1
|
Schreiber A, Ludwig S. Host-targeted antivirals against SARS-CoV-2 in clinical development - Prospect or disappointment? Antiviral Res 2025; 235:106101. [PMID: 39923941 DOI: 10.1016/j.antiviral.2025.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The global response to the COVID-19 pandemic, caused by the novel SARS-CoV-2 virus, has seen an unprecedented increase in the development of antiviral therapies. Traditional antiviral strategies have primarily focused on direct-acting antivirals (DAAs), which specifically target viral components. In recent years, increasing attention was given to an alternative approach aiming to exploit host cellular pathways or immune responses to inhibit viral replication, which has led to development of so-called host-targeted antivirals (HTAs). The emergence of SARS-CoV-2 and COVID-19 has promoted a boost in this field. Numerous HTAs have been tested and demonstrated their potential against SARS-CoV-2 through in vitro and in vivo studies. However, in striking contrast, only a limited number have successfully progressed to advanced clinical trial phases (2-4), and even less have entered clinical practice. This review aims to explore the current landscape of HTAs targeting SARS-CoV-2 that have reached phase 2-4 clinical trials. Additionally, it will explore the challenges faced in the development of HTAs and in gaining regulatory approval and market availability.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
2
|
Mosca E, Federa A, Pirker C, Schosserer M, Liendl L, Eckhard M, Sombke A, Dömötör O, Kirchhofer D, Timelthaler G, Baier D, Gurschka P, Gabler L, Reithofer M, Chin JM, Elsayad K, Englinger B, Tahir A, Kowol CR, Berger W. The tyrosine kinase inhibitor Nintedanib induces lysosomal dysfunctionality: Role of protonation-dependent crystallization processes. Chem Biol Interact 2024; 403:111243. [PMID: 39284504 DOI: 10.1016/j.cbi.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Nintedanib (NIN), a multi-tyrosine kinase inhibitor clinically approved for idiopathic pulmonary fibrosis and lung cancer, is characterized by protonation-dependent lysosomotropic behavior and appearance of lysosome-specific fluorescence emission properties. Here we investigate whether spontaneous formation of a so far unknown NIN matter within the acidic cell compartment is underlying these unexpected emissive properties and investigate the consequences on lysosome functionality. Lysosomes of cells treated with NIN, but not non-protonatable NIN derivatives, exhibited lysosome-associated birefringence signals co-localizing with the NIN-derived fluorescence emission. Sensitivity of both parameters towards vATPase inhibitors confirmed pH-dependent, spontaneous adoption of novel crystalline NIN structures in lysosomes. Accordingly, NIN crystallization from buffer solutions resulted in formation of multiple crystal polymorphs with pH-dependent fluorescence properties. Cell-free crystals grown at lysosomal-like pH conditions resembled NIN-treated cell lysosomes concerning fluorescence pattern, photobleaching dynamics, and Raman spectra. However, differences in birefringence intensity and FAIM-determined anisotropy, as well as predominant association with (intra)lysosomal membrane structures, suggested formation of a semi-solid NIN crystalline matter in acidic lysosomes. Despite comparable target kinase inhibition, NIN, but not its non-protonatable derivatives, impaired lysosomal functionality, mediated massive cell vacuolization, enhanced autophagy, deregulated lipid metabolism, and induced atypical phospholipidosis. Moreover, NIN exerted distinct phototoxicity, strictly dependent on lysosomal microcrystallization events. The spontaneous formation of NIN crystalline structures was also observable in the gut mucosa of orally NIN-treated mice. Summarizing, the here-described kinase inhibition-independent impact of NIN on lysosomal functionality mediates several of its cell biological activities and might contribute to NIN adverse effects.
Collapse
Affiliation(s)
- Elena Mosca
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Anja Federa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria; Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 40-42, 1090, Vienna, Austria
| | - Christine Pirker
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Markus Schosserer
- Center of Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Lisa Liendl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, H-6720, Dóm Tér 7-8, Szeged, Hungary
| | - Dominik Kirchhofer
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Gerald Timelthaler
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Dina Baier
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, 1090, Austria
| | - Patrizia Gurschka
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lisa Gabler
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Jia Min Chin
- Department of Functional Materials and Catalysis, Währinger Straße 42, 1090, Vienna, Austria
| | - Kareem Elsayad
- Division of Anatomy, Center of Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090, Vienna, Austria
| | - Bernhard Englinger
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria; Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; Section of Biomedical Sciences, Department of Health Sciences, FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| | - Walter Berger
- Center of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Shechter S, Pal RK, Trovato F, Rozen O, Gage MJ, Avni D. p70S6K as a Potential Anti-COVID-19 Target: Insights from Wet Bench and In Silico Studies. Cells 2024; 13:1760. [PMID: 39513867 PMCID: PMC11545240 DOI: 10.3390/cells13211760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The onset of SARS-CoV-2 infection in 2019 sparked a global COVID-19 pandemic. This infection is marked by a significant rise in both viral and host kinase activity. Our primary objective was to identify a pivotal host kinase essential for COVID-19 infection and the associated phenomenon of the cytokine storm, which may lead to long-term COVID-19 complications irrespective of viral genetic variations. To achieve this, our study tracked kinase phosphorylation dynamics in RAW264.7 macrophages following SPIKE transfection over time. Among the kinases surveyed, p70S6K (RPS6KB1) exhibited a 3.5-fold increase in phosphorylation at S418. This significant change prompted the selection of p70S6K for in silico investigation, utilizing its structure bound to M2698 (PDB: 7N93). M2698, an oral dual Akt/p70S6K inhibitor with an IC50 of 1.1 nM, exhibited psychosis side effects in phase I clinical trials, potentially linked to its interaction with Akt2. Our secondary objective was to discover a small-molecule analogue of M2698 that exhibits a distinct binding preference for p70S6K over Akt2 through computational modeling and analysis. The in silico part of our project began with validating the prediction accuracy of the docking algorithm, followed by an OCA analysis pinpointing specific atoms on M2698 that could be modified to enhance selectivity. Subsequently, our investigation led to the identification of an analog of M2698, designated as S34, that showed a superior docking score towards p70S6K compared to Akt2. To further assess the stability of S34 in its protein-ligand (PL) complexes with p70S6K and Akt2, MD simulations were conducted. These simulations suggest that S34, on average, forms two hydrogen bond interactions with p70S6K, whereas it only forms one hydrogen bond interaction with Akt2. This difference in hydrogen bond interactions likely contributed to the observed larger root mean square deviation (RMSD) of 0.3 nm in the S34-Akt2 complex, compared to 0.1 nm in the S34-p70S6K complex. Additionally, we calculated free binding energy to predict the strength of the binding interactions of S34 to p70S6K and Akt2, which showed ~2-fold favorable binding affinity of S34 in the p70S6K binding pocket compared to that in the Akt2 binding pocket. These observations may suggest that the S34-p70S6K complex is more stable than the S34-Akt2 complex. Our work focused on identifying a host kinase target and predicting the binding affinity of a novel small molecule to accelerate the development of effective treatments. The wet bench results specifically highlight p70S6K as a compelling anti-COVID-19 target. Meanwhile, our in silico investigations address the known off-target effects associated with M2698 by identifying a close analog called S34. In conclusion, this study presents novel and intriguing findings that could potentially lead to clinical applications with further investigations.
Collapse
Affiliation(s)
- Sharon Shechter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA; (S.S.); (M.J.G.)
| | | | - Fabio Trovato
- Psivant Therapeutics, 451 D Street, Boston, MA 02210, USA;
| | - Or Rozen
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel;
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA; (S.S.); (M.J.G.)
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL Galilee Research Institute, Kiryat Shmona 1101600, Israel;
| |
Collapse
|
4
|
Tuttolomondo M, Pham STD, Terp MG, Cendán Castillo V, Kalisi N, Vogel S, Langkjær N, Hansen UM, Thisgaard H, Schrøder HD, Palarasah Y, Ditzel HJ. A novel multitargeted self-assembling peptide-siRNA complex for simultaneous inhibition of SARS-CoV-2-host cell interaction and replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102227. [PMID: 38939051 PMCID: PMC11203390 DOI: 10.1016/j.omtn.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Effective therapeutics are necessary for managing severe COVID-19 disease despite the availability of vaccines. Small interfering RNA (siRNA) can silence viral genes and restrict SARS-CoV-2 replication. Cell-penetrating peptides is a robust method for siRNA delivery, enhancing siRNA stability and targeting specific receptors. We developed a peptide HE25 that blocks SARS-CoV-2 replication by various mechanisms, including the binding of multiple receptors involved in the virus's internalization, such as ACE2, integrins and NRP1. HE25 not only acts as a vehicle to deliver the SARS-CoV-2 RNA-dependent RNA polymerase siRNA into cells but also facilitates their internalization through endocytosis. Once inside endosomes, the siRNA is released into the cytoplasm through the Histidine-proton sponge effect and the selective cleavage of HE25 by cathepsin B. These mechanisms effectively inhibited the replication of the ancestral SARS-CoV-2 and the Omicron variant BA.5 in vitro. When HE25 was administered in vivo, either by intravenous injection or inhalation, it accumulated in lungs, veins and arteries, endothelium, or bronchial structure depending on the route. Furthermore, the siRNA/HE25 complex caused gene silencing in lung cells in vitro. The SARS-CoV-2 siRNA/HE25 complex is a promising therapeutic for COVID-19, and a similar strategy can be employed to combat future emerging viral diseases.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Stephanie Thuy Duong Pham
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mikkel Green Terp
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Virginia Cendán Castillo
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Nazmie Kalisi
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark
| | - Niels Langkjær
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ulla Melchior Hansen
- Department of Molecular Medicine, Imaging Core Facility, DaMBIC, University of Southern Denmark, 5000 Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Yaseelan Palarasah
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
5
|
Frasson I, Diamante L, Zangrossi M, Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F, Salata C, Dizanzo MP, Vaccaro L, Cacchiarelli D, Richter SN, Montagner M, Martello G. Identification of druggable host dependency factors shared by multiple SARS-CoV-2 variants of concern. J Mol Cell Biol 2024; 16:mjae004. [PMID: 38305139 PMCID: PMC11411213 DOI: 10.1093/jmcb/mjae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent the development of resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Clustered regularly interspaced short palindromic repeats screening identified host genes required for each variant during infection. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed the US Food and Drug Administration-approved drugs. All the drugs were highly active against all the tested variants, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early viral replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanized mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Linda Diamante
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Elena Carbognin
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua 35128, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | | | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples 80138, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Graziano Martello
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| |
Collapse
|
6
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
7
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Ali EA, Al-Sadi A, Al-maharmeh Q, Subahi EA, Bellamkonda A, Kalavar M, Panigrahi K, Alshurafa A, Yassin MA. SARS-CoV-2 and chronic myeloid leukemia: a systematic review. Front Med (Lausanne) 2024; 10:1280271. [PMID: 38327268 PMCID: PMC10847560 DOI: 10.3389/fmed.2023.1280271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus causing the coronavirus disease of 2019. The disease has caused millions of deaths since the first pandemic at the end of 2019. Immunocompromised individuals are more likely to develop severe infections. Numerous mutations had developed in SARS-CoV-2, resulting in strains (Alfa Beta Delta Omicron) with varying degrees of virulence disease severity. In CML (chronic myeloid leukemia) patients, there is a lot of controversy regarding the effect of the treatment on the patient outcome. Some reports suggested potential better outcomes among patients with CML, likely due to the use of TKI; other reports showed no significant effects. Additionally, it is unknown how much protection immunization provides for cancer patients. Method In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards, we conducted a systematic review. Retrospective, prospective studies, reviews, case series, and case reports of chronic myeloid leukemia patients aged above 18 years who had SARS-CoV-2 infection were included. English literature was screened using PubMed, SCOPUS, and Google Scholar. Search terms include chronic myeloid leukemia, chronic myelogenous leukemia, and SARS-CoV-2 and Coronavirus disease 2019 (COVID-19). We searched the reference lists of the included studies for any new articles. The search included all articles published up to April 20, 2023. The review is registered in PROSPERO (registration number CRD42022326674). Results We reviewed 33 articles of available published literature up to April 2023 and collected data from a total of 682 CML patients with COVID-19. Most patients were in the chronic phase, seven were in the accelerated phase, and eight were in the blast phase. Disease severity was classified according to WHO criteria. Mortality was seen in 45 patients, and there were no reports of thrombotic events. Two hundred seventy-seven patients were in the era before vaccination; among them, eight were in the intensive care unit (ICU), and mortality was 30 (11%). There were 405 patients after the era of vaccination; among them, death was reported in 15 (4%) patients and ICU in 13 patients. Limitations and conclusion The major limitation of this review is the lack of details about the use or hold of TKIs during SARS-CoV-2 infection. Additionally, after the appearance of the different variants of the SARS-CoV-2 virus, few studies mentioned the variant of the virus, which makes it difficult to compare the outcome of the other variants of the SARS-CoV-2 virus in patients with CML. Despite the limitations of the study, CML patients with COVID-19 have no significant increase in mortality compared to other hematological malignancy. Hematological cancers are associated with an increased risk of thrombosis, which is expected to increase in patients with COVID-19. However, patient with CML has not been reported to have a significant increase in thrombosis risk. The available data indicates that COVID-19's effect on patients with chronic myeloid leukemia (CML) still needs to be better understood due to the limited data. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID:326674.
Collapse
Affiliation(s)
- Elrazi A. Ali
- Internal Medicine Department, Interfaith Medical Center/One Brooklyn Health, Brooklyn, NY, United States
| | - Anas Al-Sadi
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Qusai Al-maharmeh
- Internal Medicine Department, Saint Michael's Medical Center, Newark, CA, United States
| | - Eihab A. Subahi
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Amulya Bellamkonda
- Internal Medicine Department, Interfaith Medical Center/One Brooklyn Health, Brooklyn, NY, United States
| | - Madhumati Kalavar
- Internal Medicine Department, Interfaith Medical Center/One Brooklyn Health, Brooklyn, NY, United States
| | - Kalpana Panigrahi
- Internal Medicine Department, Interfaith Medical Center/One Brooklyn Health, Brooklyn, NY, United States
| | - Awni Alshurafa
- Department of Oncology-Hematology, National Center for Cancer Care and Research – Hamad Medical Corporation, Doha, Qatar
| | - Mohamed A. Yassin
- Department of Oncology-Hematology, National Center for Cancer Care and Research – Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
9
|
Undi RB, Ahsan N, Larabee JL, Darlene-Reuter N, Papin J, Dogra S, Hannafon BN, Bronze MS, Houchen CW, Huycke MM, Ali N. Blocking of doublecortin-like kinase 1-regulated SARS-CoV-2 replication cycle restores cell signaling network. J Virol 2023; 97:e0119423. [PMID: 37861336 PMCID: PMC10688311 DOI: 10.1128/jvi.01194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.
Collapse
Affiliation(s)
- Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicole Darlene-Reuter
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James Papin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Samrita Dogra
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bethany N. Hannafon
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael S. Bronze
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Courtney W. Houchen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Naushad Ali
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
10
|
Di Primio C, Quaranta P, Mignanelli M, Siano G, Bimbati M, Scarlatti A, Piazza CR, Spezia PG, Perrera P, Basolo F, Poma AM, Costa M, Pistello M, Cattaneo A. Severe acute respiratory syndrome coronavirus 2 infection leads to Tau pathological signature in neurons. PNAS NEXUS 2023; 2:pgad282. [PMID: 37731949 PMCID: PMC10508204 DOI: 10.1093/pnasnexus/pgad282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
COVID-19 has represented an issue for global health since its outbreak in March 2020. It is now evident that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Here, several strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated on cellular extracts, subcellular fractions, and brain tissue. The viral proteins spike, nucleocapsid, and membrane were overexpressed in SH-SY5Y cells, and the direct interaction and effect on Tau phosphorylation were checked using immunoblot experiments. Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Our data support the hypothesis that SARS-CoV-2 infection in the central nervous system triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.
Collapse
Affiliation(s)
- Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Paola Quaranta
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Matteo Bimbati
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Arianna Scarlatti
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Carmen Rita Piazza
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Piero Giorgio Spezia
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Paola Perrera
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Virology Unit, Pisa University Hospital, Pisa 56100, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| |
Collapse
|
11
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
12
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
13
|
Ou H, Fan Y, Guo X, Lao Z, Zhu M, Li G, Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front Cell Infect Microbiol 2023; 13:1139998. [PMID: 37113134 PMCID: PMC10126306 DOI: 10.3389/fcimb.2023.1139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Guo
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| |
Collapse
|
14
|
Enzymatic approaches against SARS-CoV-2 infection with an emphasis on the telomere-associated enzymes. Biotechnol Lett 2023; 45:333-345. [PMID: 36707451 PMCID: PMC9883136 DOI: 10.1007/s10529-023-03352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
The pandemic phase of coronavirus disease 2019 (COVID-19) appears to be over in most countries. However, the unexpected behaviour and unstable nature of coronaviruses, including temporary hiatuses, re-emergence, emergence of new variants, and changing outbreak epicentres during the COVID-19 pandemic, have been frequently reported. The mentioned trend shows the fact that in addition to vaccine development, different strategies should be considered to deal effectively with this disease, in long term. In this regard, the role of enzymes in regulating immune responses to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently attracted much attention. Moreover, several reports confirm the association of short telomeres with sever COVID-19 symptoms. This review highlights the role of several enzymes involved in telomere length (TL) regulation and explains their relevance to SARS-CoV-2 infection. Apparently, inhibition of telomere shortening (TS) through inhibition and/or activation of these enzymes could be a potential target in the treatment of COVID-19, which may also lead to a reduction in disease severity.
Collapse
|