters model 2690 HPLC pump and Waters/Micromass ZQ2000 mass spectrometer. RESULTS Flavonoid 5-O-glycosides were completely hydrolysed under the acid conditions used, in contrast to their positional isomers. In positive ion mode, at low cone voltage, flavonoid 5-O-glycosides yield abundant Y0 + aglycone ions, in contrast to their positional isomers. In the negative ion mode, flavonoid 5-O-glycosides do not yield [Y0 - H]-· fragment ions, in contrast to their positional isomers. When aglycone contains only two hydroxyl groups, the flavonoid 5-O-glycosides can be detected in negative ion mode, whereas their positional isomers do not yield [M - H]- ions. CONCLUSION It has been demonstrated that the susceptibility to hydrolysis of the analysed compounds, the abundances of respective fragment ions formed, and their ESI(-) response allow unambiguous identification of flavonoid 5-O-glycosides and their differentiation from their positional isomers.
Collapse
Affiliation(s)
- Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
Jeanne Dit Fouque D, Maroto A, Memboeuf A. Structural analysis of a compound despite the presence of an isobaric interference by using in-source Collision Induced Dissociation and tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4698. [PMID: 33480458 DOI: 10.1002/jms.4698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The presence of an isobaric contaminant can drastically affect MS and MS/MS patterns leading to erroneous structural and quantitative analysis, which is a real challenge in mass spectrometry. Herein, we demonstrate that MS and MS/MS structural analysis of a compound can be successfully performed despite the presence of an isobaric interference with as low as few millidaltons mass difference by using pseudo-MS3 . To this end, in-source collisional excitation (in-source CID) and the Survival Yield (SY) technique (energy-resolved collision induced dissociation MS/MS) were performed on two different source geometries: a Z-spray and an orthogonal spray (with a transfer capillary) ionization sources on two different mass spectrometers. By using soft ionization conditions, the SY curve for the mixture is a linear combination of the SY curves from the pure compounds demonstrating the presence of two components in the mixture. In the case of harsher ionization conditions, the SY curve of the mixture perfectly overlaps the SY curve from the pure analyte. This observation demonstrates the isobaric interference has been completely removed by in-source CID fragmentation, independently of the source design, leaving then the analyte precursor ions only. Therefore, by measuring the MS spectrum in harsh ionization conditions and according to SY criterium, the compound of interest can be made free from isobaric interference paving the way for, for example, unequivocal HPLC-MS as well as HPLC-MS/MS structural and quantitative analysis despite the presence of a co-eluting isobaric interference.
Collapse
Affiliation(s)
| | - Alicia Maroto
- Univ Brest, UMR UBO-CNRS 6521, Brest, F-29200, France
| | | |
Collapse
|
13
|
Al Othaim A, Marasini D, Carbonero F. Impact of increasing concentration of tart and sweet cherries juices concentrates on healthy mice gut microbiota. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ayoub Al Othaim
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas
- Department of Medical Laboratories College of Applied Medical Sciences Majmaah University Al‐Majmaah Saudi Arabia
| | - Daya Marasini
- Department of Food Science University of Arkansas Fayetteville Arkansas
- Weems Design Studio Inc. Suwanee Georgia
| | - Franck Carbonero
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas
- Department of Food Science University of Arkansas Fayetteville Arkansas
- Department of Nutrition and Exercise Physiology Elson Floyd School of Medicine Washington State University–Spokane Spokane Washington
| |
Collapse
|
14
|
Carneiro AM, Moreira EA, Bragagnolo FS, Borges MS, Pilon AC, Rinaldo D, Funari CS. Soya agricultural waste as a rich source of isoflavones. Food Res Int 2020; 130:108949. [PMID: 32156391 DOI: 10.1016/j.foodres.2019.108949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022]
Abstract
Soybeans are among the world's major crops responsible for food and biodiesel production, as well as a major source of isoflavones - a class of high value-added bioactive compounds. As estimated 460 million tonnes of soya residues (branches, leaves, roots, and pods) will be produced in the 2018/2019 harvest, and 20-40% of this waste must be removed from the field to ensure soil quality and minimize environmental impacts. This work investigated the potential occurrence and content of isoflavones in soya agricultural waste collected directly from the ground after mechanically harvesting. We also assessed the extraction performances of ethanol and acetone for these materials as an alternative to acetonitrile, a problematic solvent from an environmental point of view. Considerable amounts of isoflavones were found in soya agricultural waste collected directly from the ground when compared to soybeans (2.71 ± 0.27, 0.57 ± 0.1, 0.30 ± 0.05 and 2.09 ± 0.24 kg of isoflavones/tonne of leaves, branches, pods, and soybeans, respectively). The greener ethanol and acetone performed well for a broad range of compounds. This is an example in which appreciable amounts of high value-added compounds are wasted. Since isoflavones are considered phytoestrogens, their recovery from part of this waste might avoid potential contamination of soil and groundwater.
Collapse
Affiliation(s)
| | - Eduarda Antunes Moreira
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Maiara Stefanini Borges
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Rinaldo
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Cristiano Soleo Funari
- UNESP - São Paulo State University, Faculty of Agricultural Sciences, Botucatu, São Paulo, Brazil.
| |
Collapse
|
15
|
Wang X, Li P, Liu X, Liu Y, Zhang Q, Zhang L, Matthäus B. Detection of Edible Plant Oil Adulteration by Triacylglycerol Profiles Using an Atmospheric Pressure Chemical Ionization Source and MS
3
Ion Trap Mass Spectrometry. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiupin Wang
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
- National Reference Laboratory for Agricultural Testing (Mycotoxin)Wuhan430062China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)Ministry of AgricultureWuhan430062China
| | - Peiwu Li
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
- Key laboratory of Detection for MycotoxinsMinistry of AgricultureWuhan430062China
- National Reference Laboratory for Agricultural Testing (Mycotoxin)Wuhan430062China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)Ministry of AgricultureWuhan430062China
| | - Xia Liu
- College of Food Science and TechnologyHunan Agricultural UniversityHunan Province Key Laboratory of Food Science and BiotechnologyChangshaHunan 410128China
| | - Youqian Liu
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)Ministry of AgricultureWuhan430062China
- College of Food Science and TechnologyHunan Agricultural UniversityHunan Province Key Laboratory of Food Science and BiotechnologyChangshaHunan 410128China
| | - Qi Zhang
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
- Key laboratory of Detection for MycotoxinsMinistry of AgricultureWuhan430062China
- National Reference Laboratory for Agricultural Testing (Mycotoxin)Wuhan430062China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)Ministry of AgricultureWuhan430062China
| | - Liangxiao Zhang
- Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhan430062China
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
- Key laboratory of Detection for MycotoxinsMinistry of AgricultureWuhan430062China
- National Reference Laboratory for Agricultural Testing (Mycotoxin)Wuhan430062China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan)Ministry of AgricultureWuhan430062China
| | - Bertrand Matthäus
- Max Rubner‐InstitutFederal Research Institute of Nutrition and Food12, Schützenberg32756DetmoldGermany
| |
Collapse
|
16
|
Pilon AC, Gu H, Raftery D, Bolzani VDS, Lopes NP, Castro-Gamboa I, Carnevale Neto F. Mass Spectral Similarity Networking and Gas-Phase Fragmentation Reactions in the Structural Analysis of Flavonoid Glycoconjugates. Anal Chem 2019; 91:10413-10423. [PMID: 31313915 DOI: 10.1021/acs.analchem.8b05479] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Flavonoids represent an important class of natural products with a central role in plant physiology and human health. Their accurate annotation using untargeted mass spectrometry analysis still relies on differentiating similar chemical scaffolds through spectral matching to reference library spectra. In this work, we combined molecular network analysis with rules for fragment reactions and chemotaxonomy to enhance the annotation of similar flavonoid glyconjugates. Molecular network topology progressively propagated the flavonoid chemical functionalization according to collision-induced dissociation (CID) reactions, as the following chemical attributes: aglycone nature, saccharide type and number, and presence of methoxy substituents. This structure-based distribution across the spectral networks revealed the chemical composition of flavonoids across intra- and interspecies and guided the putatively assignment of 64 isomers and isobars in the Chrysobalanaceae plant species, most of which are not accurately annotated by automated untargeted MS2 matching. These proof of concept results demonstrate how molecular networking progressively grouped structurally related molecules according to their product ion scans, abundances, and ratios. The approach can be extrapolated to other classes of metabolites sharing similar structures and diagnostic fragments from tandem mass spectrometry.
Collapse
Affiliation(s)
- Alan Cesar Pilon
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista (UNESP) , Araraquara 14800-900 , São Paulo , Brazil.,Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto 14040-903 , São Paulo Brazil
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine , University of Washington , 850 Republican Street , Seattle , Washington 98109 , United States.,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation , East China Institute of Technology , Nanchang , Jiangxi Province 330013 , People's Republic of China
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine , University of Washington , 850 Republican Street , Seattle , Washington 98109 , United States.,Public Health Sciences Division , Fred Hutchinson Cancer Research Center , Seattle , Washington 98109 , United States
| | - Vanderlan da Silva Bolzani
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista (UNESP) , Araraquara 14800-900 , São Paulo , Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto 14040-903 , São Paulo Brazil
| | - Ian Castro-Gamboa
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista (UNESP) , Araraquara 14800-900 , São Paulo , Brazil
| | - Fausto Carnevale Neto
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista (UNESP) , Araraquara 14800-900 , São Paulo , Brazil.,Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto 14040-903 , São Paulo Brazil.,Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine , University of Washington , 850 Republican Street , Seattle , Washington 98109 , United States
| |
Collapse
|
17
|
Liu X, Fan X, Wang X, Liu R, Meng C, Wang C. Structural characterization and screening of chemical markers of flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2019; 171:52-64. [PMID: 30965221 DOI: 10.1016/j.jpba.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
In traditional Chinese medicine, Lysimachiae Herba (LH) and Desmodii Styracifolii Herba (DSH) have been widely used for the treatment of calculi, but there is a certain focus in clinical application. Flavonoids as their pharmacologically active substances were focusly studied to make clear of their chemical compositions and reveal the similarities and differences between LH and DHS by analysis of characteristic marker components at the molecular level. An ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) approach based on metabolite profiling was established. The high-resolution data was acquired through data dependent acquisition (DDA) mode. Based on the targeted and untargeted analytical strategies, a total of 113 compounds were identified, of which 80 compounds existed in LH and 61 in DSH. Then multivariate statistical analysis was applied to further find the characteristic marker components, and a total number of 21 variables were screened as the valuable variables for discrimination. By matching with identified flavonoids, these 21 variables were corresponding to 15 flavonoids (including 6 from LH and 9 from DSH) which were firstly identified as the marker compounds. These results indicated that the UPLC-QTOF-MS/MS method with analysis strategy was a powerful tool for rapidly identification and screening of marker compounds of flavonoids between LH and DSH, and the 15 screened marker compounds provide a chemical basis for the further researches on the mechanisms of LH and DSH in the treatment of cholelithiasis and nephrolithiasis respectively.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xueyan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xin Wang
- Pharmacy Department, Affiliated Hospital of Hebei University, 212 East Yuhua Road, Baoding, Hebei 071000, PR China
| | - Ruina Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Caifeng Meng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Chunying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
18
|
Wang Y, Zhang B, Zhang J, Tian X, Sun D, Li Q, Wang R. Qualitative and quantitative analysis of Yifei Tongluo granules to identify main bioactive components using LC–DAD/MS and pharmacokinetic studies. J Pharm Biomed Anal 2019; 163:130-136. [DOI: 10.1016/j.jpba.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
19
|
Gómez JD, Vital CE, Oliveira MGA, Ramos HJO. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS One 2018; 13:e0205010. [PMID: 30281662 PMCID: PMC6169965 DOI: 10.1371/journal.pone.0205010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/18/2018] [Indexed: 12/05/2022] Open
Abstract
Attack by herbivores is a major biotic stress limiting the soybean crop production. Plant defenses against caterpillars include the production of secondary metabolites such as flavonoids, which constitute a diverse group of plant secondary metabolites. Thus, a more discriminate metabolic profiling between genotypes are important for a more comprehensive and reliable characterization of soybean resistance. Therefore, in this study a non-targeted LC/MS-based for analysis of flavonoid profiles of soybean genotypes contrasting to the resistance to A. gemmatalis was applied. Clustering analysis revealed profiles highly distinct between the susceptible UFV 105 AP and the resistant IAC 17 genotypes. This comparative approach enables to identify directly from leaf extract some new compounds related to resistance, some of which were present in higher abundance specifically in the IAC 17 genotype: four Quercetin conjugates, Rutin (Quercetin 3-O-Rutinoside), Quercetin-3,7-O- di-glucoside, Quercetin-3-O-rhamnosylglycoside-7-O-glucoside and Quercetin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside; two Genistein conjugates, Genistein-7-O-diglucoside-dimalonylated and Genistein-7-O-6-O-malonylglucoside; and one Daidzein conjugate, Daidzein-7-O-Glucoside-malonate. The most abundant flavonoid glycoconjugates in soybean leaves belongs to Quercetin and Kaempferol classes. However, only one from the identified compounds was classified as a Kaempferol. The Kaempferol-3-O-L-rhamnopyranosyl-glucopyranoside showed high abundance in the resistant genotype IAC 17. The metabolic profiles generated by LC/MS allowed the reconstruction of the flavonoid biosynthetic pathways, which revealed a constitutive character for herbivory resistance in the resistant genotype IAC-17 and a metabolic regulation for the rechanneling of Quercetin, Kaempferol and Genistein conjugates in soybean. Highest relative abundances were detected for glyconjugates, such as Rutin, Quercetin 3-O-rhamnosylglycoside-7-O-glucoside and Quercitin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside in the leaves of the resistant genotype.
Collapse
Affiliation(s)
- Jenny D. Gómez
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology, Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Viçosa-MG, Brazil
| | - Camilo E. Vital
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Maria G. A. Oliveira
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology, Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Viçosa-MG, Brazil
| | - Humberto J. O. Ramos
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology, Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Viçosa-MG, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| |
Collapse
|
20
|
Münger LH, Boulos S, Nyström L. UPLC-MS/MS Based Identification of Dietary Steryl Glucosides by Investigation of Corresponding Free Sterols. Front Chem 2018; 6:342. [PMID: 30186828 PMCID: PMC6113793 DOI: 10.3389/fchem.2018.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022] Open
Abstract
Dietary plant foods are characterized by a vast molecular diversity of glycosylated sterols (SG) that differ in the structure of the steryl backbone. The identification of these polar steryl conjugates represents a major challenge as they are structurally highly similar, and commercial standards are limited to a few naturally abundant species. Spectral databases do not yet contain MS/MS spectra of these sterol conjugates obtained by electrospray ionization (ESI), which would facilitate their reliable identification. Thus, this study aimed at providing novel information on ESI-MS/MS spectra of both abundant and minor SG found in foods. As a first step, however, free sterols (FS) were investigated for their fragmentation behavior as they share the same intermediate ion as SG. Pure SG were obtained from commercially available standard mixtures and minor SG were extracted from different food sources (oat bran, wheat bran, pumpkin seeds, melon, rapeseeds, and potato peel). ESI-MS/MS spectra of 15 FS were assessed and fragment ions reflective of structural features were identified and rationalized. Subsequently, 14 SG were identified at four different levels, while relative retention times from chromatographic separation and spectral features of FS served to identify five SG. Spectral data from FS were directly transferable to SG when analyzed as aglycone ions as shown by similarity scores while SG were characterized by shorter retention times in reverse phase chromatography and the additional analysis as sodiated adduct confirmed their glycosidic nature. Moreover, we report for the first time the occurrence of 24-methylenecholesterol and a 4-monomethyl sterol as glycosidic conjugates in higher plants. The presented data will serve as a valuable tool for SG profiling of foods by facilitating their identification.
Collapse
Affiliation(s)
- Linda H Münger
- Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Samy Boulos
- Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Laura Nyström
- Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Bustamante-Rangel M, Delgado-Zamarreño MM, Pérez-Martín L, Rodríguez-Gonzalo E, Domínguez-Álvarez J. Analysis of Isoflavones in Foods. Compr Rev Food Sci Food Saf 2018; 17:391-411. [DOI: 10.1111/1541-4337.12325] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Myriam Bustamante-Rangel
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - María Milagros Delgado-Zamarreño
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Lara Pérez-Martín
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Encarnación Rodríguez-Gonzalo
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Javier Domínguez-Álvarez
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| |
Collapse
|
22
|
Masike K, Madala N. Synchronized Survey Scan Approach Allows for Efficient Discrimination of Isomeric and Isobaric Compounds during LC-MS/MS Analyses. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:2046709. [PMID: 29805830 PMCID: PMC5901820 DOI: 10.1155/2018/2046709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/28/2018] [Indexed: 05/10/2023]
Abstract
Liquid chromatography-mass spectrometry- (LC-MS-) based multiple reaction monitoring (MRM) methods have been used to detect and quantify metabolites for years. These approaches rely on the monitoring of various fragmentation pathways of multiple precursors and the subsequent corresponding product ions. However, MRM methods are incapable of confidently discriminating between isomeric and isobaric molecules and, as such, the development of methods capable of overcoming this challenge has become imperative. Due to increasing scanning rates of recent MS instruments, it is now possible to operate MS instruments both in the static and dynamic modes. One such method is known as synchronized survey scan (SSS), which is capable of acquiring a product ion scan (PIS) during MRM analysis. The current study shows, for the first time, the use of SSS-based PIS approach as a feasible identification feature of MRM. To achieve the above, five positional isomers of dicaffeoylquinic acids (diCQAs) were studied with the aid of SSS-based PIS method. Here, the MRM transitions were automatically optimized using a 3,5-diCQA isomer by monitoring fragmentation transitions common to all five isomers. Using the mixture of these isomers, fragmentation spectra of the five isomers achieved with SSS-based PIS were used to identify each isomer based on previously published hierarchical fragmentation keys. The optimized method was also used to detect and distinguish between diCQA components found in Bidens pilosa and their isobaric counterparts found in Moringa oleifera plants. Thus, the method was shown to distinguish (by differences in fragmentation patterns) between diCQA and their isobars, caffeoylquinic acid (CQA) glycosides. In conclusion, SSS allowed the detection and discrimination of isomeric and isobaric compounds in a single chromatographic run by producing a PIS spectrum, triggered in the automatic MS/MS synchronized survey scan mode.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
23
|
Akimoto N, Ara T, Nakajima D, Suda K, Ikeda C, Takahashi S, Muneto R, Yamada M, Suzuki H, Shibata D, Sakurai N. FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry. Sci Rep 2017; 7:1243. [PMID: 28455528 PMCID: PMC5430893 DOI: 10.1038/s41598-017-01390-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.
Collapse
Affiliation(s)
- Nayumi Akimoto
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Takeshi Ara
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan.,Kyoto University, Graduate School of Agriculture, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Daisuke Nakajima
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Kunihiro Suda
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Chiaki Ikeda
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Shingo Takahashi
- Kyoto University, Graduate School of Agriculture, Gokasho, Uji, Kyoto, 611-0011, Japan.,KAGOME CO., LTD., Nishitomiyama 17, Nasushiobara, Tochigi, 329-2762, Japan
| | - Reiko Muneto
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Manabu Yamada
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan.
| |
Collapse
|
24
|
|
25
|
Nagy Á, Abrankó L. Profiling of hydroxycinnamoylquinic acids in plant extracts using in-source CID fragmentation. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1130-1145. [PMID: 27591562 DOI: 10.1002/jms.3847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Hydroxycinnamoylquinic acids (HCQAs) are a major class of phenolic plant secondary metabolites, belonging to the chlorogenic acid family. Various health-beneficial properties of HCQAs have been shown, which has drawn interest for HCQA profiling in plants of human consumption. However, this task remains challenging, because several isomeric HCQAs can be present in the sample with identical molecular formulae and the limited availability of reference standards poses additional challenges to their identification. In the present work, a high performance liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (HPLC-ESI-Q/TOF-MS) method accompanied with an effective data filtering protocol is presented, which is shown to be suitable for the identification of HCQAs in plant materials in a non-targeted manner. Both collision-induced dissociation (CID) fragmentation performed in a collision cell and in-source (CID) fragmentation were used to produce accurate mass fragments. It was shown that fragmentation characteristics required for identification of regio-isomers of HCQAs can be achieved with in-source CID fragmentation, enabling the use of a single-stage MS system with in-source fragmentation for convincing identification of HCQAs. Based on a thorough validation of identified HCQA compounds using coffee bean extracts as reference samples, comprehensive profiling of HCQAs in two apricot (Prunus armeniaca L.) genotypes ('Preventa' and 'Gönci magyarkajszi') was carried out for the first time and the following 10 HCQAs were shown to be present in apricot fruit: 3-caffeoylquinic acid (CQA), cis-3-CQA, 4-CQA, 5-CQA, cis-5-CQA, 3,5-diCQA, 3-p-coumaroylquinic acid (pCoQA), 4-pCoQA, 3-feruloylquinic acid (FQA) and cis-3-FQA. Copyright © 2016 John Wiley & Sons, Ltd. HIGHLIGHTS An HPLC-ESI-Q/TOF-MS method suitable for the identification of hydroxycinnamoyilquinic acids (HCQAs) in plant material in a non-targeted manner was developed. Single-stage, high-resolution MS system with in-source fragmentation was shown to be suitable for convincing identification of HCQAs. Comprehensive profiling of HCQAs in two apricot (Prunus armeniaca L.) genotypes was carried out for the first time. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ádám Nagy
- Szent István University, Faculty of Food Science, Department of Applied Chemistry, 29-43 Villányi út, H-1118, Budapest, Hungary
| | - László Abrankó
- Szent István University, Faculty of Food Science, Department of Applied Chemistry, 29-43 Villányi út, H-1118, Budapest, Hungary
| |
Collapse
|
26
|
Kachlicki P, Piasecka A, Stobiecki M, Marczak Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016; 21:E1494. [PMID: 27834838 PMCID: PMC6273528 DOI: 10.3390/molecules21111494] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/05/2022] Open
Abstract
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material including flavonoid glycoconjugates. Resolution of the applied mass spectrometers plays an important role in structural studies of mixtures of the target compounds isolated from biological material. High-resolution analyzers allow obtaining information about elemental composition of the analyzed compounds. Application of various mass spectrometric techniques, including different systems of ionization, analysis of both positive and negative ions of flavonoids, fragmentation of the protonated/deprotonated molecules and in some cases addition of metal ions to the studied compounds before ionization and fragmentation, may improve structural characterization of natural products. In our review we present different strategies allowing structural characterization of positional isomers and isobaric compounds existing in class of flavonoid glycoconjugates and their derivatives, which are synthetized in plants and are important components of the human food and drugs as well as animal feed.
Collapse
Affiliation(s)
- Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
27
|
Rapid identification of bile acids in snake bile using ultrahigh-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:157-169. [DOI: 10.1016/j.jchromb.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 10/09/2016] [Indexed: 02/04/2023]
|
28
|
Geng P, Sun J, Zhang M, Li X, Harnly JM, Chen P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMS n and mass defect filtering. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:914-930. [PMID: 27373213 PMCID: PMC5067219 DOI: 10.1002/jms.3803] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/25/2023]
Abstract
A comprehensive characterization of C-glycosyl flavones in wheat germ has been conducted using multi-stage high resolution mass spectrometry (HRMSn ) in combination with a mass defect filtering (MDF) technique. MDF performed the initial search of raw data with defined C-glycosyl flavone mass windows and mass defect windows to generate the noise-reduced data focusing on targeted flavonoids. The high specificity of the exact mass measurement permits the unambiguous discrimination of acyl groups (nominal masses of 146, 162 and 176.) from sugar moieties (rhamnose, glucose or galactose and glucuronic acid). A total of 72 flavone C-glycosyl derivatives, including 2 mono-C-glycosides, 34 di-C-glycosides, 15 tri-glycosides, 14 acyl di-C-glycosides and 7 acyl tri-glycosides, were characterized in wheat germ, some of which were considered to be important marker compounds for differentiation of whole grain and refined wheat products. The 7 acylated mono-O-glycosyl-di-C-glycosyl flavones and some acylated di-C-glycosyl flavones are reported in wheat for the first time. The frequent occurrence of numerous isomers is a remarkable feature of wheat germ flavones. Both UV and mass spectra are needed to maximize the structure information obtained for data interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ping Geng
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jianghao Sun
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Mengliang Zhang
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xingnuo Li
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - James M Harnly
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Pei Chen
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
29
|
Berardi AE, Hildreth SB, Helm RF, Winkel BSJ, Smith SD. Evolutionary correlations in flavonoid production across flowers and leaves in the Iochrominae (Solanaceae). PHYTOCHEMISTRY 2016; 130:119-27. [PMID: 27291343 DOI: 10.1016/j.phytochem.2016.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 05/21/2023]
Abstract
Plant reproductive and vegetative tissues often use the same biochemical pathways to produce specialized metabolites. In such cases, selection acting on the synthesis of specific products in a particular tissue could result in correlated changes in other products of the pathway, both in the same tissue and in other tissues. This study examined how changes in floral anthocyanin pigmentation affect the production of other compounds of the flavonoid pathway in flowers and in leaves. Focusing on the Iochrominae, a clade of Solanaceae with a wide range of flower colors, liquid chromatography coupled with mass spectrometry and UV detection was used to profile and quantify the variation in two classes of flavonoids, anthocyanins and flavonols. Purple, red, orange and white-flowered Iochrominae produced all of the six common anthocyanidin types, as well as several classes of flavonols. Differences in anthocyanin and flavonol production were significantly correlated in flowers, particularly with respect to B ring hydroxylation pattern. However, these differences in floral flavonoids were not strongly related to differences in leaf chemistry. Specifically, most species made only flavonols (not anthocyanins) in leaves, and these comprised the two most common flavonols, quercetin and kaempferol, regardless of the color of the flower. These results suggest that shifts in flower color may occur without significant pleiotropic consequences for flavonoid production in vegetative tissues. Similar studies in other systems will be important for testing the generality of this pattern in other groups of flowering plants.
Collapse
Affiliation(s)
- Andrea E Berardi
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Campus Box 334, Boulder, CO, 80309, USA.
| | - Sherry B Hildreth
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brenda S J Winkel
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Campus Box 334, Boulder, CO, 80309, USA
| |
Collapse
|
30
|
Gampe N, Darcsi A, Lohner S, Béni S, Kursinszki L. Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC–MS/MS and NMR. J Pharm Biomed Anal 2016; 123:74-81. [DOI: 10.1016/j.jpba.2016.01.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
31
|
Shi F, Flanigan PM, Archer JJ, Levis RJ. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:542-551. [PMID: 26667178 DOI: 10.1007/s13361-015-1302-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Direct analysis of plant and animal tissue samples by laser electrospray mass spectrometry (LEMS) was investigated using low-energy, femtosecond duration laser vaporization at wavelengths of 800 and 1042 nm followed by nanospray postionization. Low-energy (<50 μJ), fiber-based 1042 nm LEMS (F-LEMS) allowed interrogation of the molecular species in fresh flower petal and leaf samples using 435 fs, 10 Hz bursts of 20 pulses from a Ytterbium-doped fiber laser and revealed comparable results to high energy (75-1120 μJ), 45 fs, 800 nm Ti:Sapphire-based LEMS (Ti:Sapphire-LEMS) measurements. Anthocyanins, sugars, and other metabolites were successfully detected and revealed the anticipated metabolite profile for the petal and leaf samples. Phospholipids, especially phosphatidylcholine, were identified from a fresh mouse brain section sample using Ti:Sapphire-LEMS without the application of matrix. These lipid features were suppressed in both the fiber-based and Ti:Sapphire-based LEMS measurements when the brain sample was prepared using the optimal cutting temperature compounds that are commonly used in animal tissue cryosections.
Collapse
Affiliation(s)
- Fengjian Shi
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Paul M Flanigan
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Signature Science, LLC., 2819 Fire Rd, Egg Harbor Township, NJ, 08234, USA
| | - Jieutonne J Archer
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|