1
|
Arnold K, Gómez-Mejia A, de Figueiredo M, Boccard J, Singh KD, Rudaz S, Sinues P, Zinkernagel AS. Early detection of bacterial pneumonia by characteristic induced odor signatures. BMC Infect Dis 2024; 24:1467. [PMID: 39731069 DOI: 10.1186/s12879-024-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
INTRODUCTION The ability to detect pathogenic bacteria before the onsets of severe respiratory symptoms and to differentiate bacterial infection allows to improve patient-tailored treatment leading to a significant reduction in illness severity, comorbidity as well as antibiotic resistance. As such, this study refines the application of the non-invasive Secondary Electrospray Ionization-High Resolution Mass Spectrometry (SESI-HRMS) methodology for real-time and early detection of human respiratory bacterial pathogens in the respiratory tract of a mouse infection model. METHODS A real-time analysis of changes in volatile metabolites excreted by mice undergoing a lung infection by Staphylococcus aureus or Streptococcus pneumoniae were evaluated using a SESI-HRMS instrument. The infection status was confirmed using classical CFU enumeration and tissue histology. The detected VOCs were analyzed using a pre- and post-processing algorithm along with ANOVA and RASCA statistical evaluation methods. RESULTS Characteristic changes in the VOCs emitted from the mice were detected as early as 4-6 h post-inoculation. Additionally, by using each mouse as its own baseline, we mimicked the inherent variation within biological organism and reported significant variations in 25 volatile organic compounds (VOCs) during the course of a lung bacterial infection. CONCLUSION the non-invasive SESI-HRMS enables real-time detection of infection specific VOCs. However, further refinement of this technology is necessary to improve clinical patient management, treatment, and facilitate decisions regarding antibiotic use due to early infection detection.
Collapse
Affiliation(s)
- Kim Arnold
- University Children's Hospital Basel (UKBB), Basel, 4056, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland
| | - Miguel de Figueiredo
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1206, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1206, Switzerland
| | - Kapil Dev Singh
- University Children's Hospital Basel (UKBB), Basel, 4056, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1206, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel (UKBB), Basel, 4056, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland.
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland.
| |
Collapse
|
2
|
Castillo Bautista CM, Eismann K, Gentzel M, Pelucchi S, Mertens J, Walters HE, Yun MH, Sterneckert J. Obatoclax Rescues FUS-ALS Phenotypes in iPSC-Derived Neurons by Inducing Autophagy. Cells 2023; 12:2247. [PMID: 37759469 PMCID: PMC10527391 DOI: 10.3390/cells12182247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is associated with the disruption of protein homeostasis and causally contributes to multiple diseases, including amyotrophic lateral sclerosis (ALS). One strategy for restoring protein homeostasis and protecting neurons against age-dependent diseases such as ALS is to de-repress autophagy. BECN1 is a master regulator of autophagy; however, is repressed by BCL2 via a BH3 domain-mediated interaction. We used an induced pluripotent stem cell model of ALS caused by mutant FUS to identify a small molecule BH3 mimetic that disrupts the BECN1-BCL2 interaction. We identified obatoclax as a brain-penetrant drug candidate that rescued neurons at nanomolar concentrations by reducing cytoplasmic FUS levels, restoring protein homeostasis, and reducing degeneration. Proteomics data suggest that obatoclax protects neurons via multiple mechanisms. Thus, obatoclax is a candidate for repurposing as a possible ALS therapeutic and, potentially, for other age-associated disorders linked to defects in protein homeostasis.
Collapse
Affiliation(s)
| | - Kristin Eismann
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Silvia Pelucchi
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Institute for Molecular Biology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Hannah E. Walters
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
| | - Maximina H. Yun
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Medical Faculty Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Arnold K, Dehio P, Lötscher J, Singh KD, García-Gómez D, Hess C, Sinues P, Balmer ML. Real-Time Volatile Metabolomics Analysis of Dendritic Cells. Anal Chem 2023. [PMID: 37311562 DOI: 10.1021/acs.analchem.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) actively sample and present antigen to cells of the adaptive immune system and are thus vital for successful immune control and memory formation. Immune cell metabolism and function are tightly interlinked, and a better understanding of this interaction offers potential to develop immunomodulatory strategies. However, current approaches for assessing the immune cell metabolome are often limited by end-point measurements, may involve laborious sample preparation, and may lack unbiased, temporal resolution of the metabolome. In this study, we present a novel setup coupled to a secondary electrospray ionization-high resolution mass spectrometric (SESI-HRMS) platform allowing headspace analysis of immature and activated DCs in real-time with minimal sample preparation and intervention, with high technical reproducibility and potential for automation. Distinct metabolic signatures of DCs treated with different supernatants (SNs) of bacterial cultures were detected during real-time analyses over 6 h compared to their respective controls (SN only). Furthermore, the technique allowed for the detection of 13C-incorporation into volatile metabolites, opening the possibility for real-time tracing of metabolic pathways in DCs. Moreover, differences in the metabolic profile of naı̈ve and activated DCs were discovered, and pathway-enrichment analysis revealed three significantly altered pathways, including the TCA cycle, α-linolenic acid metabolism, and valine, leucine, and isoleucine degradation.
Collapse
Affiliation(s)
- Kim Arnold
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Kapil Dev Singh
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Diego García-Gómez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Pablo Sinues
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
- Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- University Clinic for Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, 3010 Bern, Switzerland
- Diabetes Center Bern (DCB), 3010 Bern, Switzerland
| |
Collapse
|
4
|
Michael JA, Mutuku SM, Ucur B, Sarretto T, Maccarone AT, Niehaus M, Trevitt AJ, Ellis SR. Mass Spectrometry Imaging of Lipids Using MALDI Coupled with Plasma-Based Post-Ionization on a Trapped Ion Mobility Mass Spectrometer. Anal Chem 2022; 94:17494-17503. [PMID: 36473074 DOI: 10.1021/acs.analchem.2c03745] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report the development and optimization of a mass spectrometry imaging (MSI) platform that combines an atmospheric-pressure matrix-assisted laser desorption/ionization platform with plasma postionization (AP-MALDI-PPI) and trapped ion mobility spectrometry (TIMS). We discuss optimal parameters for operating the source, characterize the behavior of a variety of lipid classes in positive- and negative-ion modes, and explore the capabilities for lipid imaging using murine brain tissue. The instrument generates high signal-to-noise for numerous lipid species, with mass spectra sharing many similarities to those obtained using laser postionization (MALDI-2). The system is especially well suited for detecting lipids such as phosphatidylethanolamine (PE), as well as numerous sphingolipid classes and glycerolipids. For the first time, the coupling of plasma-based postionization with ion mobility is presented, and we show the value of ion mobility for the resolution and identification of species within rich spectra that contain numerous isobaric/isomeric signals that are not resolved in the m/z dimension alone, including isomeric PE and demethylated phosphatidylcholine lipids produced by in-source fragmentation. The reported instrument provides a powerful and user-friendly approach for MSI of lipids.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shadrack M Mutuku
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Alan T Maccarone
- Molecular Horizons and School of Chemistry and Molecular Bioscience Mass Spectrometry Facility, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Marcel Niehaus
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Gómez-Mejia A, Arnold K, Bär J, Singh KD, Scheier TC, Brugger SD, Zinkernagel AS, Sinues P. Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites. iScience 2022; 25:105080. [PMID: 36157573 PMCID: PMC9490032 DOI: 10.1016/j.isci.2022.105080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Early detection of pathogenic bacteria is needed for rapid diagnostics allowing adequate and timely treatment of infections. In this study, we show that secondary electrospray ionization–high resolution mass spectrometry (SESI-HRMS) can be used as a diagnostic tool for rapid detection of bacterial infections as a supportive system for current state-of-the-art diagnostics. Volatile organic compounds (VOCs) produced by growing S. aureus or S. pneumoniae cultures on blood agar plates were detected within minutes and allowed for the distinction of these two bacteria on a species and even strain level within hours. Furthermore, we obtained a fingerprint of clinical patient samples within minutes of measurement and predominantly observed a separation of samples containing live bacteria compared to samples with no bacterial growth. Further development of this technique may reduce the time required for microbiological diagnosis and should help to improve patient’s tailored treatment. Real-time mass spectrometry shows potential as a tool for microbiological diagnosis Bacterial volatile metabolites from 1 × 103 CFUs are detected within minutes S. aureus and S. pneumoniae can be distinguished on species and even strain level Complex clinical samples cluster according to presence or absence of viable bacteria
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, 8091 Zurich, Switzerland
| | - Kim Arnold
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, 8091 Zurich, Switzerland
| | - Kapil Dev Singh
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Thomas C Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, 8091 Zurich, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, 8091 Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, 8091 Zurich, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| |
Collapse
|
6
|
Johnson KR, Greguš M, Ivanov AR. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples. J Proteome Res 2022; 21:2453-2461. [PMID: 36112031 PMCID: PMC10118849 DOI: 10.1021/acs.jproteome.2c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we pioneered the assessment of coupling high-field asymmetric waveform ion mobility spectrometry (FAIMS) with ultrasensitive capillary electrophoresis hyphenated with tandem mass spectrometry (CE-MS/MS) to achieve deeper proteome coverage of low nanogram amounts of digested cell lysates. An internal stepping strategy using three or four compensation voltages per analytical run with varied cycle times was tested to determine optimal FAIMS settings and MS parameters for the CE-FAIMS-MS/MS method. The optimized method applied to bottom-up proteomic analysis of 1 ng of HeLa protein digest standard identified 1314 ± 30 proteins, 4829 ± 200 peptide groups, and 7577 ± 163 peptide spectrum matches (PSMs) corresponding to a 16, 25, and 22% increase, respectively, over CE-MS/MS alone, without FAIMS. Furthermore, the percentage of acquired MS/MS spectra that resulted in PSMs increased nearly 2-fold with CE-FAIMS-MS/MS. Label-free quantitation of proteins and peptides was also assessed to determine the precision of replicate analyses from FAIMS methods with increased cycle times. Our results also identified from 1 ng of HeLa protein digest without any prior enrichment 76 ± 9 phosphopeptides, 18% of which were multiphosphorylated. These results represent a 46% increase in phosphopeptide identifications over the control experiments without FAIMS yielding 2.5-fold more multiphosphorylated peptides.
Collapse
Affiliation(s)
- Kendall R. Johnson
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Michal Greguš
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Contreras W, Wiesehöfer C, Schreier D, Leinung N, Peche P, Wennemuth G, Gentzel M, Schröder B, Mentrup T. C11orf94/Frey is a key regulator for male fertility by controlling Izumo1 complex assembly. SCIENCE ADVANCES 2022; 8:eabo6049. [PMID: 35960805 PMCID: PMC9374335 DOI: 10.1126/sciadv.abo6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
Although gamete fusion represents the central event in sexual reproduction, the required protein machinery is poorly defined. In sperm cells, Izumo1 and several Izumo1-associated proteins play an essential role for this process. However, so far, the mechanisms underlying transport and maturation of Izumo1 and its incorporation into high molecular weight complexes are incompletely defined. Here, we provide a detailed characterization of the C11orf94 protein, which we rename Frey, which provides a platform for the assembly of Izumo1 complexes. By retaining Izumo1 in the endoplasmic reticulum, Frey facilitates its incorporation into high molecular weight complexes. To fulfill its function, the unstable Frey protein is stabilized within the catalytic center of an intramembrane protease. Loss of Frey results in reduced assembly of Izumo1 complexes and male infertility due to impaired gamete fusion. Collectively, these findings provide mechanistic insights into the early biogenesis and functional relevance of Izumo1 complexes.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dora Schreier
- CRISPR-Cas9 Facility, Experimental Center of the Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Petra Peche
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marc Gentzel
- Core Facility Molecular Analysis–Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Gravert TKO, Vuaille J, Magid J, Hansen M. Non-target analysis of organic waste amended agricultural soils: Characterization of added organic pollution. CHEMOSPHERE 2021; 280:130582. [PMID: 33962292 DOI: 10.1016/j.chemosphere.2021.130582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Amendment of soil with organic urban and animal wastes can keep arable soil fertile without the need for synthetic fertilizers. However, pollutants present in these types of waste might be carried into the soil with unintended consequences for the environment. We studied an experimental agricultural plot, which had been amended with either synthetic inorganic fertilizers, human urine, manure, or wastewater treatment sludge at very high rates. We applied chemical non-target analysis to characterize present organic micropollutants, intending to compare treatments and highlight suspects of environmental concern. Soil samples were prepared by pressurized liquid and purified with solid-phase extraction before analysis with nanoflow ultra-high performance liquid chromatography coupled to high-resolution Orbitrap tandem mass spectrometry. Automated elucidation with two mass spectral libraries, multiple large chemical databases and environmental NORMAN suspect lists was able to annotate (level 3 and level 2) ∼ 20% of the 2306 detected features. A following principal component- and differential-analysis could separate the soil treatment groups' pollution profiles and highlight high relative abundance features. From cattle manure, natural compounds such as bile acids and steroids were found. Human urine led to pollution with common pharmaceuticals such as metoprolol and propranolol. The highest number was added by wastewater treatment sludge, with 25 significant contaminants, spanning blood pressure regulators, antidepressants, synthetic steroids and sleep medication. Furthermore, using Kendrick mass defect plots, a series of polypropylene glycols could be revealed in the soil. Non-target analysis appears to be a promising method to characterize organic pollutants in soils.
Collapse
Affiliation(s)
| | - Jeanne Vuaille
- University of Copenhagen, Department for Plant and Environmental Sciences, Copenhagen, Denmark
| | - Jakob Magid
- University of Copenhagen, Department for Plant and Environmental Sciences, Copenhagen, Denmark
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Environmental Metabolomics Lab, Roskilde, Denmark.
| |
Collapse
|
9
|
Plug-and-play laser ablation-mass spectrometry for molecular imaging by means of dielectric barrier discharge ionization. Anal Chim Acta 2021; 1177:338770. [PMID: 34482891 DOI: 10.1016/j.aca.2021.338770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
The plug-and-play hyphenation of UV-laser ablation (LA) and mass spectrometry is presented, using dielectric barrier discharge ionization (DBDI). The DBDI source employed here is characterized by its unique geometry, being directly mounted onto the inlet capillary of a mass spectrometer. In the literature, this particular kind of DBDI source is also referred to as active capillary plasma ionization. It has been commercialized as soft ionization by chemical reaction in transfer (SICRIT) and will be addressed as DBDI in this study. LA-DBDI-MS was used for the direct, molecule-specific and spatially resolved analysis of various solid samples, such as coffee beans and pain killer tablets without extensive sample preparation. The combination of fast washout UV-laser ablation and the principle of the DBDI source used here allowed for highly efficient soft ionization as well as high spatial resolution down to 10 μm for molecular imaging.
Collapse
|
10
|
Tancos MA, McMahon MB, Garrett WM, Luster DG, Rogers EE. Comparative Secretome Analyses of Toxigenic and Atoxigenic Rathayibacter Species. PHYTOPATHOLOGY 2021; 111:1530-1540. [PMID: 33499664 DOI: 10.1094/phyto-11-20-0495-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogenic Rathayibacter species are unique bacterial plant pathogens because they are obligately vectored by plant parasitic anguinid nematodes to the developing seedheads of forage grasses and cereals. This understudied group of plant-associated Actinomycetes includes the neurotoxigenic plant pathogen R. toxicus, which causes annual ryegrass toxicity in grazing livestock. R. toxicus is currently endemic to Australia and is listed as a plant pathogen select agent by the U.S. Department of Agriculture-Animal and Plant Health Inspection Service. The complex Rathayibacter disease cycle requires intimate interactions with the nematode vector and plant hosts, which warrants an increased understanding of the secretory and surface-associated proteins that mediate these diverse eukaryotic interactions. Here we present the first comparative secretome analysis for this complex, nematode-vectored Rathayibacter genus that compares the three agronomically damaging toxigenic and atoxigenic Rathayibacter species, R. toxicus, R. iranicus, and R. tritici. The exoproteomic comparison identified 1,423 unique proteins between the three species via liquid chromatography-tandem mass spectrometry, leading to the identification of putative pathogenicity-related proteins and proteins that may mediate nematode attachment. Of the uniquely identified proteins, 94 homologous proteins were conserved between the three Rathayibacter exoproteomes and comprised between 43.4 and 58.6% of total protein abundance. Comparative analyses revealed both conserved and uniquely expressed extracellular proteins, which, interestingly, had more similarities to extracellular proteins commonly associated with bacterial animal pathogens than classic plant pathogens. This comparative exoproteome analysis will facilitate the characterization of proteins essential for vector attachment and host colonization and assist in the development of serological diagnostic assays.
Collapse
Affiliation(s)
- Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Michael B McMahon
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| | - Douglas G Luster
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Elizabeth E Rogers
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| |
Collapse
|
11
|
Pinto SM, Kim H, Subbannayya Y, Giambelluca MS, Bösl K, Ryan L, Sharma A, Kandasamy RK. Comparative Proteomic Analysis Reveals Varying Impact on Immune Responses in Phorbol 12-Myristate-13-Acetate-Mediated THP-1 Monocyte-to-Macrophage Differentiation. Front Immunol 2021; 12:679458. [PMID: 34234780 PMCID: PMC8255674 DOI: 10.3389/fimmu.2021.679458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023] Open
Abstract
Macrophages are sentinels of the innate immune system, and the human monocytic cell line THP-1 is one of the widely used in vitro models to study inflammatory processes and immune responses. Several monocyte-to-macrophage differentiation protocols exist, with phorbol 12-myristate-13-acetate (PMA) being the most commonly used and accepted method. However, the concentrations and duration of PMA treatment vary widely in the published literature and could affect the probed phenotype, however their effect on protein expression is not fully deciphered. In this study, we employed a dimethyl labeling-based quantitative proteomics approach to determine the changes in the protein repertoire of macrophage-like cells differentiated from THP-1 monocytes by three commonly used PMA-based differentiation protocols. Employing an integrated network analysis, we show that variations in PMA concentration and duration of rest post-stimulation result in downstream differences in the protein expression and cellular signaling processes. We demonstrate that these differences result in altered inflammatory responses, including variation in the expression of cytokines upon stimulation with various Toll-like receptor (TLR) agonists. Together, these findings provide a valuable resource that significantly expands the knowledge of protein expression dynamics with one of the most common in vitro models for macrophages, which in turn has a profound impact on the immune as well as inflammatory responses being studied.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam S. Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Medical Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Animesh Sharma
- Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Comparative analysis of extracellular proteomes reveals putative effectors of the boxwood blight pathogens, Calonectria henricotiae and C. pseudonaviculata. Biosci Rep 2021; 41:227917. [PMID: 33619567 PMCID: PMC7937907 DOI: 10.1042/bsr20203544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 01/25/2023] Open
Abstract
Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in the present study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.
Collapse
|
13
|
Greguš M, Kostas JC, Ray S, Abbatiello SE, Ivanov AR. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology. Anal Chem 2020; 92:14702-14712. [PMID: 33054160 DOI: 10.1021/acs.analchem.0c03262] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, we pioneered a combination of ultralow flow (ULF) high-efficiency ultranarrow bore monolithic LC columns coupled to MS via a high-field asymmetric waveform ion mobility spectrometry (FAIMS) interface to evaluate the potential applicability for high sensitivity, robust, and reproducible proteomic profiling of low nanogram-level complex biological samples. As a result, ULF LC-FAIMS-MS brought unprecedented sensitivity levels and high reproducibility in bottom-up proteomic profiling. In addition, FAIMS improved the dynamic range, signal-to-noise ratios, and detection limits in ULF LC-MS-based measurements by significantly reducing chemical noise in comparison to the conventional nanoESI interface used with the same ULF LC-MS setup. Two, three, or four compensation voltages separated by at least 15 V were tested within a single LC-MS run using the FAIMS interface. The optimized ULF LC-ESI-FAIMS-MS/MS conditions resulted in identification of 2,348 ± 42 protein groups, 10,062 ± 285 peptide groups, and 15,734 ± 350 peptide-spectrum matches for 1 ng of a HeLa digest, using a 1 h gradient at the flow rate of 12 nL/min, which represents an increase by 38%, 91%, and 131% in respective identifications, as compared to the control experiment (without FAIMS). To evaluate the practical utility of the ULF LC-ESI-FAIMS-MS platform in proteomic profiling of limited samples, approximately 100, 1,000, and 10,000 U937 myeloid leukemia cells were processed, and a one-tenth of each sample was analyzed. Using the optimized conditions, we were able to reliably identify 251 ± 54, 1,135 ± 80, and 2,234 ± 25 protein groups from injected aliquots corresponding to ∼10, 100, and 1,000 processed cells.
Collapse
Affiliation(s)
- Michal Greguš
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - James C Kostas
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Susan E Abbatiello
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Wang X, Cho JH, Poudel S, Li Y, Jones DR, Shaw TI, Tan H, Xie B, Peng J. JUMPm: A Tool for Large-Scale Identification of Metabolites in Untargeted Metabolomics. Metabolites 2020; 10:metabo10050190. [PMID: 32408578 PMCID: PMC7281133 DOI: 10.3390/metabo10050190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolomics is increasingly important for biomedical research, but large-scale metabolite identification in untargeted metabolomics is still challenging. Here, we present Jumbo Mass spectrometry-based Program of Metabolomics (JUMPm) software, a streamlined software tool for identifying potential metabolite formulas and structures in mass spectrometry. During database search, the false discovery rate is evaluated by a target-decoy strategy, where the decoys are produced by breaking the octet rule of chemistry. We illustrated the utility of JUMPm by detecting metabolite formulas and structures from liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses of unlabeled and stable-isotope labeled yeast samples. We also benchmarked the performance of JUMPm by analyzing a mixed sample from a commercially available metabolite library in both hydrophilic and hydrophobic LC-MS/MS. These analyses confirm that metabolite identification can be significantly improved by estimating the element composition in formulas using stable isotope labeling, or by introducing LC retention time during a spectral library search, which are incorporated into JUMPm functions. Finally, we compared the performance of JUMPm and two commonly used programs, Compound Discoverer 3.1 and MZmine 2, with respect to putative metabolite identifications. Our results indicate that JUMPm is an effective tool for metabolite identification of both unlabeled and labeled data in untargeted metabolomics.
Collapse
Affiliation(s)
- Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
- Correspondence: (X.W.); (J.P.); Tel.: +701-777-4673 (X.W.); +901-595-7499 (J.P.)
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
| | - Suresh Poudel
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.P.); (D.R.J.)
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.P.); (D.R.J.)
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Drew R. Jones
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.P.); (D.R.J.)
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Timothy I. Shaw
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.P.); (D.R.J.)
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.-H.C.); (Y.L.); (T.I.S.); (H.T.); (B.X.)
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.P.); (D.R.J.)
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence: (X.W.); (J.P.); Tel.: +701-777-4673 (X.W.); +901-595-7499 (J.P.)
| |
Collapse
|
15
|
Bakota EL, Levine RA. Identification of two novel trace impurities in mobile phases prepared with commercial formic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8608. [PMID: 31705588 DOI: 10.1002/rcm.8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED While liquid chromatography/high-resolution mass spectrometry (LC/HRMS) is a versatile analytical technique, it is also sensitive to trace impurities. These impurities may come from a variety of sources, including reagents, solvents, and the sample matrix itself. Impurities in reagents may become concentrated and elute as peaks when a gradient method is used, and these peaks may cause suppression of peaks of interest both in the electrospray source, as well as in the C-trap in systems that contain one. METHODS We observed a notable increase in the size of several impurity peaks in a reversed-phase gradient method upon switching suppliers of formic acid. We used LC/HRMS to separate and fragment these impurity compounds and assign probable formulae. RESULTS The mass spectra were compared with those of compounds found in the literature with the same formulae, and the observed peaks were matched to two amine compounds not previously reported as impurities in LC/MS systems: trihexylamine and N-methyldihexylamine. The identities were confirmed by high-resolution accurate mass and retention time matching against commercially available standards of these compounds. CONCLUSIONS To the best of our knowledge, this is the first time that trihexylamine and N-methyldihexylamine have been reported in such systems. We hypothesize that these are derived from the formic acid manufacturing process and recommend that users monitor purchased formic acid for the presence of impurities.
Collapse
Affiliation(s)
- Erica L Bakota
- Total Diet and Pesticide Research Center, Kansas City Laboratory, U.S. Food and Drug Administration, 11510 West 80th Street, Lenexa, KS, 66214, USA
| | - Robert A Levine
- Total Diet and Pesticide Research Center, Kansas City Laboratory, U.S. Food and Drug Administration, 11510 West 80th Street, Lenexa, KS, 66214, USA
| |
Collapse
|
16
|
Pagnozzi D, Tamarozzi F, Roggio AM, Tedde V, Addis MF, Pisanu S, Masu G, Santucciu C, Vola A, Casulli A, Masala G, Brunetti E, Uzzau S. Structural and Immunodiagnostic Characterization of Synthetic Antigen B Subunits From Echinococcus granulosus and Their Evaluation as Target Antigens for Cyst Viability Assessment. Clin Infect Dis 2019; 66:1342-1351. [PMID: 29149256 PMCID: PMC5905600 DOI: 10.1093/cid/cix1006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Background Several tools have been proposed for serodiagnosis of cystic echinococcosis (CE), but none seems promising for cyst viability assessment. Antigens with stage-specific diagnostic value have been described, but few studies with well-characterized antigens and human serum samples have been performed. Antigen B (AgB) proteoforms hold promise as markers of viability, due to their differential stage-related expression and immunoreactivity. Methods Four AgB subunits (AgB1, AgB2, AgB3, AgB4) were synthesized and structurally characterized. Based on the preliminary evaluation of the subunits by western immunoblotting and enzyme-linked immunosorbent assay (ELISA), AgB1 and AgB2 were further tested in two ELISA setups and extensively validated on 422 human serum samples. Results All subunits showed a high degree of spontaneous oligomerization. Interacting residues within oligomers were identified, showing that both the N-terminal and C-terminal of each subunit are involved in homo-oligomer contact interfaces. No hetero-oligomer was identified. AgB1 and AgB2 ELISAs revealed different sensitivities relative to cyst stage. Of note, besides high specificity (97.2%), AgB1 revealed a higher sensitivity for active-transitional cysts (100% for CE1, 77.8% for CE2, 81.5% for CE3a, and 86.3% for CE3b) than for inactive cysts (41.7% for CE4 and 11.1% for CE5) and postsurgical patients (44%). Interestingly, 19 of 20 patients with spontaneously inactive cysts and 6 of 9 treated with albendazole >5 years earlier were negative on the AgB1 assay. Conclusions The structural characterization of subunits provides insights into the synthetic antigen conformation. The stage-related sensitivity of synthetic AgB1 holds promise as part of a multiantigen setting and deserves further longitudinal evaluation as marker of cyst viability.
Collapse
Affiliation(s)
- Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Francesca Tamarozzi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy
| | - Anna Maria Roggio
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Vittorio Tedde
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Gabriella Masu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Cinzia Santucciu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Ambra Vola
- WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.,European Union Reference Laboratory for Parasites (EURLP), Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Masala
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Enrico Brunetti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy.,Department of Biomedical Sciences, University of Sassari, Italy
| |
Collapse
|
17
|
Li Y, Li L. Mass Accuracy Check Using Common Background Peaks for Improving Metabolome Data Quality in Chemical Isotope Labeling LC-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1733-1741. [PMID: 31140076 DOI: 10.1007/s13361-019-02248-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Chemical isotope labeling (CIL) LC-MS is a highly sensitive and quantitative method for metabolome analysis. Because of a large number of peaks detectable in a sample and the need of running many samples in a metabolomics project, any significant change in mass measurement accuracy during the whole period of running samples can adversely affect the downstream peak alignment and quantitative analysis. Herein, we report a rapid method to check the mass accuracy of individual spectra in each CIL LC-MS run in order to flag up any run containing spectra with accuracy drift that falls outside the expected error. The flagged run may be re-run or discarded before merging with other runs for peak alignment and analysis. This method is based on the observation that some background signals are commonly detected in almost all spectra collected in CIL LC-MS runs. A mass accuracy check (MAC) software program has been developed to first find the common background mass peaks and then use them as mass references to calculate any mass shifts over the course of multiple sample runs. Using a metabolome dataset of 324 human cerebrospinal fluid (CSF) samples and 35 quality control (QC) samples produced by CIL LC-MS, we show that this accuracy check method can streamline the initial raw data processing for downstream analysis in metabolomics.
Collapse
Affiliation(s)
- Yunong Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
18
|
Chai Y, Chen H, Gao G, Liu X, Lu C. Identification of new interferences leached from plastic microcentrifuge tubes in electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:969-977. [PMID: 30861230 DOI: 10.1002/rcm.8431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE The incredible sensitivity of the modern mass spectrometry instrument enables scientists to detect a large number of molecules ranging from small organic compounds to biological macromolecules. However, the same sensitivity often throws up challenges with respect to background interferences and contaminants. The identification and source of these contaminants is very important for reducing background contamination and ensuring the accuracy of the analysis results. METHODS The interfering compounds were analyzed by high-performance liquid chromatography coupled with a hybrid quadrupole-orbitrap mass spectrometer. The structural analysis was conducted by obtaining the accurate masses of precursors and their fragment ions. The retention time and MS/MS spectrum of one of the interfering compounds (N-lauryldiethanolamine) were compared with an authentic standard to reach an unequivocal structural assignment. RESULTS The interferences (m/z 274 and 318 in positive mode) were observed during the analysis of herbicides in tea samples by electrospray ionization mass spectrometry (ESI-MS). Their structures were identified to be N-lauryldiethanolamine and N-(2-hydroxyethyl)-N-(2-(2-hydroxyethoxy)ethyl)dodecylamine by fragmentation interpretation and further confirmed by a standard compound. These interferences were found to be leached from the plastic microcentrifuge tubes used during sample pretreatment. The plastic tubes from two of the five suppliers tested were found to contain these two interferences. CONCLUSIONS In this work, we presented an example about the observation, identification and source of interferences in ESI-MS. The N-lauryldiethanolamine and other ethoxylated aliphatic alkylamines are common plastic antistatic agents. They possess high proton affinity so that they show a strong response in ESI positive mode. In order to avoid their interference during mass spectrometric analysis we need to choose plastic tubes (or other plastic materials) that do not contain such antistatic agents.
Collapse
Affiliation(s)
- Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
| | - Guanwei Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, P. R. China
| |
Collapse
|
19
|
Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:4883-4898. [PMID: 30989265 PMCID: PMC6611759 DOI: 10.1007/s00216-019-01764-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023]
Abstract
Despite the attractiveness of breath analysis as a non-invasive means to retrieve relevant metabolic information, its introduction into routine clinical practice remains a challenge. Among all the different analytical techniques available to interrogate exhaled breath, secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) offers a number of advantages (e.g., real-time, yet wide, metabolome coverage) that makes it ideal for untargeted and targeted studies. However, so far, SESI-HRMS has relied mostly on lab-built prototypes, making it difficult to standardize breath sampling and subsequent analysis, hence preventing further developments such as multi-center clinical studies. To address this issue, we present here a number of new developments. In particular, we have characterized a new SESI interface featuring real-time readout of critical exhalation parameters such as CO2, exhalation flow rate, and exhaled volume. Four healthy subjects provided breath specimens over a period of 1 month to characterize the stability of the SESI-HRMS system. A first assessment of the repeatability of the system using a gas standard revealed a coefficient of variation (CV) of 2.9%. Three classes of aldehydes, namely 4-hydroxy-2-alkenals, 2-alkenals and 4-hydroxy-2,6-alkedienals―hypothesized to be markers of oxidative stress―were chosen as representative metabolites of interest to evaluate the repeatability and reproducibility of this breath analysis analytical platform. Median and interquartile ranges (IQRs) of CVs for CO2, exhalation flow rate, and exhaled volume were 3.2% (1.5%), 3.1% (1.9%), and 5.0% (4.6%), respectively. Despite the high repeatability observed for these parameters, we observed a systematic decay in the signal during repeated measurements for the shorter fatty aldehydes, which eventually reached a steady state after three/four repeated exhalations. In contrast, longer fatty aldehydes showed a steady behavior, independent of the number of repeated exhalation maneuvers. We hypothesize that this highly molecule-specific and individual-independent behavior may be explained by the fact that shorter aldehydes (with higher estimated blood-to-air partition coefficients; approaching 100) mainly get exchanged in the airways of the respiratory system, whereas the longer aldehydes (with smaller estimated blood-to-air partition coefficients; approaching 10) are thought to exchange mostly in the alveoli. Exclusion of the first three exhalations from the analysis led to a median CV (IQR) of 6.7 % (5.5 %) for the said classes of aldehydes. We found that such intra-subject variability is in general much lower than inter-subject variability (median relative differences between subjects 48.2%), suggesting that the system is suitable to capture such differences. No batch effect due to sampling date was observed, overall suggesting that the intra-subject variability measured for these series of aldehydes was biological rather than technical. High correlations found among the series of aldehydes support this notion. Finally, recommendations for breath sampling and analysis for SESI-HRMS users are provided with the aim of harmonizing procedures and improving future inter-laboratory comparisons. Graphical abstract ![]()
Collapse
|
20
|
Rardin MJ. Rapid Assessment of Contaminants and Interferences in Mass Spectrometry Data Using Skyline. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1327-1330. [PMID: 29667163 DOI: 10.1007/s13361-018-1940-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/16/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Proper sample preparation in proteomic workflows is essential to the success of modern mass spectrometry experiments. Complex workflows often require reagents which are incompatible with MS analysis (e.g., detergents) necessitating a variety of sample cleanup procedures. Efforts to understand and mitigate sample contamination are a continual source of disruption with respect to both time and resources. To improve the ability to rapidly assess sample contamination from a diverse array of sources, I developed a molecular library in Skyline for rapid extraction of contaminant precursor signals using MS1 filtering. This contaminant template library is easily managed and can be modified for a diverse array of mass spectrometry sample preparation workflows. Utilization of this template allows rapid assessment of sample integrity and indicates potential sources of contamination. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew J Rardin
- Discovery Attribute Sciences, Amgen, South San Francisco, CA, 94080, USA.
| |
Collapse
|
21
|
Kumbhani SR, Wingen LM, Perraud V, Finlayson-Pitts BJ. A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1659-1668. [PMID: 28782138 DOI: 10.1002/rcm.7951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Ambient ionization mass spectrometry methods are convenient, sensitive and require little sample preparation. However, they are susceptible to species present in air surrounding the mass spectrometer. This study identifies some challenges associated with the potential impacts of indoor air contaminants on ionization and analysis involving open-air methods. METHODS Unexpected effects of volatile organic compounds (VOCs) from floor maintenance activities on ambient ionization mass spectrometry were studied using three different ambient ionization techniques. Extractive electrospray ionization (EESI), direct analysis in real time (DART) and ionization by piezoelectric direct discharge (PDD) plasma were demonstrated in this study to be affected by indoor air contaminants. Identification of contaminant vapors was verified by comparison with standards using EESI-MS/MS product ion scans. RESULTS Emissions of diethylene glycol monoethyl ether and ethylene glycol monobutyl ether are identified from floor stripping and waxing solutions using three ambient ionization mass spectrometry techniques. These unexpected indoor air contaminants are capable of more than 75% ion suppression of target analytes due to their high volatility, proton affinity and solubility compared with the target analytes. The contaminant vapors are also shown to form adducts with one of the target analytes. CONCLUSIONS The common practice in MS analysis of subtracting a background air spectrum may not be appropriate if the presence of ionizable air contaminants alters the spectrum in unexpected ways. For example, VOCs released into air from floor stripping and waxing are capable of causing ion suppression of target analytes.
Collapse
Affiliation(s)
- Sambhav R Kumbhani
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
22
|
Abstract
OBJECTIVES The aim of this study was to identify an epithelial cell line isolated from the spontaneous differentiation of totipotent pig epiblast cells. METHODS PICM-31 and its colony-cloned derivative cell line, PICM-31A, were established from the culture and differentiation of an epiblast mass isolated from an 8-day-old pig blastocyst. The cell lines were analyzed by transmission electron microscopy, marker gene expression, and mass spectroscopy-based proteomics. RESULTS The PICM-31 cell lines were continuously cultured and could be successively colony cloned. They spontaneously self-organized into acinarlike structures. Transmission electron microscopy indicated that the cell lines' cells were epithelial and filled with secretory granules. Candidate gene expression analysis of the cells showed an exocrine pancreatic profile that included digestive enzyme expression, for example, carboxypeptidase A1, and expression of the fetal marker, α-fetoprotein. Pancreatic progenitor marker expression included pancreatic and duodenal homeobox 1, NK6 homeobox 1, and pancreas-specific transcription factor 1a, but not neurogenin 3. Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratins 8 and 18. CONCLUSIONS The PICM-31 cell lines provide in vitro models of fetal pig pancreatic exocrine cells. They are the first demonstration of continuous cultures, that is, cell lines, of nontransformed pig pancreas cells.
Collapse
|
23
|
Carvalho AS, Cuco CM, Lavareda C, Miguel F, Ventura M, Almeida S, Pinto P, de Abreu TT, Rodrigues LV, Seixas S, Bárbara C, Azkargorta M, Elortza F, Semedo J, Field JK, Mota L, Matthiesen R. Bronchoalveolar Lavage Proteomics in Patients with Suspected Lung Cancer. Sci Rep 2017; 7:42190. [PMID: 28169345 PMCID: PMC5294405 DOI: 10.1038/srep42190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Lung cancer configures as one of the deadliest types of cancer. The future implementation of early screening methods such as exhaled breath condensate analysis and low dose computed tomography (CT) as an alternative to current chest imaging based screening will lead to an increased burden on bronchoscopy units. New approaches for improvement of diagnosis in bronchoscopy units, regarding patient management, are likely to have clinical impact in the future. Diagnostic approaches to address mortality of lung cancer include improved early detection and stratification of the cancers according to its prognosis and further response to drug treatment. In this study, we performed a detailed mass spectrometry based proteome analysis of acellular bronchoalveolar lavage (BAL) fluid samples on an observational prospective cohort consisting of 90 suspected lung cancer cases which were followed during two years. The thirteen new lung cancer cases diagnosed during the follow up time period clustered, based on liquid chromatography-mass spectrometry (LC-MS) data, with lung cancer cases at the time of BAL collection. Hundred and thirty-tree potential biomarkers were identified showing significantly differential expression when comparing lung cancer versus non-lung cancer. The regulated biomarkers showed a large overlap with biomarkers detected in tissue samples.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.,Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Célia Marina Cuco
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Carla Lavareda
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Francisco Miguel
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Mafalda Ventura
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Sónia Almeida
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Paula Pinto
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Tavares de Abreu
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luís Vaz Rodrigues
- Department of Pulmonology, Unidade Local de Saúde da Guarda, Faculty of Health Sciences, University of Beira Interior, Portugal
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Cristina Bárbara
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Júlio Semedo
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Leonor Mota
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.,Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Chen J, Wang F, Liu Z, Liu J, Zhu Y, Zhang Y, Zou H. Electrospray ionization in concentrated acetonitrile vapor improves the performance of mass spectrometry for proteomic analyses. J Chromatogr A 2017; 1483:101-109. [DOI: 10.1016/j.chroma.2016.12.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/03/2023]
|
25
|
Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, Matthiesen R. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteomics 2016; 156:20-28. [PMID: 28043878 DOI: 10.1016/j.jprot.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022]
Abstract
Tetracyclines are among the most commonly used antibiotics administrated to farm animals for disease treatment and prevention, contributing to the worldwide increase in antibiotic resistance in animal and human pathogens. Although tetracycline mechanisms of resistance are well known, the role of metabolism in bacterial reaction to antibiotic stress is still an important assignment and could contribute to the understanding of tetracycline related stress response. In this study, spectral counts-based label free quantitative proteomics has been applied to study the response to tetracycline of the environmental-borne Escherichia coli EcAmb278 isolate soluble proteome. A total of 1484 proteins were identified by high resolution mass spectrometry at a false discovery rate threshold of 1%, of which 108 were uniquely identified under absence of tetracycline whereas 126 were uniquely identified in presence of tetracycline. These proteins revealed interesting difference in e.g. proteins involved in peptidoglycan-based cell wall proteins and energy metabolism. Upon treatment, 12 proteins were differentially regulated showing more than 2-fold change and p<0.05 (p value corrected for multiple testing). This integrated study using high resolution mass spectrometry based label-free quantitative proteomics to study tetracycline antibiotic response in the soluble proteome of resistant E. coli provides novel insight into tetracycline related stress. SIGNIFICANCE The lack of new antibiotics to fight infections caused by multidrug resistant microorganisms has motivated the use of old antibiotics, and the search for new drug targets. The evolution of antibiotic resistance is complex, but it is known that agroecosystems play an important part in the selection of antibiotic resistance bacteria. Tetracyclines are still used as phytopharmaceutical agents in crops, selecting resistant bacteria and changing the ecology of farm soil. Little is known about the metabolic response of genetically resistant populations to antibiotic exposure. Indeed, to date there are no quantitative tetracycline resistance studies performed with the latest generation of high resolution mass spectrometers allowing high mass accuracy in both MS and MS/MS scans. Here, we report the proteome profiling of a soil-borne Escherichia coli upon tetracycline stress, so that this new perspective could provide a broaden understanding of the metabolic responses of E. coli to a widely used antibiotic.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Inês Barata Moura
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, Department of Genetic and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, New University of Lisbon, Monte da Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
26
|
Carvalho AS, Molina H, Matthiesen R. New insights into functional regulation in MS-based drug profiling. Sci Rep 2016; 6:18826. [PMID: 26743025 PMCID: PMC4705526 DOI: 10.1038/srep18826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022] Open
Abstract
We present a novel data analysis strategy which combined with subcellular fractionation and liquid chromatography–mass spectrometry (LC-MS) based proteomics provides a simple and effective workflow for global drug profiling. Five subcellular fractions were obtained by differential centrifugation followed by high resolution LC-MS and complete functional regulation analysis. The methodology combines functional regulation and enrichment analysis into a single visual summary. The workflow enables improved insight into perturbations caused by drugs. We provide a statistical argument to demonstrate that even crude subcellular fractions leads to improved functional characterization. We demonstrate this data analysis strategy on data obtained in a MS-based global drug profiling study. However, this strategy can also be performed on other types of large scale biological data.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- Computational and Experimental Biology Group, National Health Institute Dr. Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399
| | - Rune Matthiesen
- Computational and Experimental Biology Group, National Health Institute Dr. Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| |
Collapse
|
27
|
Richards SA, Stutzer C, Bosman AM, Maritz-Olivier C. Transmembrane proteins--Mining the cattle tick transcriptome. Ticks Tick Borne Dis 2015; 6:695-710. [PMID: 26096851 DOI: 10.1016/j.ttbdis.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
Managing the spread and load of pathogen-transmitting ticks is an important task worldwide. The cattle tick, Rhipicephalus microplus, not only impacts the economy through losses in dairy and meat production, but also raises concerns for human health in regards to the potential of certain transmitted pathogens becoming zoonotic. However, novel strategies to control R. microplus are hindered by lack of understanding tick biology and the discovery of suitable vaccine or acaricide targets. The importance of transmembrane proteins as vaccine targets are well known, as is the case in tick vaccines with Bm86 as antigen. In this study, we describe the localization and functional annotation of 878 putative transmembrane proteins. Thirty proteins could be confirmed in the R. microplus gut using LC-MS/MS analysis and their roles in tick biology are discussed. To the best of our knowledge, 19 targets have not been reported before in any proteomics study in various tick species and the possibility of using the identified proteins as targets for tick control are discussed. Although tissue expression of identified putative proteins through expansive proteomics is necessary, this study demonstrates the possibility of using bioinformatics for the identification of targets for further evaluation in tick control strategies.
Collapse
Affiliation(s)
- Sabine A Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Anna-Mari Bosman
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
28
|
Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Höfte H, Lerouge P, Schaller A, Pelloux J. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. ANNALS OF BOTANY 2014; 114:1161-75. [PMID: 24665109 PMCID: PMC4195543 DOI: 10.1093/aob/mcu035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/13/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform. METHODS Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development. KEY RESULTS A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm. CONCLUSIONS By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME-SBT pairs.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Lucile Graff
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Ogier Surcouf
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Paulo Marcelo
- ICAP, UPJV, 1-3 Rue des Louvels, F-80037 Amiens, France
| | - Catherine Rayon
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Sophie Bouton
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| | - Alain Mareck
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Gregory Mouille
- IJPB, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles, France
| | - Annick Stintzi
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Herman Höfte
- IJPB, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles, France
| | - Patrice Lerouge
- EA4358-Glyco-MEV, IFRMP 23, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Andreas Schaller
- Universität Hohenheim, Institut für Physiologie und Biotechnologie der Pflanzen (260), D-70593 Stuttgart, Germany
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
29
|
Gurdak E, Green FM, Rakowska PD, Seah MP, Salter TL, Gilmore IS. VAMAS Interlaboratory Study for Desorption Electrospray Ionization Mass Spectrometry (DESI MS) Intensity Repeatability and Constancy. Anal Chem 2014; 86:9603-11. [DOI: 10.1021/ac502075t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Elzbieta Gurdak
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Felicia M. Green
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Paulina D. Rakowska
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Martin P. Seah
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Tara L. Salter
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Ian S. Gilmore
- National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| |
Collapse
|
30
|
Carvalho AS, Ribeiro H, Voabil P, Penque D, Jensen ON, Molina H, Matthiesen R. Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress. Mol Cell Proteomics 2014; 13:3294-307. [PMID: 25128556 DOI: 10.1074/mcp.m113.034363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the molecular effects of glucosamine supplements, a popular and safe alternative to nonsteroidal anti-inflammatory drugs, for decreasing pain, inflammation, and maintaining healthy joints. Numerous studies have reported an array of molecular effects after glucosamine treatment. We questioned whether the differences in the effects observed in previous studies were associated with the focus on a specific subproteome or with the use of specific cell lines or tissues. To address this question, global mass spectrometry- and transcription array-based glucosamine drug profiling was performed on malignant cell lines from different stages of lymphocyte development. We combined global label-free MS-based protein quantitation with an open search for modifications to obtain the best possible proteome coverage. Our data were largely consistent with previous studies in a variety of cellular models. We mainly observed glucosamine induced O-GlcNAcylation/O-GalNAcylation (O-HexNAcylation); however, we also observed global and local changes in acetylation, methylation, and phosphorylation. For example, our data provides two additional examples of "yin-yang" between phosphorylation and O-HexNAcylation. Furthermore, we mapped novel O-HexNAc sites on GLU2B and calnexin. GLU2B and calnexin are known to be located in the endoplasmic reticulum (ER) and involved in protein folding and quality control. The O-HexNAc sites were regulated by glucosamine treatment and correlated with the up-regulation of the ER stress marker GRP78. The occupancy of O-HexNAc on GLU2B and calnexin sites differed between the cytosolic and nuclear fractions with a higher occupancy in the cytosolic fraction. Based on our data we propose the hypothesis that O-HexNAc either inactivates calnexin and/or targets it to the cytosolic fraction. Further, we hypothesize that O-HexNAcylation induced by glucosamine treatment enhances protein trafficking.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- From the ‡Proteolysis in Diseases, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; §Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Helena Ribeiro
- From the ‡Proteolysis in Diseases, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Paula Voabil
- From the ‡Proteolysis in Diseases, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Deborah Penque
- §Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Ole N Jensen
- ¶Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense
| | - Henrik Molina
- ‖Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399
| | - Rune Matthiesen
- From the ‡Proteolysis in Diseases, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; §Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| |
Collapse
|
31
|
Staes A, Vandenbussche J, Demol H, Goethals M, Yilmaz Ş, Hulstaert N, Degroeve S, Kelchtermans P, Martens L, Gevaert K. Asn3, a reliable, robust, and universal lock mass for improved accuracy in LC-MS and LC-MS/MS. Anal Chem 2013; 85:11054-60. [PMID: 24134513 DOI: 10.1021/ac4027093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of internal calibrants (the so-called lock mass approach) provides much greater accuracy in mass spectrometry based proteomics. However, the polydimethylcyclosiloxane (PCM) peaks commonly used for this purpose are quite unreliable, leading to missing calibrant peaks in spectra and correspondingly lower mass measurement accuracy. Therefore, we here introduce a universally applicable and robust internal calibrant, the tripeptide Asn3. We show that Asn3 is a substantial improvement over PCM both in terms of consistent detection and resulting mass measurement accuracy. Asn3 is also very easy to adopt in the lab, as it requires only minor adjustments to the analytical setup.
Collapse
Affiliation(s)
- An Staes
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Caperna TJ, Shannon AE, Garrett WM, Ramsay TG, Blomberg LA, Elsasser TH. Identification and characterization of a nuclear factor-κ B-p65 proteolytic fragment in nuclei of porcine hepatocytes in monolayer culture. Domest Anim Endocrinol 2013; 45:154-62. [PMID: 24011531 DOI: 10.1016/j.domaniend.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 01/12/2023]
Abstract
Hepatic responses to proinflammatory signals are controlled by the activation of several transcription factors, including, nuclear factor-κ B (NF-κB). In this study, hepatocytes prepared from suckling pigs and maintained in serum-free monolayer culture were used to define a novel proinflammatory cytokine-specific NF-κB subunit modification. The immunoreactive p65 protein was detected by Western blot analysis at the appropriate molecular weight in the cytosol of control cultures and those incubated with tumor necrosis factor-α (TNF). However, in nuclei, the p65 antisera cross-reacted with a protein of approximately 38 kDa (termed p38) after TNF addition, which was not observed in the cytosol of control or cytokine-treated cells. Specifically, incubation with TNF also resulted in phosphorylation (P < 0.05) of the inhibitor complex protein (IκB), whereas incubation with other cytokines, IL-6, IL-17a, or oncostatin M was not associated with either phosphorylation of IκB or nuclear translocation of p65. Intracellular endothelial nitric oxide synthase was deceased (P < 0.05) and plasminogen activator inhibitor-1 secretion was increased (P < 0.05) after TNF incubation. The TNF-induced p38 protein was purified from hepatocyte nuclei by immunoprecipitation, concentrated by electrophoresis, and subsequently analyzed by mass spectrometry. Ten unique NF-κB p65 peptides were identified after digestion with trypsin and chymotrypsin; however, all were mapped to the N-terminus and within the first 310 amino acid residues of the intact p65 protein. Although low molecular weight immunoreactive p65 molecules were previously observed in various human and rodent systems, this is the first report to positively identify the p38 fragment within hepatocyte nuclei or after specific cytokine (TNF) induction.
Collapse
Affiliation(s)
- T J Caperna
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA, Agricultural Research Service, Bldg 200, Rm 202, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Resende VMF, Vasilj A, Santos KS, Palma MS, Shevchenko A. Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics 2013; 13:2638-48. [DOI: 10.1002/pmic.201300038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Virgínia Maria Ferreira Resende
- Division of Clinical Immunology and Allergy; Department of Medicine, University of São Paulo; São Paulo SP Brazil
- Institute for Investigation in Immunology (iii-INCT); São Paulo SP Brazil
- MPI of Molecular Cell Biology and Genetics; Dresden Germany
| | - Andrej Vasilj
- MPI of Molecular Cell Biology and Genetics; Dresden Germany
| | - Keity Souza Santos
- Division of Clinical Immunology and Allergy; Department of Medicine, University of São Paulo; São Paulo SP Brazil
- Institute for Investigation in Immunology (iii-INCT); São Paulo SP Brazil
| | - Mario Sergio Palma
- Institute for Investigation in Immunology (iii-INCT); São Paulo SP Brazil
- Institute of Biosciences of Rio Claro; Sao Paulo State University (UNESP); Rio Claro SP Brazil
| | | |
Collapse
|
34
|
Barry JA, Robichaud G, Muddiman DC. Mass recalibration of FT-ICR mass spectrometry imaging data using the average frequency shift of ambient ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1137-45. [PMID: 23715870 PMCID: PMC3739293 DOI: 10.1007/s13361-013-0659-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 05/04/2023]
Abstract
Achieving and maintaining high mass measurement accuracy (MMA) throughout a mass spectrometry imaging (MSI) experiment is vital to the identification of the observed ions. However, when using FTMS instruments, fluctuations in the total ion abundance at each pixel due to inherent biological variation in the tissue section can introduce space charge effects that systematically shift the observed mass. Herein we apply a recalibration based on the observed cyclotron frequency shift of ions found in the ambient laboratory environment, polydimethylcyclosiloxanes (PDMS). This calibration method is capable of achieving part per billion (ppb) mass accuracy with relatively high precision for an infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI dataset. Comparisons with previously published mass calibration approaches are also presented.
Collapse
Affiliation(s)
| | | | - David C. Muddiman
- Author for Correspondence W.M. Keck FT-ICR Mass Spectrometry Laboratory Department of Chemistry North Carolina State University Raleigh, North Carolina 27695 Phone: 919-513-0084 Fax: 919-513-7993
| |
Collapse
|
35
|
Natarajan. Analysis of Soybean Embryonic Axis Proteins by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. ACTA ACUST UNITED AC 2013. [DOI: 10.6000/1927-5129.2013.09.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
36
|
Abstract
Peak extraction from raw data is the first step in LC-MS data analysis. The quality of this procedure is important since it affects the quality and accuracy of all subsequent analysis such as database searches and peak quantitation. The most important and most accurately measured physical entity provided by mass spectrometers is m/z values which need to be extracted by state of art algorithms and scrutinized thoroughly. The aim of this chapter is to provide a discussion of peak processing methods and furthermore discuss some of the yet unresolved or neglected issues. A few novel concepts are also proposed for analysis and visualization. The final section of this chapter provides a note on possible software for spectra processing.
Collapse
Affiliation(s)
- Rune Matthiesen
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
37
|
Abstract
The frequent used bottom-up strategy for identification of proteins and their associated modifications generate nowadays typically thousands of MS/MS spectra that normally are matched automatically against a protein sequence database. Search engines that take as input MS/MS spectra and a protein sequence database are referred as database-dependent search engines. Many programs both commercial and freely available exist for database-dependent search of MS/MS spectra and most of the programs have excellent user documentation. The aim here is therefore to outline the algorithm strategy behind different search engines rather than providing software user manuals. The process of database-dependent search can be divided into search strategy, peptide scoring, protein scoring, and finally protein inference. Most efforts in the literature have been put in to comparing results from different software rather than discussing the underlining algorithms. Such practical comparisons can be cluttered by suboptimal implementation and the observed differences are frequently caused by software parameters settings which have not been set proper to allow even comparison. In other words an algorithmic idea can still be worth considering even if the software implementation has been demonstrated to be suboptimal. The aim in this chapter is therefore to split the algorithms for database-dependent searching of MS/MS data into the above steps so that the different algorithmic ideas become more transparent and comparable. Most search engines provide good implementations of the first three data analysis steps mentioned above, whereas the final step of protein inference are much less developed for most search engines and is in many cases performed by an external software. The final part of this chapter illustrates how protein inference is built into the VEMS search engine and discusses a stand-alone program SIR for protein inference that can import a Mascot search result.
Collapse
Affiliation(s)
- Rune Matthiesen
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
38
|
Reichel C. Mass spectrometric analysis of EPO IEF-PAGE interfering substances in nitrile examination gloves. Drug Test Anal 2012; 4:761-74. [PMID: 23081906 DOI: 10.1002/dta.1424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 11/07/2022]
Abstract
Direct detection of doping with recombinant erythropoietins (rhEPO) is accomplished by isoelectric focusing (IEF) or sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE). In a recent publication, Lasne et al. (Electrophoresis 2011, 32, 1444) showed that improper use of nitrile examination gloves during sample collection, sample preparation, and IEF-PAGE may lead to distorted or absent EPO IEF-profiles. In order to clarify which substances are responsible for this observation, a mass spectrometric study on water extractable compounds found in nitrile gloves was performed. Several substance classes were shown to be present, among them polyethylene glycols (PEG), anionic and nonionic surfactants, as well as alcohol ethoxylates and plasticizers. It could be demonstrated that alkylbenzenesulfonates, the main category of detectable anionic detergents, and among them sodium dodecylbenzenesulfonate (SDBS) and its homologs, are the prime reason for the interference of nitrile gloves with EPO IEF-PAGE.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, A-2444, Seibersdorf, Austria
| |
Collapse
|
39
|
Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta 2012; 741:70-7. [DOI: 10.1016/j.aca.2012.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022]
|
40
|
Vasilj A, Gentzel M, Ueberham E, Gebhardt R, Shevchenko A. Tissue proteomics by one-dimensional gel electrophoresis combined with label-free protein quantification. J Proteome Res 2012; 11:3680-9. [PMID: 22671763 DOI: 10.1021/pr300147z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Label-free methods streamline quantitative proteomics of tissues by alleviating the need for metabolic labeling of proteins with stable isotopes. Here we detail and implement solutions to common problems in label-free data processing geared toward tissue proteomics by one-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectrometry (geLC MS/MS). Our quantification pipeline showed high levels of performance in terms of duplicate reproducibility, linear dynamic range, and number of proteins identified and quantified. When applied to the liver of an adenomatous polyposis coli (APC) knockout mouse, we demonstrated an 8-fold increase in the number of statistically significant changing proteins compared to alternative approaches, including many more previously unidentified hydrophobic proteins. Better proteome coverage and quantification accuracy revealed molecular details of the perturbed energy metabolism.
Collapse
Affiliation(s)
- Andrej Vasilj
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
41
|
Lorenzo Tejedor M, Mizuno H, Tsuyama N, Harada T, Masujima T. In Situ Molecular Analysis of Plant Tissues by Live Single-Cell Mass Spectrometry. Anal Chem 2012; 84:5221-8. [DOI: 10.1021/ac202447t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mónica Lorenzo Tejedor
- Graduate School
of Biomedical
Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami, Hiroshima 734-8553, Japan
| | - Hajime Mizuno
- Graduate School
of Biomedical
Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami, Hiroshima 734-8553, Japan
| | - Naohiro Tsuyama
- Graduate School
of Biomedical
Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami, Hiroshima 734-8553, Japan
| | - Takanori Harada
- Graduate School
of Biomedical
Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami, Hiroshima 734-8553, Japan
| | - Tsutomu Masujima
- Graduate School
of Biomedical
Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami, Hiroshima 734-8553, Japan
- Quantitative Biology Center
(QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka
565-0874, Japan
| |
Collapse
|
42
|
Scheltema RA, Mann M. SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components. J Proteome Res 2012; 11:3458-66. [PMID: 22515319 DOI: 10.1021/pr201219e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the advent of high-throughput mass spectrometry (MS)-based proteomics, the magnitude and complexity of the performed experiments has increased dramatically. Likewise, investments in chromatographic and MS instrumentation are a large proportion of the budget of proteomics laboratories. Guarding measurement quality and maximizing uptime of the LC-MS/MS systems therefore requires constant care despite automated workflows. We describe a real-time surveillance system, called SprayQc, that continuously monitors the status of the peripheral equipment to ensure that operational parameters are within an acceptable range. SprayQc is composed of multiple plug-in software components that use computer vision to analyze electrospray conditions, monitor the chromatographic device for stable backpressure, interact with a column oven to control pressure by temperature, and ensure that the mass spectrometer is still acquiring data. Action is taken when a failure condition has been detected, such as stopping the column oven and the LC flow, as well as automatically notifying the appropriate operator. Additionally, all defined metrics can be recorded synchronized on retention time with the MS acquisition file, allowing for later inspection and providing valuable information for optimization. SprayQc has been extensively tested in our laboratory, supports third-party plug-in development, and is freely available for download from http://sourceforge.org/projects/sprayqc .
Collapse
Affiliation(s)
- Richard A Scheltema
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
43
|
Iron dextran treatment does not induce serum protein carbonyls in the newborn pig. Animal 2012; 6:79-86. [DOI: 10.1017/s1751731111001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Zhang Y, Wen Z, Washburn MP, Florens L. Improving proteomics mass accuracy by dynamic offline lock mass. Anal Chem 2011; 83:9344-51. [PMID: 22044264 DOI: 10.1021/ac201867h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several methods to obtain low-ppm mass accuracy have been described. In particular, online or offline lock mass approaches can use background ions, produced by electrospray under ambient conditions, as calibrants. However, background ions such as protonated and ammoniated polydimethylcyclosiloxane ions have relatively weak and fluctuating intensity. To address this issue, we implemented dynamic offline lock mass (DOLM). Within every MS1 survey spectrum, DOLM dynamically selected the strongest n background ions for statistical treatments and m/z recalibration. We systematically optimized the mass profile abstraction method to find one single m/z value to represent an ion and the number of calibrants. To assess the influence of the intensity of the analyte ions, we used tandem mass spectroscopy (MS/MS) datasets obtained from MudPIT analyses of two protein samples with different dynamic ranges. DOLM outperformed both external mass calibration and offline lock mass that used predetermined calibrant ions, especially in the low-ppm range. The unique dynamic feature of DOLM was able to adapt to wide variations in calibrant intensities, leading to averaged mass error center at 0.03 ± 0.50 ppm for precursor ions. Such consistently tight mass accuracies meant that a precursor mass tolerance as low as 1.5 ppm could be used to search or filter post-search DOLM-recalibrated MS/MS datasets.
Collapse
Affiliation(s)
- Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
| | | | | | | |
Collapse
|
45
|
Rogeberg M, Wilson SR, Malerod H, Lundanes E, Tanaka N, Greibrokk T. High efficiency, high temperature separations on silica based monolithic columns. J Chromatogr A 2011; 1218:7281-8. [PMID: 21899856 DOI: 10.1016/j.chroma.2011.08.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.
Collapse
|
46
|
Cox J, Michalski A, Mann M. Software lock mass by two-dimensional minimization of peptide mass errors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1373-80. [PMID: 21953191 PMCID: PMC3231580 DOI: 10.1007/s13361-011-0142-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 05/09/2023]
Abstract
Mass accuracy is a key parameter in proteomic experiments, improving specificity, and success rates of peptide identification. Advances in instrumentation now make it possible to routinely obtain high resolution data in proteomic experiments. To compensate for drifts in instrument calibration, a compound of known mass is often employed. This 'lock mass' provides an internal mass standard in every spectrum. Here we take advantage of the complexity of typical peptide mixtures in proteomics to eliminate the requirement for a physical lock mass. We find that mass scale drift is primarily a function of the m/z and the elution time dimensions. Using a subset of high confidence peptide identifications from a first pass database search, which effectively substitute for the lock mass, we set up a global mathematical minimization problem. We perform a simultaneous fit in two dimensions using a function whose parameterization is automatically adjusted to the complexity of the analyzed peptide mixture. Mass deviation of the high confidence peptides from their calculated values is then minimized globally as a function of both m/z value and elution time. The resulting recalibration function performs equal or better than adding a lock mass from laboratory air to LTQ-Orbitrap spectra. This 'software lock mass' drastically improves mass accuracy compared with mass measurement without lock mass (up to 10-fold), with none of the experimental cost of a physical lock mass, and it integrated into the freely available MaxQuant analysis pipeline ( www.maxquant.org ).
Collapse
Affiliation(s)
- Jürgen Cox
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Annette Michalski
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
47
|
Shukla A, Zhang R, Orton DJ, Zhao R, Clauss TRW, Moore R, Smith RD. Formation of iron complexes from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1452-1456. [PMID: 21504012 PMCID: PMC3120053 DOI: 10.1002/rcm.5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid (TFA) that severely interfered with sample analysis. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are composed of three components; clusters of trifluoroacetic acid, clusters of mass 159 and iron. Formation of these ions is inhibited by removing TFA from the mobile phases and using formic acid in its place, replacing the stainless steel union with a titanium union or by adding a small blank fused-silica capillary column between the chromatography column and the electrospray tip via a stainless steel union without any adverse effects to chromatographic separation, peak broadening or peptide identifications.
Collapse
Affiliation(s)
- Anil Shukla
- Biological Separations and Mass Spectrometry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Reichel C. Practicing IEF-PAGE of EPO: the impact of detergents and sample application methods on analytical performance in doping control. Drug Test Anal 2011; 2:603-19. [PMID: 21204292 DOI: 10.1002/dta.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrophoretic techniques, namely isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) are key techniques used for confirming the doping-related abuse of recombinant erythropoietins and analogs. IEF-PAGE is performed on horizontal slab-gels with samples applied to the surface of the gel. Different sample application techniques can be employed, but application pieces and applicator strips are most frequently used. However, defective application pieces cause lane streaking during IEF of erythropoietin (EPO), which is especially pronounced in the acidic region of the gel. The effect is due to an incompatibility of the substance used for enhancing the wettability of the cellulose-based commercial product and is batch-dependent. A detailed mass spectrometric study was performed, which revealed that defective sample application pieces (bought between 2007 and 2010) contained a complex mixture of alcohol ethoxylates, alcohol ethoxysulfates, and alkyl sulfates (e.g. SDS). Anionic detergents, like the sulfates contained in these application pieces, are in general incompatible with IEF. Alternative application techniques proved partly useful. While homemade pieces made of blotting paper are a good alternative, the usage of applicator strips or shims is hampered by the risk of leaking wells, which lead to laterally diffused samples. Casting IEF-gels with wells appears to be the best solution, since sustained release of retained proteins from the application pieces can be avoided. Edge effects do not occur if wells are correctly filled with the samples. The evaluation of EPO-profiles with defects is prohibited by the technical document on EPO-analytics (TD2009EPO) of the World Anti-Doping Agency (WADA).
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, Seibersdorf, Austria.
| |
Collapse
|
49
|
Matthiesen R, Azevedo L, Amorim A, Carvalho AS. Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 2011; 11:604-19. [PMID: 21241018 DOI: 10.1002/pmic.201000404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 11/07/2022]
Abstract
Current proteomics technology is limited in resolving the proteome complexity of biological systems. The main issue at stake is to increase throughput and spectra quality so that spatiotemporal dimensions, population parameters and the complexity of protein modifications on a quantitative scale can be considered. MS-based proteomics and protein arrays are the main players in large-scale proteome analysis and an integration of these two methodologies is powerful but presently not sufficient for detailed quantitative and spatiotemporal proteome characterization. Improvements of instrumentation for MS-based proteomics have been achieved recently resulting in data sets of approximately one million spectra which is a large step in the right direction. The corresponding raw data range from 50 to 100 Gb and are frequently made available. Multidimensional LC-MS data sets have been demonstrated to identify and quantitate 2000-8000 proteins from whole cell extracts. The analysis of the resulting data sets requires several steps from raw data processing, to database-dependent search, statistical evaluation of the search result, quantitative algorithms and statistical analysis of quantitative data. A large number of software tools have been proposed for the above-mentioned tasks. However, it is not the aim of this review to cover all software tools, but rather discuss common data analysis strategies used by various algorithms for each of the above-mentioned steps in a non-redundant approach and to argue that there are still some areas which need improvements.
Collapse
Affiliation(s)
- Rune Matthiesen
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
50
|
Salter TL, Green FM, Faruqui N, Gilmore IS. Analysis of personal care products on model skin surfaces using DESI and PADI ambient mass spectrometry. Analyst 2011; 136:3274-80. [DOI: 10.1039/c1an15138j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|