2
|
Bello KE, Mat Jusoh TNA, Irekeola AA, Abu N, Mohd Amin NAZ, Mustaffa N, Shueb RH. A Recent Prevalence of Hepatitis B Virus (HBV) Genotypes and Subtypes in Asia: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:healthcare11071011. [PMID: 37046937 PMCID: PMC10094200 DOI: 10.3390/healthcare11071011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Background and Aim: Despite introducing the hepatitis B virus (HBV) vaccine, the incidence of the Hepatitis B virus globally is still a major health concern. This systematic review and meta-analysis were conducted to provide detailed information on the prevalence of HBV genotypes and subtypes in circulation in Asia. Methods: A systematic search for articles describing the prevalence of HBV genotypes and subtypes in Asia was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Results: Our search returned 207 eligible articles involving 49,279 genotypes and 7457 subtypes representing 28 Asian countries. A meta-analysis was performed on our eligible studies using the Random effect Model. The pooled prevalence of HBV genotypes showed that genotype C (30.9%) (95% CI, 27.5–34.5%; I2 = 97.57%; p < 0.001) was the most common HBV genotype in Asia, followed by genotype B (17.8%) (95% CI, 15.5–20.4%; I2 = 97.26%; p < 0.001) and genotype D (15.4%) (95% CI, 11.8–19.8%). Vietnam had the highest prevalence of genotype B, Lebanon had the highest prevalence of genotypes C, and Jordan had the highest prevalence of genotype D. There was variation in genotypic prevalence with respect to the target genes for HBV genotyping. Reverse dot blot hybridization had the highest estimate of genotypes B and C. HBV subtype C2 (40.0%) (95% CI, 33.3–47.0) is the most prevalent HBV subtype. Conclusion: Evidence from this study reveals that HBV genotypes C and B are the most dominant HBV genotypes in Asia, and HBV subtype C2 is more endemic in Asia.
Collapse
Affiliation(s)
- Kizito Eneye Bello
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Microbiology, Faculty of Natural Science, Kogi State University (Prince Abubakar Audu University), Anyigba 1008, Kogi State, Nigeria
| | - Tuan Nur Akmalina Mat Jusoh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa 4412, Kwara State, Nigeria
| | - Norhidayah Abu
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Advanced Materials Research Centre (A.M.R.E.C.), Lot 34 Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Nur Amalin Zahirah Mohd Amin
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nazri Mustaffa
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (I.N.F.O.R.M.M.), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Chowdhury FR, McNaughton AL, Amin MR, Barai L, Saha MR, Rahman T, Das BC, Hasan MR, Islam KMS, Faiz MA, Al-Mahtab M, Mokaya J, Kronsteiner B, Jeffery K, Andersson MI, de Cesare M, Ansari MA, Dunachie S, Matthews PC. Endemic HBV among hospital in-patients in Bangladesh, including evidence of occult infection. J Gen Virol 2021; 102. [PMID: 34328828 PMCID: PMC8491891 DOI: 10.1099/jgv.0.001628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bangladesh is one of the top-ten most heavily burdened countries for viral hepatitis, with hepatitis B (HBV) infections responsible for the majority of cases. Recombinant and occult HBV infections (OBI) have been reported previously in the region. We investigated an adult fever cohort (n=201) recruited in Dhaka, to determine the prevalence of HBV and OBI. A target-enrichment deep sequencing pipeline was applied to samples with HBV DNA >3.0 log10 IU ml−1. HBV infection was present in 16/201 (8 %), among whom 3/16 (19 %) were defined as OBI (HBsAg-negative but detectable HBV DNA). Whole genome deep sequences (WGS) were obtained for four cases, identifying genotypes A, C and D. One OBI case had sufficient DNA for sequencing, revealing multiple polymorphisms in the surface gene that may contribute to the occult phenotype. We identified mutations associated with nucleos(t)ide analogue resistance in 3/4 samples sequenced, although the clinical significance in this cohort is unknown. The high prevalence of HBV in this setting illustrates the importance of opportunistic clinical screening and DNA testing of transfusion products to minimise OBI transmission. WGS can inform understanding of diverse disease phenotypes, supporting progress towards international targets for HBV elimination.
Collapse
Affiliation(s)
- Fazle Rabbi Chowdhury
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand
| | - Anna L McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | | | - Lovely Barai
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Mili Rani Saha
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Tanjila Rahman
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Bikash Chandra Das
- Surveillance and Immunization Unit, World Health Organization Office, Dhaka 1200, Bangladesh
| | - M Rokibul Hasan
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - K M Shahidul Islam
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - M A Faiz
- Dev Care Foundation, Dhaka 1200, Bangladesh
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh
| | - Jolynne Mokaya
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Barbara Kronsteiner
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Katie Jeffery
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Monique I Andersson
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - M Azim Ansari
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Susanna Dunachie
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| |
Collapse
|
4
|
Javanmard D, Karbalaie Niya MH, Khalafkhany D, Najafi M, Ziaee M, Babaei MR, Kiani SJ, Esghaei M, Jazayeri SM, Panahi M, Safarnezhad Tameshkel F, Mehrabi M, Monavari SH, Bokharaei-Salim F. Downregulation of GSK3β and Upregulation of URG7 in Hepatitis B-Related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.100899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023]
Abstract
: Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC). The exact molecular contributors to the development of HBV-related HCC are not yet completely understood. Recent studies demonstrated that the deregulation of the Wnt pathway is highly associated with the development of HCC. Besides, HBV is known to have roles in the deregulation of this pathway. The present study evaluated the molecular aspects of the Wnt pathway in HBV-related HCC in liver tissue samples. Viral characterization was done by identifying the HBx mutations and the assessment of intrahepatic viral load. The expression of Wnt pathway genes was assessed using real-time PCR and methylation-specific PCR. The intrahepatic viral load was significantly higher in tumor samples than in normal tissues (P = 0.0008). Aberrant expression was observed in Wnt-1, Wnt-7a, FZD2, FZD7, β-catenin, URG7, c-Myc, SFRP5, and GSK3β, among which Wnt1, FZD2, SFRP5, Gsk3β, and URG7 were associated with HBV. HBx mutations at positions I88, L116, and I127 + F132 were associated with the decreased expression of GSK3β and overexpression of URG7 and Wnt1. Alterations in the expression level of β-catenin, as well as some mutants of HBx, were correlated with the level of c-Myc. HBV-related HCC seems to be mostly coordinated with epigenetic behaviors of HBx, such a multi-functional peptide with suppressing/trans-activating functions.
Collapse
|