1
|
Helms A, Brodbelt JS. Progress in Characterization of Lipopolysaccharides and Lipid A by Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40302133 DOI: 10.1002/mas.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Lipopolysaccharides (LPS) are complex molecules embedded in the outer membrane of Gram-negative bacteria. LPS are highly heterogeneous across species and strains, posing a significant analytical challenge. This review article explores recent advances in the identification and characterization of LPS, with a particular focus on the role of mass spectrometry (MS) techniques. The review highlights how MS, in conjunction with various separation methods and spanning different ionization techniques and dissociation modes, has enabled more precise and sensitive determination of LPS composition, with a focus on lipid A structure. Finally, emerging trends in MS applications for LPS research are discussed and its potential to provide deeper insights into the development of antibiotic resistance among pathogenic bacteria.
Collapse
Affiliation(s)
- Amanda Helms
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
2
|
Rudt E, Froning M, Heuckeroth S, Ortmann L, Diemand J, Hörnschemeyer L, Pleger A, Vinzelberg M, Schmid R, Pluskal T, Dobrindt U, Hayen H, Korf A. Rapid MALDI-MS/MS-Based Profiling of Lipid A Species from Gram-Negative Bacteria Utilizing Trapped Ion Mobility Spectrometry and mzmine. Anal Chem 2025; 97:7781-7788. [PMID: 40167996 PMCID: PMC12004357 DOI: 10.1021/acs.analchem.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Lipid A, a crucial component of lipopolysaccharides (LPS), plays a pivotal role in the pathogenesis of Gram-negative bacteria. Lipid A patterns are recognized by mammals and can induce immunostimulatory effects. However, the outcome of the interaction is highly dependent on the chemical composition of individual lipid A species. The diversity of potential fatty acyl and polar headgroup combinations in this complex saccharolipid presents a significant analytical challenge. Current mass spectrometry (MS)-based lipid A methods are focused on either direct matrix-assisted laser desorption/ionization (MALDI)-MS screening or comprehensive structural elucidation by tandem mass spectrometry (MS/MS) hyphenated with separation techniques. In this study, we developed an alternative workflow for rapid lipid A profiling covering the entire analysis pipeline from sample preparation to data analysis. This workflow is based on microextraction and subsequent MALDI-MS/MS analysis of uropathogenic Escherichia coli utilizing trapped ion mobility spectrometry (TIMS), followed by mzmine data processing. The additional TIMS dimension served for enhanced sensitivity, selectivity, and structural elucidation through mobility-resolved fragmentation via parallel accumulation-serial fragmentation (PASEF) in parallel reaction monitoring (prm)-mode. Furthermore, mzmine enabled automated MS/MS acquisition by adapting the spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF) strategy for MALDI spot analysis. It also facilitated robust lipid A annotation through a newly developed extension of the rule-based lipid annotation module, allowing for the custom generation of lipid classes, including specific fragmentation rules. In this study, the first publication of lipid A species' collision cross section (CCS) values is reported, which will enhance high-confidence lipid A annotation in future studies.
Collapse
Affiliation(s)
- Edward Rudt
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Matti Froning
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | | | - Lucas Ortmann
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Julia Diemand
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Linus Hörnschemeyer
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Alexander Pleger
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Max Vinzelberg
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Robin Schmid
- mzio
GmbH, Altenwall 26, D-28195 Bremen, Germany
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| | - Ulrich Dobrindt
- Institute
of Hygiene, University of Münster, Mendelstraße 7, D-48149 Münster, Germany
| | - Heiko Hayen
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Ansgar Korf
- mzio
GmbH, Altenwall 26, D-28195 Bremen, Germany
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| |
Collapse
|
3
|
Chao HC, McLuckey SA. Altering Lipid A Precursor Ion Types in the Gas Phase for In-Depth Structural Elucidation via Tandem Mass Spectrometry. Anal Chem 2025; 97:1861-1869. [PMID: 39815629 DOI: 10.1021/acs.analchem.4c05910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges. In this work, we present a comprehensive strategy combining condensed-phase sample preparation, electrospray ionization, and gas-phase ion/ion reactions with tandem mass spectrometry for detailed lipid A structural elucidation. We use proton transfer reactions, charge-inversion reactions, and sequential ion/ion reactions for magnesium transfer to generate targeted lipid A ions. The strategy, established with a synthetic monophosphoryl lipid A (MPLA) and known MPLA and diphosphorylated lipid A (DPLA) from Escherichia coli F583, demonstrated that [MPLA - 2H]2-, [MPLA - H]-, and [MPLA - H + Mg]+ precursor ions offer complementary information for MPLA, while [DPLA - H]-, [DPLA + H]+, and [DPLA - H + Mg]+ precursor ions provide analogous information for DPLA analysis. We validated the strategy using known lipid A species and also successfully applied this strategy to profile unknown MPLA and DPLA in the same E. coli strain.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Dörnyei Á, Kilár A, Sándor V. Identification of a Chimera Mass Spectrum of Isomeric Lipid A Species Using Negative Ion Tandem Mass Spectrometry. Toxins (Basel) 2024; 16:322. [PMID: 39057962 PMCID: PMC11281664 DOI: 10.3390/toxins16070322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The toxic nature of bacterial endotoxins is affected by the structural details of lipid A, including the variety and position of acyl chains and phosphate group(s) on its diglucosamine backbone. Negative-ion mode tandem mass spectrometry is a primary method for the structure elucidation of lipid A, used independently or in combination with separation techniques. However, it is challenging to accurately characterize constitutional isomers of lipid A extracts by direct mass spectrometry, as the elemental composition and molecular mass of these molecules are identical. Thus, their simultaneous fragmentation leads to a composite, so-called chimera mass spectrum. The present study focuses on the phosphopositional isomers of the classical monophosphorylated, hexaacylated Escherichia coli-type lipid A. Collision-induced dissociation (CID) was performed in an HPLC-ESI-QTOF system. Energy-resolved mass spectrometry (ERMS) was applied to uncover the distinct fragmentation profiles of the phosphorylation isomers. A fragmentation strategy applying multi-levels of collision energy has been proposed and applied to reveal sample complexity, whether it contains only a 4'-phosphorylated species or a mixture of 1- and 4'-phosphorylated variants. This comparative fragmentation study of isomeric lipid A species demonstrates the high potential of ERMS-derived information for the successful discrimination of co-ionized phosphorylation isomers of hexaacylated lipid A.
Collapse
Affiliation(s)
- Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry and Szentágothai Research Centre, Faculty of Sciences, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| | - Anikó Kilár
- Institute of Bioanalysis, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary; (A.K.); (V.S.)
| | - Viktor Sándor
- Institute of Bioanalysis, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary; (A.K.); (V.S.)
| |
Collapse
|
5
|
Keener JE, Goh B, Yoo JS, Oh SF, Brodbelt JS. Top-Down Characterization of Bacterial Lipopolysaccharides and Lipooligosaccharides Using Activated-Electron Photodetachment Mass Spectrometry. Anal Chem 2024; 96:9151-9158. [PMID: 38758019 PMCID: PMC11384421 DOI: 10.1021/acs.analchem.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Escherichia coli Nissle and Bacteroides fragilis. a-EPD is a hybrid activation method that uses ultraviolet photoirradiation to generate charge-reduced radical ions followed by collisional activation to produce informative fragmentation patterns. We benchmark the a-EPD method for top-down characterization of triacyl LOS from E. coli R2, then focus on characterization of LPS from E. coli Nissle and B. fragilis. Notably, a-EPD affords extensive fragmentation throughout the backbone of the core OS and O-antigen regions of LPS from E. coli Nissle. This hybrid approach facilitated the elucidation of structural details for LPS from B. fragilis, revealing a putative hexuronic acid (HexA) conjugated to lipid A.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Guan XL, Loh JYX, Lizwan M, Chan SCM, Kwan JMC, Lim TP, Koh TH, Hsu LY, Lee BTK. LipidA-IDER to Explore the Global Lipid A Repertoire of Drug-Resistant Gram-Negative Bacteria. Anal Chem 2023; 95:602-611. [PMID: 36599414 PMCID: PMC9850412 DOI: 10.1021/acs.analchem.1c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the global emergence of drug-resistant bacteria causing difficult-to-treat infections, there is an urgent need for a tool to facilitate studies on key virulence and antimicrobial resistant factors. Mass spectrometry (MS) has contributed substantially to the elucidation of the structure-function relationships of lipid A, the endotoxic component of lipopolysaccharide which also serves as an important protective barrier against antimicrobials. Here, we present LipidA-IDER, an automated structure annotation tool for system-level scale identification of lipid A from high-resolution tandem mass spectrometry (MS2) data. LipidA-IDER was validated against previously reported structures of lipid A in the reference bacteria, Escherichia coli and Pseudomonas aeruginosa. Using MS2 data of variable quality, we demonstrated LipidA-IDER annotated lipid A with a performance of 71.2% specificity and 70.9% sensitivity, offering greater accuracy than existing lipidomics software. The organism-independent workflow was further applied to a panel of six bacterial species: E. coli and Gram-negative members of ESKAPE pathogens. A comprehensive atlas comprising 188 distinct lipid A species, including remodeling intermediates, was generated and can be integrated with software including MS-DIAL and Metabokit for identification and semiquantitation. Systematic comparison of a pair of polymyxin-sensitive and polymyxin-resistant Acinetobacter baumannii isolated from a human patient unraveled multiple key lipid A structural features of polymyxin resistance within a single analysis. Probing the lipid A landscape of bacteria using LipidA-IDER thus holds immense potential for advancing our understanding of the vast diversity and structural complexity of a key lipid virulence and antimicrobial-resistant factor. LipidA-IDER is freely available at https://github.com/Systems-Biology-Of-Lipid-Metabolism-Lab/LipidA-IDER.
Collapse
Affiliation(s)
- Xue Li Guan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,. Tel: +65 6592 3957
| | - Johnathan Yi-Xiong Loh
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Marco Lizwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Sharon Cui Mun Chan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Jeric Mun Chung Kwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Tze Peng Lim
- Department
of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore
| | - Tse Hsien Koh
- Department
of Microbiology, Singapore General Hospital, Singapore 169608, Singapore
| | - Li-Yang Hsu
- Saw Swee
Hock School of Public Health, National University
of Singapore, Singapore 117549, Singapore
| | - Bernett Teck Kwong Lee
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,Centre
for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore,Singapore
Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| |
Collapse
|
7
|
Aissa I, Dörnyei Á, Sándor V, Kilár A. Complete Structural Elucidation of Monophosphorylated Lipid A by CID Fragmentation of Protonated Molecule and Singly Charged Sodiated Adducts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:92-100. [PMID: 36539922 PMCID: PMC9817073 DOI: 10.1021/jasms.2c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Lipid A, the inflammatory portion of lipopolysaccharides (LPS, endotoxins), is the main component of the outer membrane of Gram-negative bacteria. Its bioactivity in humans and animals is strictly related to its chemical structure. In the present work, the fragmentation patterns of the singly charged monosodium [M + Na]+ and disodium [M - H + 2Na]+ adducts, as well as the protonated form of monophosphorylated lipid A species were investigated in detail using positive-ion electrospray ionization-based tandem (MS/MS) and multistage mass spectrometry (MSn) with low-energy collision-induced dissociation (CID). Several synthetic and native lipid A samples were included in the study. We found that the fragmentation pattern of disodiated lipid A is quite similar to that of the well-characterized deprotonated lipid A molecule (typically detected in the negative-ion mode), while the fragmentation pattern of monosodiated lipid A contains fragment ions similar to those of both protonated and deprotonated lipid A molecules. In summary, we propose a new mass spectrometry approach based on the fragmentation regularities of only positively charged precursor ions to dissect the location of the phosphate group and fatty acid moieties on monophosphorylated lipid A. Moreover, this study provides a better understanding of the so-called "chimera mass spectra", which are commonly detected during the fragmentation of native lipid A samples containing both C-1 and C-4' phosphate positional isomers but rarely identified in negative-ion mode.
Collapse
Affiliation(s)
- Ibrahim Aissa
- Department
of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary
| | - Ágnes Dörnyei
- Department
of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary
| | - Viktor Sándor
- Institute
of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Anikó Kilár
- Institute
of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Aissa I, Kilár A, Dörnyei Á. Study on the CID Fragmentation Pathways of Deprotonated 4'-Monophosphoryl Lipid A. Molecules 2021; 26:5961. [PMID: 34641505 PMCID: PMC8512036 DOI: 10.3390/molecules26195961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid A, the membrane-bound phosphoglycolipid component of bacteria, is held responsible for the clinical syndrome of gram-negative sepsis. In this study, the fragmentation behavior of a set of synthetic lipid A derivatives was studied by electrospray ionization multistage mass spectrometry (ESI-MSn), in conjunction with tandem mass spectrometry (MS/MS), using low-energy collision-induced dissociation (CID). Genealogical insight about the fragmentation pathways of the deprotonated 4'-monophosphoryl lipid A structural analogs led to proposals of a number of alternative dissociation routes that have not been reported previously. Each of the fragment ions was interpreted using various possible mechanisms, consistent with the principles of reactions described in organic chemistry. Specifically, the hypothesized mechanisms are: (i) cleavage of the C-3 primary fatty acid leaves behind an epoxide group attached to the reducing sugar; (ii) cleavage of the C-3' primary fatty acid (as an acid) generates a cyclic phosphate connected to the nonreducing sugar; (iii) cleavage of the C-2' secondary fatty acid occurs both in acid and ketene forms; iv) the C-2 and C-2' primary fatty acids are eliminated as an amide and ketene, respectively; (v) the 0,2A2 cross-ring fragment contains a four-membered ring (oxetanose); (vi) the 0,4A2 ion is consecutively formed from the 0,2A2 ion by retro-aldol, retro-cycloaddition, and transesterification; and (vii) formations of H2PO4- and PO3- are associated with the formation of sugar epoxide. An understanding of the relation between 0,2A2 and 0,4A2-type sugar fragments and the different cleavage mechanisms of the two ester-linked primary fatty acids is invaluable for distinguishing lipid A isomers with different locations of a single ester-linked fatty acid (i.e., at C-3 or C-3'). Thus, in addition to a better comprehension of lipid A fragmentation processes in mass spectrometers, our observations can be applied for a more precise elucidation of naturally occurring lipid A structures.
Collapse
Affiliation(s)
- Ibrahim Aissa
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary;
| | - Anikó Kilár
- Institute of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary;
| |
Collapse
|
10
|
Froning M, Helmer PO, Hayen H. Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8897. [PMID: 32673427 DOI: 10.1002/rcm.8897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Lipid A is a part of the lipopolysaccharide layer, which is a main component of the outer membrane from Gram-negative bacteria. It can be sensed by mammalians to identify the presence of Gram-negative bacteria in their tissues and plays a key role in the pathogenesis of bacterial infections. Lipid A is also used as an adjuvant in human vaccines, emphasizing the importance of its structural analysis. METHODS In order to distinguish and characterize various lipid A species, a liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) method was developed. Isolation of lipid A from different bacteria was carried out using a modified Bligh and Dyer extraction following a mild acid hydrolysis. Chromatography was performed using a bifunctional reversed-phase-based stationary phase. High-resolution MS using negative electrospray ionization was applied and MS/MS experiments utilizing high-energy collisional dissociation generated diagnostic product ions, which allowed the assignment of the side chains to distinct positions of the lipid A backbone. RESULTS The method was applied to lipid A isolations of Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Pseudomonas taiwanensis (P. taiwanensis). Various lipid A species were identified by their accurate masses and their structures were characterized using MS/MS experiments. Previously described lipid A structures from E. coli were identified and their structures confirmed by MS/MS. For the biotechnologically relevant strains P. putida and P. taiwanensis, we confirmed species by MS/MS, which have previously only been analyzed using MS. In addition, several lipid A species were discovered that have not been previously described in the literature. CONCLUSIONS The combination of LC and MS/MS enabled the selective and sensitive identification and structural characterization of various lipid A species from Gram-negative bacteria. These species varied in their substituted side chains, speaking of fatty acids and phosphate groups. Characteristic product ions facilitated the assignment of side chains to distinct positions of the lipid A backbone.
Collapse
Affiliation(s)
- Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| |
Collapse
|
11
|
Sándor V, Berkics BV, Kilár A, Kocsis B, Kilár F, Dörnyei Á. NACE–ESI‐MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis 2020; 41:1178-1188. [DOI: 10.1002/elps.201900251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Viktor Sándor
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Balázs Viktor Berkics
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Anikó Kilár
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
| | - Béla Kocsis
- Department of Microbiology and Immunology, Medical School University of Pécs Pécs Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis Medical School and Szentágothai Research Centre University of Pécs Pécs Hungary
- Department of Bioengineering Sapientia Hungarian University of Transylvania Miercurea Ciuc Romania
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Science University of Pécs Pécs Hungary
| |
Collapse
|
12
|
Klein DR, Powers MJ, Trent MS, Brodbelt JS. Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria. Anal Chem 2019; 91:9608-9615. [PMID: 31305072 PMCID: PMC6702669 DOI: 10.1021/acs.analchem.9b00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Modification of structures of lipooligosaccharides (LOS) represents one prevalent mechanism by which Gram-negative bacteria can become resistant to key antibiotics. Owing to the significant complexity of LOS, the structural characterization of these amphipathic lipids has largely focused on elucidation of the lipid A substructures. Analysis of intact LOS enables detection of core oligosaccharide modifications and gives insight into the heterogeneity that results from combinations of lipid A and oligosaccharide substructures. Top-down analysis of intact LOS also provides the opportunity to determine unknown oligosaccharide structures, which is particularly advantageous in the context of glycoconjugate vaccine development. Advances in mass spectrometry technologies, including the development of MSn capabilities and alternative ion activation techniques, have made top-down analysis an indispensable tool for structural characterization of complex biomolecules. Here we combine online chromatographic separations with MS3 utilizing ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). HCD generally provides information about the presence of labile modifications via neutral loss fragments in addition to the saccharide linkage arrangement, whereas UVPD gives more detailed insight about saccharide branching and the positions of nonstoichiometric modifications. This integrated approach was used to characterize LOS from Acinetobacter baumannii 1205 and 5075. Notably, MS3 analysis of A. baumannii 1205, an antibiotic-resistant strain, confirmed phosphoethanolamine and hexosamine modification of the lipid A substructure and further enabled derivation of a core oligosaccharide structure.
Collapse
Affiliation(s)
- Dustin R. Klein
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Matthew J. Powers
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | - M. Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | | |
Collapse
|
13
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|