1
|
Yu Z, Feng C, Chen Y, Wang W, Zhao X. Untargeted metabolomics revealed that quercetin improved adrenal gland metabolism disorders and modulated the HPA axis in perimenopausal depression model rats. J Steroid Biochem Mol Biol 2025; 248:106696. [PMID: 39914680 DOI: 10.1016/j.jsbmb.2025.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
Perimenopausal depression is a psychiatric disorder that occurs around the time of menopause and seriously affects women's health. The pathogenesis of perimenopausal depression is unclear which affects its prevention and treatment. Quercetin is a flavonoid compound with antidepressant and estrogen-like effects. The aim of this research was to investigate the role of quercetin on adrenal gland metabolic disorders in perimenopausal depressed rats based on untargeted metabolomics. Female Wistar rats with no difference in sucrose preference were randomly separated into four groups (n = 12): sham-operated group; perimenopausal depression model group; model + 50 mg/kg.bw quercetin group; model + 0.27 mg/kg.bw 17β-estradiol group. After successful modeling, adrenal gland and hypothalamic samples were collected for metabolomics experiments and detection of related indicators. A total of 22 differential metabolites were identified in the model group, and pathway analysis revealed adrenal gland metabolism abnormalities including steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism. Notably, Spearman's rank correlation analysis between differential metabolites and rat behavioral results showed strong positive or negative correlations (P < 0.01). Meanwhile, the hypothalamus of the model group showed TrkB-BDNF signaling pathway abnormality, and the HPA axis was found to play an important role in perimenopausal depression. Treatment with quercetin or 17β-estradiol restored these abnormal changes. It suggested that quercetin can regulate adrenal metabolic disorders through multiple pathways, thereby ameliorating perimenopausal depression.Further more, quercetin can modulate HPA axis through the TrkB-BDNF signaling pathway. This research provides new ideas for the application of quercetin in the precaution and treatment of perimenopausal depression.
Collapse
Affiliation(s)
- Ziran Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precison Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Chenlu Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precison Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Ying Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precison Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Weidi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precison Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precison Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
2
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
3
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
4
|
France G, Volianskis R, Ingram R, Bannister N, Rothärmel R, Irvine MW, Fang G, Burnell ES, Sapkota K, Costa BM, Chopra DA, Dravid SM, Michael-Titus AT, Monaghan DT, Georgiou J, Bortolotto ZA, Jane DE, Collingridge GL, Volianskis A. Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators. Neuropharmacology 2022; 202:108840. [PMID: 34678377 PMCID: PMC8803579 DOI: 10.1016/j.neuropharm.2021.108840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity. This article is part of the Neuropharmacology Special Issue on ‘Glutamate Receptors – NMDA receptors’. NMDAR-dependent STP, LTP and LTD can be dissociated pharmacologically GluN2A/2B PAM UBP714 potentiates LTP and reduces LTD GluN2C/D PAM CIQ potentiates STP without affecting LTP NMDAR pan-PAM UBP709 potentiates LTD and reduces LTP
Collapse
Affiliation(s)
- G France
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Volianskis
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - R Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - N Bannister
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Rothärmel
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - M W Irvine
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G Fang
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - E S Burnell
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - K Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - B M Costa
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA & Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D A Chopra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - S M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - A T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - D T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - J Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Z A Bortolotto
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G L Collingridge
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - A Volianskis
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
5
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
6
|
Yamamoto G, Kamiya Y, Sasaki M, Ikoma M, Baba H, Kohno T. Neurosteroid dehydroepiandrosterone sulphate enhances pain transmission in rat spinal cord dorsal horn. Br J Anaesth 2019; 123:e215-e225. [PMID: 31030988 DOI: 10.1016/j.bja.2019.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The neurosteroid dehydroepiandrosterone sulphate (DHEAS) activates the sigma-1 receptor, inhibits gamma-aminobutyric acid A (GABAA) and glycine receptors, and induces hyperalgesic effects. Although its effects have been studied in various tissues of the nervous system, its synaptic mechanisms in nociceptive pathways remain to be elucidated. METHODS The threshold of mechanical hypersensitivity and spontaneous pain behaviour was assessed using the von Frey test in adult male Wistar rats after intrathecal administration of DHEAS. We also investigated the effects of DHEAS on synaptic transmission in the spinal dorsal horn using slice patch-clamp electrophysiology. RESULTS Intrathecally administered DHEAS elicited dose-dependent mechanical hyperalgesia and spontaneous pain behaviours (withdrawal threshold: saline; 51.0 [20.1] g, 3 μg DHEAS; 14.0 [7.8] g, P<0.01, 10 μg DHEAS; 6.9 [5.2] g, 15 min after administration, P<0.001). DHEAS at 100 μM increased the frequency of miniature postsynaptic currents in the rat dorsal spinal horn; this increase was extracellular Ca2+-dependent but not sigma-1 and N-methyl-d-aspartate receptor-dependent. DHEAS suppressed the frequency of miniature inhibitory postsynaptic currents in a GABAA receptor- and sigma-1 receptor-dependent manner. CONCLUSIONS These results suggest that DHEAS participates in the pathophysiology of nociceptive synaptic transmission in the spinal cord by potentiation of glutamate release and inhibition of the GABAA receptor.
Collapse
Affiliation(s)
- Goh Yamamoto
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Miho Ikoma
- Division of Palliative Medicine, Department of Medical Oncology, Niigata University Medical and Dental Hospital, Niigata City, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan; Department of Anesthesiology, Tohoku Medical and Pharmaceutical University, Sendai City, Japan
| |
Collapse
|
7
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
8
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
9
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
10
|
Kreinin A, Bawakny N, Ritsner MS. Adjunctive Pregnenolone Ameliorates the Cognitive Deficits in Recent-Onset Schizophrenia: An 8-Week, Randomized, Double-Blind, Placebo-Controlled Trial. CLINICAL SCHIZOPHRENIA & RELATED PSYCHOSES 2017; 10:201-210. [PMID: 24496044 DOI: 10.3371/csrp.krba.013114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to examine the effect of add-on treatment with the neurosteroid pregnenolone (PREG) on neurocognitive dysfunctions of patients with recent-onset schizophrenia (SZ) and schizoaffective disorder (SA). METHOD Sixty out- and inpatients that met DSM-IV criteria for SZ/SA were randomized to an 8-week, double-blind, randomized, placebo-controlled, 2-center trial. Participants received either pregnenolone (50 mg/d) or placebo added on to antipsychotic medications. Computerized Cambridge Automated Neuropsychological Test Battery measures were administered at baseline and after 4 and 8 weeks of treatment. ANOVA and paired t- or z-tests were applied to examine between- and within-group differences over time. RESULTS Compared to placebo, adjunctive PREG significantly reduced the deficits in visual attention measured with the Matching to Sample Visual Search task (p=0.002), with moderate effect sizes (d=0.42). In addition, a significant improvement was observed from baseline to end-of-study with respect to the visual (p=0.008) and sustained attention (Rapid Visual Information Processing, p=0.038) deficits, and executive functions (Stockings of Cambridge, p=0.049; Spatial Working Memory, p<0.001) among patients receiving PREG but not among those receiving placebo (all p's>0.05). This beneficial effect of PREG was independent of the type of antipsychotic agents, gender, age, education, and illness duration. CONCLUSIONS Pregnenolone augmentation demonstrated significant amelioration of the visual attention deficit in recent-onset SZ/SA. Long-term, large-scale studies are required to obtain greater statistical significance and more confident clinical generalization.
Collapse
|
11
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
13
|
Smith CC, Martin SC, Sugunan K, Russek SJ, Gibbs TT, Farb DH. A role for picomolar concentrations of pregnenolone sulfate in synaptic activity-dependent Ca2+ signaling and CREB activation. Mol Pharmacol 2014; 86:390-8. [PMID: 25057049 PMCID: PMC4164982 DOI: 10.1124/mol.114.094128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022] Open
Abstract
Fast excitatory synaptic transmission that is contingent upon N-methyl d-aspartate receptor (NMDAR) function contributes to core information flow in the central nervous system and to the plasticity of neural circuits that underlie cognition. Hypoactivity of excitatory NMDAR-mediated neurotransmission is hypothesized to underlie the pathophysiology of schizophrenia, including the associated cognitive deficits. The neurosteroid pregnenolone (PREG) and its metabolites pregnenolone sulfate (PregS) and allopregnanolone in serum are inversely associated with cognitive improvements after oral PREG therapy, raising the possibility that brain neurosteroid levels may be modulated therapeutically. PregS is derived from PREG, the precursor of all neurosteroids, via a single sulfation step and is present at low nanomolar concentrations in the central nervous system. PregS, but not PREG, augments long-term potentiation and cognitive performance in animal models of learning and memory. In this report, we communicate the first observation that PregS, but not PREG, is a potent (EC50 ∼2 pM) enhancer of intracellular Ca(2+) that is contingent upon neuronal activity, NMDAR-mediated synaptic activity, and L-type Ca(2+) channel activity. Low picomolar PregS similarly activates cAMP response element-binding protein (CREB) phosphorylation (within 10 minutes), an essential memory molecule, via an extracellular-signal-regulated kinase/mitogen-activated protein kinase signal transduction pathway. Taken together, the results are consistent with a novel biologic role for the neurosteroid PregS that acts at picomolar concentrations to intensify the intracellular response to glutamatergic signaling at synaptic but not extrasynaptic, NMDARs by differentially augmenting CREB activation. This provides a genomic signal transduction mechanism by which PregS could participate in memory consolidation of relevance to cognitive function.
Collapse
Affiliation(s)
- Conor C Smith
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Stella C Martin
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Kavitha Sugunan
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Shelley J Russek
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - David H Farb
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
14
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
15
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
16
|
The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 2013; 33:17290-300. [PMID: 24174662 DOI: 10.1523/jneurosci.2619-13.2013] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μM. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.
Collapse
|
17
|
Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules 2013; 18:12012-28. [PMID: 24084011 PMCID: PMC6270300 DOI: 10.3390/molecules181012012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 01/16/2023] Open
Abstract
Pregnenolone sulfate is a steroid metabolite with a plethora of actions and functions. As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from the pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Most recently, pregnenolone sulfate has been functionally “upgraded” from modulator of ion channels to an activating ion channel ligand. This review will focus on molecular aspects of the neurosteroid, pregnenolone sulfate, its metabolism, concentrations in serum and tissues and last not least will summarize the functional data.
Collapse
|
18
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
19
|
Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ, Gibbs TT, Farb DH. The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol Pharmacol 2013; 84:261-74. [PMID: 23716622 PMCID: PMC3716320 DOI: 10.1124/mol.113.085696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 01/06/2023] Open
Abstract
N-methyl D-aspartate (NMDA) receptors (NMDARs) mediate fast excitatory synaptic transmission and play a critical role in synaptic plasticity associated with learning and memory. NMDAR hypoactivity has been implicated in the pathophysiology of schizophrenia, and clinical studies have revealed reduced negative symptoms of schizophrenia with a dose of pregnenolone that elevates serum levels of the neuroactive steroid pregnenolone sulfate (PregS). This report describes a novel process of delayed-onset potentiation whereby PregS approximately doubles the cell's response to NMDA via a mechanism that is pharmacologically and kinetically distinct from rapid positive allosteric modulation by PregS. The number of functional cell-surface NMDARs in cortical neurons increases 60-100% within 10 minutes of exposure to PregS, as shown by surface biotinylation and affinity purification. Delayed-onset potentiation is reversible and selective for expressed receptors containing the NMDAR subunit subtype 2A (NR2A) or NR2B, but not the NR2C or NR2D, subunits. Moreover, substitution of NR2B J/K helices and M4 domain with the corresponding region of NR2D ablates rapid allosteric potentiation of the NMDA response by PregS but not delayed-onset potentiation. This demonstrates that the initial phase of rapid positive allosteric modulation is not a first step in NMDAR upregulation. Delayed-onset potentiation by PregS occurs via a noncanonical, pertussis toxin-sensitive, G protein-coupled, and Ca(2+)-dependent mechanism that is independent of NMDAR ion channel activation. Further investigation into the sequelae for PregS-stimulated trafficking of NMDARs to the neuronal cell surface may uncover a new target for the pharmacological treatment of disorders in which NMDAR hypofunction has been implicated.
Collapse
Affiliation(s)
- Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsutsui K, Haraguchi S, Inoue K, Miyabara H, Ubuka T, Hatori M, Hirota T, Fukada Y. New biosynthesis and biological actions of avian neurosteroids. J Exp Neurosci 2013; 7:15-29. [PMID: 25157204 PMCID: PMC4089810 DOI: 10.4137/jen.s11148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic pathways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hitomi Miyabara
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Megumi Hatori
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Wong P, Chang CCR, Marx CE, Caron MG, Wetsel WC, Zhang X. Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice. PLoS One 2012; 7:e51455. [PMID: 23240026 PMCID: PMC3519851 DOI: 10.1371/journal.pone.0051455] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/01/2012] [Indexed: 12/25/2022] Open
Abstract
Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS), which has been suggested to enhance cognitive functions through GABA(A) receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO). DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI) deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.
Collapse
Affiliation(s)
- Peiyan Wong
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Cecilia Chin Roei Chang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Christine E. Marx
- Durham VA Medical Center, Department of Veterans Affairs, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Physiology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2012; 64:13-26. [PMID: 22796429 DOI: 10.1016/j.neuropharm.2012.06.051] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
Abstract
NMDA receptors (NMDARs) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Graham L Collingridge
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS1 3NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka M, Sokabe M. Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 2012; 62:2373-87. [PMID: 22365983 DOI: 10.1016/j.neuropharm.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
Abstract
Both in vivo and in vitro studies have shown that neurosteroids promote learning and memory by modulating synaptic functions in the hippocampus. However, we do not know to what degree endogenously synthesized neurosteroids contribute to the hippocampal synaptic functions. Cytochrome P450scc is the enzyme that converts cholesterol to pregnenolone (PREG), which is required for the biosynthesis of all other neurosteroids. To investigate the physiological roles of endogenous neurosteroids in synaptic functions, we electrophysiologically examined the effects of aminoglutethimide (AG), a selective inhibitor of P450scc, on the synaptic transmission and plasticity in the dentate gyrus of rat hippocampal slices. The application of AG (100 μM) decreased the slope of the field excitatory postsynaptic potentials (fEPSPs) in granule cells by 20-30% in 20 min through the modulation of postsynaptic AMPA receptors, while it did not affect the presynaptic properties, including the paired-pulse ratio and the probability of glutamate release from presynaptic terminals. The AG-induced depression was nearly completely rescued by exogenously applied 500 nM PREG or by 1 nM dehydroepiandrosterone sulfate (DHEAS), one of the neurosteroids synthesized from PREG, suggesting that the AG-induced depression was caused by the loss of DHEAS. AG also reduced NMDA receptor activity, and suppressed high-frequency stimulation (HFS)-induced long-term potentiation (LTP). These findings provide novel evidence that the endogenous neurosteroids locally synthesized in the brain are required to maintain the normal excitatory synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan.
| | | |
Collapse
|
24
|
Chong SA, Campbell A, Chee M, Liu J, Marx C, McGorry P, Subramaniam M, Yung A, Keefe RSE. The Singapore flagship programme in translational and clinical research in psychosis. Early Interv Psychiatry 2011; 5:290-300. [PMID: 22032547 DOI: 10.1111/j.1751-7893.2011.00304.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM This paper describes the rationale, aims and development of the Singapore Translational and Clinical Research in Psychosis, which is a 5-year programme. METHODS The authors provide a selective review of the pertinent findings from the clinical, neuropsychological, genetics and neuroimaging studies on high-risk population and how they were factored in the hypotheses and design of this translational clinical research programme. RESULTS This programme, which draws upon the previous work of various groups and the experience of the investigators of this consortium, comprises three interlinked studies. The first is a genome-wide association and copy number variation analysis using the diagnostic phenotype of schizophrenia and cognitive phenotypes, and a joint genome-wide analysis performed by combining our data with other datasets to increase the power to detect genetic risk factors. The second is a prospective study of a large group of individuals who are assessed to be at ultra-high risk of psychosis, and the third is a randomized controlled trial to improve neurocognition in patients with schizophrenia. CONCLUSION The convergence of various factors including the unique structured characteristics of the Singaporean society, the presence of political will with availability of funding and the established research infrastructure make it possible to accrue the sample size for adequate power to elucidate biomarkers of disease risk and resilience.
Collapse
Affiliation(s)
- Siow-Ann Chong
- Research Division, Institute of Mental Health (Singapore),Buangkok Medical Park, 10 Buangkok View, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hornick A, Lieb A, Vo NP, Rollinger JM, Stuppner H, Prast H. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory. Neuroscience 2011; 197:280-92. [PMID: 21945033 PMCID: PMC3212650 DOI: 10.1016/j.neuroscience.2011.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/17/2011] [Accepted: 09/06/2011] [Indexed: 12/22/2022]
Abstract
In a previous study the simple, naturally derived coumarin scopoletin (SCT) was identified as an inhibitor of acetylcholinesterase (AChE), using a pharmacophore-based virtual screening approach. In this study the potential of SCT as procholinergic and cognition-enhancing therapeutic was investigated in a more detailed way, using different experimental approaches like measuring newly synthesized acetylcholine (ACh) in synaptosomes, long-term potentiation (LTP) experiments in hippocampal slices, and behavior studies. SCT enhanced the K+-stimulated release of ACh from rat frontal cortex synaptosomes, showing a bell-shaped dose effect curve (Emax: 4 μM). This effect was blocked by the nicotinic ACh receptor (nAChR) antagonists mecamylamine (MEC) and dihydro-β-erythroidine (DHE). The nAChR agonist (and AChE inhibitor) galantamine induced a similar increase in ACh release (Emax: 1 μM). SCT potentiated LTP in hippocampal slices of rat brain. The high-frequency stimulation (HFS)-induced, N-methyl-D-aspartate (NMDA) receptor dependent LTP of field excitatory postsynaptic potentials at CA3-CA1 synapses was greatly enhanced by pre-HFS application of SCT (4 μM for 4 min). This effect was mimicked by nicotine (2 μM) and abolished by MEC, suggesting an effect on nAChRs. SCT did not restore the total inhibition of LTP by NMDA receptor antagonist d, l-2-amino-5-phosphonopentanoic acid (AP-5). SCT (2 μg, i.c.v.) increased T-maze alternation and ameliorated novel object recognition of mice with scopolamine-induced cholinergic deficit. It also reduced age-associated deficits in object memory of 15–18-month-old mice (2 mg/kg sc). Our findings suggest that SCT possesses memory-improving properties, which are based on its direct nAChR agonistic activity. Therefore, SCT might be able to rescue impaired cholinergic functions by enhancing nAChR-mediated release of neurotransmitters and promoting neural plasticity in hippocampus.
Collapse
Affiliation(s)
- A Hornick
- Institute of Pharmacy/Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Str.1, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
26
|
Marx C, Bradford D, Hamer R, Naylor J, Allen T, Lieberman J, Strauss J, Kilts J. Pregnenolone as a novel therapeutic candidate in schizophrenia: emerging preclinical and clinical evidence. Neuroscience 2011; 191:78-90. [DOI: 10.1016/j.neuroscience.2011.06.076] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/30/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
27
|
Yang R, Zhou R, Chen L, Cai W, Tomimoto H, Sokabe M, Chen L. Pregnenolone sulfate enhances survival of adult-generated hippocampal granule cells via sustained presynaptic potentiation. Neuropharmacology 2011; 60:529-41. [DOI: 10.1016/j.neuropharm.2010.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/05/2023]
|
28
|
Petit GH, Tobin C, Krishnan K, Moricard Y, Covey DF, Rondi-Reig L, Akwa Y. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice. Eur Neuropsychopharmacol 2011; 21:211-5. [PMID: 21036556 PMCID: PMC3026085 DOI: 10.1016/j.euroneuro.2010.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 01/25/2023]
Abstract
This study examined the role of forebrain N-methyl-D-aspartate receptors (NMDA-Rs) in the promnesiant effects of natural (+) pregnenolone sulfate (PREGS) and its synthetic (-) enantiomer ent-PREGS in young adult mice. Using the two-trial arm discrimination task in a Y-maze, PREGS and ent-PREGS administration to control mice increased memory performances. In mice with a knock-out of the NR1 subunit of NMDA-Rs in the forebrain, the promnesiant effect of ent-PREGS was maintained whereas the activity of PREGS was lost. Memory enhancement by PREGS involves the NMDA-R activity in the hippocampal CA1 area and possibly in some locations of the cortical layers, whereas ent-PREGS acts independently of NMDA-R function.
Collapse
Affiliation(s)
- Géraldine H Petit
- Centre National de la Recherche Scientifique, Neurobiologie des Processus Adaptatifs (UMR7102), Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee KH, Cho JH, Choi IS, Park HM, Lee MG, Choi BJ, Jang IS. Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience 2010; 171:106-16. [PMID: 20816925 DOI: 10.1016/j.neuroscience.2010.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Pregnenolone sulfate (PS) acts as an excitatory neuromodulator and has a variety of neuropharmacological actions, such as memory enhancement and convulsant effects. In the present study, we investigated the effect of PS on glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) in acutely isolated dentate gyrus (DG) hilar neurons by use of a conventional whole-cell patch-clamp technique. PS significantly increased sEPSC frequency in a concentration-dependent manner without affecting the current amplitude, suggesting that PS acts presynaptically to increase the probability of spontaneous glutamate release. However, known molecular targets of PS, such as α7 nicotinic ACh, NMDA, σ1 receptors and voltage-dependent Ca(2+) channels, were not responsible for the PS-induced increase in sEPSC frequency. In contrast, the PS-induced increase in sEPSC frequency was completely occluded in a Ca(2+)-free external solution, and was significantly reduced by either the depletion of presynaptic Ca(2+) stores or the blockade of ryanodine receptors, suggesting that PS elicits Ca(2+)-induced Ca(2+) release (CICR) within glutamatergic nerve terminals. In addition, the PS-induced increase in sEPSC frequency was completely occluded by transient receptor potential (TRP) channel blockers. These data suggest that PS increases spontaneous glutamate release onto acutely isolated hilar neurons via presynaptic CICR, which was triggered by the influx of Ca(2+) through presynaptic TRP channels. The PS-induced modulation of excitatory transmission onto hilar neurons could have a broad impact on the excitability of hilar neurons and affect the pathophysiological functions mediated by the hippocampus.
Collapse
Affiliation(s)
- K H Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Cai W, Chen L, Zhou R, Furuya K, Sokabe M. Modulatory metaplasticity induced by pregnenolone sulfate in the rat hippocampus: a leftward shift in LTP/LTD-frequency curve. Hippocampus 2010; 20:499-512. [PMID: 19475651 DOI: 10.1002/hipo.20649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 muM to rat hippocampal slices induces a long-lasting potentiation (LLP(PREGS)) via a sustained ERK2/CREB activation at perforant-path/granule-cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLP(PREGS) influences subsequent frequency-dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1-200 Hz were given to the perforant-path of rat hippocampal slices expressing LLP(PREGS) to induce long-term potentiation (LTP) and long-term depression (LTD). The largest LTP was induced at about 20 Hz-CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz-CS, resulting in a leftward-shift of the LTP/LTD-frequency curve. Furthermore, the level of LTP at 100 Hz-CS was significantly attenuated to give band-pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz-CS (termed 20 Hz-LTP) was found to be postsynaptic origin and dependent on L-type voltage-gated calcium channel (L-VGCC) but not on N-methyl-D-aspartate receptor (NMDAr). Moreover, the induction of 20 Hz-LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L-VGCC dependent manner.
Collapse
Affiliation(s)
- Ling Chen
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
31
|
Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, Ervin JF, Strauss JL, Allen TB, Massing MW, Payne VM, Youssef NA, Shampine LJ, Marx CE. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer's disease compared to cognitively intact control subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:951-9. [PMID: 20488256 DOI: 10.1016/j.bbalip.2010.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/09/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
The neurosteroid allopregnanolone has pronounced neuroprotective actions, increases myelination, and enhances neurogenesis. Evidence suggests that allopregnanolone dysregulation may play a role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Our prior data demonstrate that allopregnanolone is reduced in prefrontal cortex in male patients with AD compared to male cognitively intact control subjects, and inversely correlated with neuropathological disease stage (Braak and Braak). We therefore determined if allopregnanolone levels are also reduced in AD patients compared to control subjects in temporal cortex, utilizing a larger set of samples from both male and female patients. In addition, we investigated if neurosteroids are altered in subjects who are APOE4 allele carriers. Allopregnanolone, dehydroepiandrosterone (DHEA), and pregnenolone levels were determined in temporal cortex postmortem samples by gas chromatography/mass spectrometry, preceded by high performance liquid chromatography (40 subjects with AD/41 cognitively intact control subjects). Allopregnanolone levels are reduced in temporal cortex in patients with AD (median 2.68 ng/g, n=40) compared to control subjects (median 5.64 ng/g, n=41), Mann-Whitney p=0.0002, and inversely correlated with Braak and Braak neuropathological disease stage (Spearman r=-0.38, p=0.0004). DHEA and pregnenolone are increased in patients with AD compared to control subjects. Patients carrying an APOE4 allele demonstrate reduced allopregnanolone levels in temporal cortex (Mann-Whitney p=0.04). In summary, our findings indicate that neurosteroids are altered in temporal cortex in patients with AD and related to neuropathological disease stage. In addition, the APOE4 allele is associated with reduced allopregnanolone levels. Neurosteroids may be relevant to the neurobiology and therapeutics of AD.
Collapse
Affiliation(s)
- Jennifer C Naylor
- VA Mid-Atlantic Mental Illness, Research and Clinical Center (MIRECC), Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reversal of propoxur-induced impairment of memory and oxidative stress by 4'-chlorodiazepam in rats. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:1-10. [PMID: 20012268 DOI: 10.1007/s00210-009-0475-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/09/2009] [Indexed: 12/27/2022]
Abstract
Carbamate pesticides like propoxur have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was designed to explore the modulation of the effects of propoxur over cognitive function by progesterone (PROG) and 4'-chlorodiazepam (4CD). Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus, transfer latency (TL) on a plus maze and spatial navigation test on Morris water maze. Oxidative stress was assessed by examining brain malondialdehyde (MDA) and reduced glutathione (GSH) levels and catalase (CAT) activity. A significant reduction in SDL and prolongation of TL and spatial navigation test was found for the propoxur (10 mg/kg/d; p.o.) treated group at weeks 6 and 7 as compared with control. One-week treatment with 4CD (0.5 mg/kg/d; i.p.) antagonized the effect of propoxur on SDL, spatial navigation test as well as TL; whereas, PROG failed to modulate this effect at a dose of 15 mg/kg/d, i.p. Propoxur produced a statistically significant increase in the brain MDA levels and decrease in the brain GSH levels and CAT activity. Treatment with 4CD at the above dose attenuated the effect of propoxur on oxidative stress whereas PROG (15 mg/kg/d; i.p.) failed to influence the same. The results of the present study thus show that 4-CD has the potential to attenuate cognitive dysfunction and oxidative stress induced by toxicants like propoxur in the brain.
Collapse
|
33
|
Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog Neurobiol 2009; 89:134-52. [DOI: 10.1016/j.pneurobio.2009.07.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 12/31/2022]
|
34
|
Marx CE, Keefe RSE, Buchanan RW, Hamer RM, Kilts JD, Bradford DW, Strauss JL, Naylor JC, Payne VM, Lieberman JA, Savitz AJ, Leimone LA, Dunn L, Porcu P, Morrow AL, Shampine LJ. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology 2009; 34:1885-903. [PMID: 19339966 PMCID: PMC3427920 DOI: 10.1038/npp.2009.26] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neurosteroid pregnenolone and its sulfated derivative enhance learning and memory in rodents. Pregnenolone sulfate also positively modulates NMDA receptors and could thus ameliorate hypothesized NMDA receptor hypofunction in schizophrenia. Furthermore, clozapine increases pregnenolone in rodent hippocampus, possibly contributing to its superior efficacy. We therefore investigated adjunctive pregnenolone for cognitive and negative symptoms in patients with schizophrenia or schizoaffective disorder receiving stable doses of second-generation antipsychotics in a pilot randomized, placebo-controlled, double-blind trial. Following a 2-week single-blind placebo lead-in, patients were randomized to pregnenolone (fixed escalating doses to 500 mg/day) or placebo, for 8 weeks. Primary end points were changes in BACS and MCCB composite and total SANS scores. Of 21 patients randomized, 18 completed at least 4 weeks of treatment (n=9/group). Pregnenolone was well tolerated. Patients receiving pregnenolone demonstrated significantly greater improvements in SANS scores (mean change=10.38) compared with patients receiving placebo (mean change=2.33), p=0.048. Mean composite changes in BACS and MCCB scores were not significantly different in patients randomized to pregnenolone compared with placebo. However, serum pregnenolone increases predicted BACS composite scores at 8 weeks in the pregnenolone group (r(s)=0.81, p=0.022). Increases in allopregnanolone, a GABAergic pregnenolone metabolite, also predicted BACS composite scores (r(s)=0.74, p=0.046). In addition, baseline pregnenolone (r(s)=-0.76, p=0.037), pregnenolone sulfate (r(s)=-0.83, p=0.015), and allopregnanolone levels (r(s)=-0.83, p=0.015) were inversely correlated with improvements in MCCB composite scores, further supporting a possible role for neurosteroids in cognition. Mean BACS and MCCB composite scores were correlated (r(s)=0.74, p<0.0001). Pregnenolone may be a promising therapeutic agent for negative symptoms and merits further investigation for cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eisenman LN, Shu HJ, Wang C, Aizenman E, Covey DF, Zorumski CF, Mennerick S. NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue. J Physiol 2009; 587:2937-47. [PMID: 19403611 DOI: 10.1113/jphysiol.2009.172700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors are widely studied because of their importance in synaptic plasticity and excitotoxic cell death. Here we report a novel method of potentiating NMDA receptors with fluorescence excited by blue (480 nm) light. In the presence of 300 nM of a (7-nitro-2,1,3-benzoxadiazol-4-yl) amino (NBD)-tagged neuroactive steroid carrier C2-NBD-(3alpha,5alpha)-3-hydroxypregnan-20-one (C2-NBD 3alpha5alphaP), responses of cultured hippocampal neurons to 10 microM NMDA were potentiated to 219.2 +/- 9.2% of the baseline response (100%) by a 30 s exposure to 480 nm light. The potentiation decayed back to baseline with a time constant of 80.6 s. Responses to 1 microM and 100 microM NMDA were potentiated to 147.9 +/- 9.6% and 174.1 +/- 15.6% of baseline, respectively, suggesting that visible-light potentiation is relatively insensitive to NMDA concentration. Peak autaptic NMDA responses were potentiated to 178.9 +/- 22.4% of baseline. Similar potentiation was seen with 10 microM NBD-lysine, suggesting that visible-light potentiation is not a steroid effect. Potentiation was also seen with a steroid analogue in which the NBD was replaced with fluorescein, suggesting that NBD is not the only fluorophore capable of supporting visible-light potentiation. UV light and redox potentiation of NMDA receptors largely occluded subsequent blue light potentiation (127.7 +/- 7.4% and 120.2 +/- 6.2% of baseline, respectively). The NR1a(C744A,C798A) mutant that is insensitive to redox and UV potentiation was also largely unaffected by visible-light potentiation (135.0 +/- 10.0% of baseline). Finally, we found that the singlet oxygen scavenger furfuryl alcohol decreased visible-light potentiation. Collectively, these data suggest that visible-light potentiation of NMDA receptors by fluorescence excitation shares mechanisms with UV and redox potentiation and may involve singlet oxygen production.
Collapse
Affiliation(s)
- Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8111, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
VanDongen A, Blanke M. Activation Mechanisms of the NMDA Receptor. BIOLOGY OF THE NMDA RECEPTOR 2008. [DOI: 10.1201/9781420044157.ch13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Whittaker MT, Gibbs TT, Farb DH. Pregnenolone sulfate induces NMDA receptor dependent release of dopamine from synaptic terminals in the striatum. J Neurochem 2008; 107:510-21. [PMID: 18710414 DOI: 10.1111/j.1471-4159.2008.05627.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuromodulators that alter the balance between lower-frequency glutamate-mediated excitatory and higher-frequency GABA-mediated inhibitory synaptic transmission are likely to participate in core mechanisms for CNS function and may contribute to the pathophysiology of neurological disorders such as schizophrenia and Alzheimer's disease. Pregnenolone sulfate (PS) modulates both ionotropic glutamate and GABA(A) receptor mediated synaptic transmission. The enzymes necessary for PS synthesis and degradation are found in brain tissue of several species including human and rat, and up to 5 nM PS has been detected in extracts of postmortem human brain. Here, we ask whether PS could modulate transmitter release from nerve terminals located in the striatum. Superfusion of a preparation of striatal nerve terminals comprised of mixed synaptosomes and synaptoneurosomes with brief-duration (2 min) pulses of 25 nM PS demonstrates that PS increases the release of newly accumulated [3H]dopamine ([3H]DA), but not [14C]glutamate or [3H]GABA, whereas pregnenolone is without effect. PS does not affect dopamine transporter (DAT) mediated uptake of [3H]DA, demonstrating that it specifically affects the transmitter release mechanism. The PS-induced [3H]DA release occurs via an NMDA receptor (NMDAR) dependent mechanism as it is blocked by D-2-amino-5-phosphonovaleric acid. PS modulates DA release with very high potency, significantly increasing [3H]DA release at PS concentrations as low as 25 pM. This first report of a selective direct enhancement of synaptosomal dopamine release by PS at picomolar concentrations via an NMDAR dependent mechanism raises the possibility that dopaminergic axon terminals may be a site of action for this neurosteroid.
Collapse
Affiliation(s)
- Matthew T Whittaker
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex. Int J Neuropsychopharmacol 2008; 11:611-24. [PMID: 18184443 DOI: 10.1017/s1461145707008334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pregnenolone sulphate (PREGS) is one of the most important neuroactive steroids. Previous study showed that PREGS enhanced long-term potentiation (LTP) via activation of post-synaptic NMDA receptors at excitatory synapses in the hippocampus. The present paper studied the effect of PREGS on LTP at excitatory synapses in the pyramidal cells of layers V-VI of the medial prefrontal cortex (mPFC) using whole-cell patch-clamp in slices and made a comparison with that in the hippocampus. We also studied the mechanism of the effect of PREGS in the mPFC. We found that PREGS inhibited induction of LTP in the mPFC and had no influence on NMDA currents, which was different from its effect in the hippocampus. Moreover, the effect of PREGS on LTP in the mPFC was cancelled by alpha2-adrenoreceptor antagonist, alpha2A-adrenoreceptor antagonist, Gi protein inhibitor, adenylate cyclase inhibitor and protein kinase A inhibitor. These results suggest that PREGS inhibits LTP via activation of the alpha2-adrenoreceptor-Gi protein-adenylate cyclase-protein kinase A signalling pathway in the mPFC.
Collapse
|
39
|
Martín-García E, Darbra S, Pallarés M. Neonatal finasteride induces anxiogenic-like profile and deteriorates passive avoidance in adulthood after intrahippocampal neurosteroid administration. Neuroscience 2008; 154:1497-505. [PMID: 18539400 DOI: 10.1016/j.neuroscience.2008.04.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/02/2023]
Abstract
Recent findings indicate that neurosteroids could act as important keys during the brain development. Fluctuations in neonatal allopregnanolone (AlloP) could result in altered pharmacological properties of the GABA(A) receptor system in adulthood. Recent studies demonstrated that neurosteroids play a critical role in regulating normal neurodevelopment in the hippocampus. The aim of the present work is to screen whether developmentally altered neurosteroid levels influence the behavioral response to adult intrahippocampal administration of AlloP, a GABA(A) positive modulating neurosteroid, and pregnenolone sulfate (PregS), a GABA(A) negative modulator in rats. For this purpose, pups received AlloP (10 mg/kg, s.c.), a 5alpha-reductase inhibitor (finasteride, 50 mg/kg, s.c.) or vehicle from the fifth to the ninth postnatal day. At maturity (i.e. 90 days old) a bilateral cannula was implanted into the hippocampus. After recovery from surgery, animals received an administration of AlloP (0.2 microg/0.5 microl), PregS (5 ng/0.5 microl) or vehicle in each hippocampus 5 min before they were tested in the elevated plus maze (EPM) and immediately after the passive avoidance training session, and retention was tested 24 h later. Results indicated that neonatal finasteride treatment deteriorated passive avoidance retention and elicited an anxiogenic-like effect in the EPM test in adulthood, as seen by the reduction of open arm entries and in the time spent in the open arms. Intrahippocampal PregS administration also disrupted passive avoidance, possibly related to its anxiogenic profile. Fluctuations in neonatal AlloP affect the aversive learning and the anxiety-related behavior in adulthood, and this effect could be in part mediated by alterations of the mature functions of the hippocampus, possibly via the GABA(A) receptor. These data point to the role of GABAergic neurosteroids in critical periods of vulnerability that influence normal development of GABAergic pathways in the CNS.
Collapse
Affiliation(s)
- E Martín-García
- Departament de Psicobiologia i Metodologia en Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Kohjitani A, Fuda H, Hanyu O, Strott CA. Regulation of SULT2B1a (pregnenolone sulfotransferase) expression in rat C6 glioma cells: Relevance of AMPA receptor-mediated NO signaling. Neurosci Lett 2008; 430:75-80. [DOI: 10.1016/j.neulet.2007.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/29/2007] [Accepted: 10/16/2007] [Indexed: 12/24/2022]
|
41
|
Schumacher M, Liere P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, Sjövall J, Baulieu EE. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int 2007; 52:522-40. [PMID: 18068870 DOI: 10.1016/j.neuint.2007.08.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/25/2007] [Accepted: 08/31/2007] [Indexed: 12/30/2022]
Abstract
Pregnenolone sulfate (PREGS) has been shown, either at high nanomolar or at micromolar concentrations, to increase neuronal activity by inhibiting GABAergic and by stimulating glutamatergic neurotransmission. PREGS is also a potent modulator of sigma type 1 (sigma1) receptors. It has been proposed that these actions of PREGS underlie its neuropharmacological effects, and in particular its influence on memory processes. On the other hand, the PREGS-mediated increase in neuronal excitability may become dangerous under particular conditions, for example in the case of excitotoxic stress or convulsions. However, the physiopathological significance of these observations has recently been put into question by the failure to detect significant levels of PREGS within the brain and plasma of rats and mice, either by direct analytical methods based on liquid chromatography/mass spectrometry (LC/MS) or enzyme linked immunosorbent assay (ELISA) with specific antibodies against PREGS, or by indirect gas chromatography/mass spectrometry (GC/MS) analysis with improved sample workup. These recent results have not come to the attention of a large number of neurobiologists interested in steroid sulfates. However, although available direct analytical methods have failed to detect levels of PREGS above 0.1-0.3 ng/g in brain tissue, it may be premature to completely exclude the local formation of biologically active PREGS within specific and limited compartments of the nervous system. In contrast to the situation in rodents, significant levels of sulfated 3beta-hydroxysteroids have been measured in human plasma and brain. Previous indirect measures of steroid sulfates by radioimmunoassays (RIA) or GC/MS had detected elevated levels of PREGS in rodent brain. The discrepancies between the results of different assay procedures have revealed the danger of indirect analysis of steroid sulfates. Indeed, PREGS must be solvolyzed/hydrolyzed prior to RIA or GC/MS analysis, and it is the released, unconjugated PREG which is then quantified. Extreme caution needs to be exercised during the preparation of samples for RIA or GC/MS analysis, because the fraction presumed to contain only steroid sulfates can be contaminated by nonpolar components from which PREG is generated by the solvolysis/hydrolysis/derivatization reactions.
Collapse
Affiliation(s)
- Michael Schumacher
- UMR 788 Inserm, University Paris-Sud 11, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sahaya K, Mahajan P, Mediratta PK, Ahmed RS, Sharma KK. Reversal of lindane-induced impairment of step-down passive avoidance and oxidative stress by neurosteroids in rats. Toxicology 2007; 239:116-26. [PMID: 17703867 DOI: 10.1016/j.tox.2007.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/09/2007] [Accepted: 06/29/2007] [Indexed: 11/17/2022]
Abstract
Neurosteroids (NS) are recognized as important modulators of functioning of the nervous system. Lindane, an organochlorine pesticide has been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was designed to explore the modulation of effects of lindane over cognitive function by progesterone (PROG), pregnenolone sulfate (PREG-S) and 4'-chlorodiazepam (4CD). Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on a plus maze. Oxidative stress was assessed by examining brain malondialdehyde (MDA) and non-protein thiol (NP-SH) levels. A significant reduction in SDL was found for the lindane treated group at weeks 6 and 7 as compared to control (p<0.001). One-week treatment by PREG-S or 4CD antagonized the effect of lindane on SDL. PROG failed to modulate the effect of lindane on SDL. Lindane caused a significant prolongation of TL as compared to control (p<0.001) from second week onwards. One-week administration of PROG, PREG-S or 4CD was unable to reverse this prolongation of TL. Lindane produced a statistically significant increase in the brain MDA levels (p<0.001) and significant decrease in the brain NP-SH levels (p<0.001). Treatment with PREG-S and 4CD attenuated the effect of lindane on MDA (p<0.001) and NP-SH levels. PROG failed to influence oxidative stress induced by lindane. Results of the present study thus show that some NS have potential in reversing cognitive dysfunction and oxidative stress induced by toxicants like lindane in the brain.
Collapse
Affiliation(s)
- Kinshuk Sahaya
- Department of Pharmacology, University College of Medical Sciences, University of Delhi, Delhi, India
| | | | | | | | | |
Collapse
|
43
|
Sabeti J, Nelson TE, Purdy RH, Gruol DL. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: Role for L-type calcium channels and sigma-receptors. Hippocampus 2007; 17:349-69. [PMID: 17330865 DOI: 10.1002/hipo.20273] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Severe stress elevates plasma and CNS levels of endogenous neuroactive steroids that can contribute to the influence of stress on memory formation. Among the neuroactive steroids, pregnenolone sulfate (PREGS) reportedly strengthens memories and is readily available as a memory-enhancing supplement. PREGS actions on memory may reflect its ability to produce changes in memory-related neuronal circuits, such as long-term potentiation (LTP) of excitatory transmission in hippocampus. Here, we report a previously undiscovered pathway by which PREGS exposure promotes activity-dependent LTP of field excitatory postsynaptic potentials at CA1 synapses in hippocampal slices. Thus, application of PREGS, but not the phosphated conjugate of the steroid, selectively facilitates the induction of a slow-developing LTP in response to high-frequency (100 Hz) afferent stimulation, which is not induced in the absence of the steroid. The slow-developing LTP is independent of NMDA-receptor function (i.e., dAP5 insensitive) but dependent on functional L-type voltage-gated calcium channels (VGCC) and sigma-receptors. By contrast, PREGS at the highest concentration tested produces a depression in NMDA-receptor-dependent LTP, which is evident when sigma-receptor function is compromised by the presence of a sigma-receptor antagonist. We found that at early times during the induction phase of L-type VGCC-dependent LTP, PREGS via sigma-receptors transiently enhances presynaptic function. As well, during the maintenance phase of L-type VGCC-dependent LTP, PREGS promotes a further increase in presynaptic function downstream of LTP induction, as evidenced by a decrease in paired-pulse facilitation. The identification of complex regulatory actions of PREGS on LTP, involving sigma-receptors, L-type VGCCs, NMDA-receptors, and inhibitory circuits will aid future research endeavors aimed at understanding the precise mechanisms by which this stress-associated steroid may engage multiple LTP-signaling pathways that alter synaptic transmission at memory-related synapses.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Dose-Response Relationship, Drug
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Male
- Memory/drug effects
- Memory/physiology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Organ Culture Techniques
- Pregnenolone/metabolism
- Pregnenolone/pharmacology
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, sigma/drug effects
- Receptors, sigma/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Synapses/drug effects
- Synapses/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Jilla Sabeti
- Molecular and Integrative Neurosciences Department (MIND), The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
44
|
Yau JLW, Noble J, Graham M, Seckl JR. Central administration of a cytochrome P450-7B product 7 alpha-hydroxypregnenolone improves spatial memory retention in cognitively impaired aged rats. J Neurosci 2006; 26:11034-40. [PMID: 17065445 PMCID: PMC6674665 DOI: 10.1523/jneurosci.3189-06.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pregnenolone (PREG) and dehydroepiandrosterone (DHEA) have been reported to improve memory in aged rodents. In brain, these neurosteroids are transformed predominantly into 7alpha-hydroxylated metabolites by the cytochrome P450-7B1 (CYP7B). The biological role of steroid B-ring hydroxylation is unclear. It has been proposed to generate bioactive derivatives that enhance cognition, immune, and other physiological processes. In support, 7alpha-hydroxylated DHEA increases the immune response in mice with greater potency than the parent steroid. Whether the memory-enhancing effects of PREG in rats is mediated via its 7alpha-hydroxylated metabolite 7alpha-hydroxyPREG is not known. We investigated this by treating memory-impaired aged rats (identified by their spatial memory performances in the Morris water maze task compared with young controls) with 7alpha-hydroxyPREG or PREG administered intracerebroventricularly using osmotic minipumps and then tested the rats during week 2 of steroid treatment in the eight-arm radial-arm version of the water maze (RAWM) that allows repeated assessment of learning. CYP7B bioactivity in hippocampal tissue (percentage conversion of [14C]DHEA to [14C]7alpha-hydroxyDHEA) was decreased selectively in memory-impaired aged rats compared with both young and memory-intact aged rats. 7alpha-hydroxyPREG (100 ng/h) but not PREG (100 ng/h) administration to memory-impaired aged rats for 11 d enhanced spatial memory retention (after a 30 min delay between an exposure trial 1 and test trial 2) in the RAWM. These data provide evidence for a biologically active enzyme product 7alpha-hydroxyPREG and suggests that reduced CYP7B function in the hippocampus of memory-impaired aged rats may, in part, be overcome by administration of 7alpha-hydroxyPREG.
Collapse
Affiliation(s)
- Joyce L W Yau
- Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Gibbs TT, Russek SJ, Farb DH. Sulfated steroids as endogenous neuromodulators. Pharmacol Biochem Behav 2006; 84:555-67. [PMID: 17023038 DOI: 10.1016/j.pbb.2006.07.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 11/18/2022]
Abstract
Central nervous system function is critically dependent upon an exquisitely tuned balance between excitatory synaptic transmission, mediated primarily by glutamate, and inhibitory synaptic transmission, mediated primarily by GABA. Modulation of either excitation or inhibition would be expected to result in altered functionality of finely tuned synaptic pathways and global neural systems, leading to altered nervous system function. Administration of positive or negative modulators of ligand-gated ion channels has been used extensively and successfully in CNS therapeutics, particularly for the induction of sedation and treatment of anxiety, seizures, insomnia, and pain. Excessive activation of excitatory glutamate receptors, such as in cerebral ischemia, can result in neuronal damage via excitotoxic mechanisms. The discovery that neuroactive steroids exert rapid, direct effects upon the function of both excitatory and inhibitory neurotransmitter receptors has raised the possibility that endogenous neurosteroids may play a regulatory role in synaptic transmission by modulating the balance between excitatory and inhibitory neurotransmission. The sites to which neuroactive steroids bind may also serve as targets for the discovery of therapeutic neuromodulators.
Collapse
Affiliation(s)
- Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, United States
| | | | | |
Collapse
|
46
|
Marx CE, Shampine LJ, Duncan GE, VanDoren MJ, Grobin AC, Massing MW, Madison RD, Bradford DW, Butterfield MI, Lieberman JA, Morrow AL. Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum: candidate mechanism for superior efficacy? Pharmacol Biochem Behav 2006; 84:598-608. [PMID: 16962649 DOI: 10.1016/j.pbb.2006.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/19/2006] [Accepted: 08/17/2006] [Indexed: 12/26/2022]
Abstract
Clozapine demonstrates superior efficacy in patients with schizophrenia, but the precise mechanisms contributing to this clinical advantage are not clear. Clozapine and olanzapine increase the GABAergic neuroactive steroid (NS) allopregnanolone, and it has been hypothesized that NS induction may contribute to the therapeutic actions of these agents. Pregnenolone administration improves learning and memory in rodent models, and decreases in this NS have been associated with depressive symptoms in humans. These pregnenolone characteristics may be relevant to the actions of antipsychotics. We therefore investigated potential pregnenolone alterations in rat hippocampus and cerebral cortex following clozapine, olanzapine, and other second generation agents as a candidate NS mechanism contributing to antipsychotic efficacy. In the first set of experiments, intact, adrenalectomized, and sham-operated male rats received vehicle or clozapine (20 mg/kg) IP. In the second set, male rats received vehicle, olanzapine (5 mg/kg), quetiapine (20 mg/kg), ziprasidone (10 mg/kg) or aripiprazole (5 mg/kg) IP. Pregnenolone levels were determined by gas chromatography/mass spectrometry. Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum; hippocampal levels were strongly correlated with serum levels (r=0.987). Olanzapine also elevates pregnenolone levels, but to a lesser degree than clozapine. Pregnenolone induction may contribute to the clinical actions of clozapine and olanzapine.
Collapse
|
47
|
Marx CE, Stevens RD, Shampine LJ, Uzunova V, Trost WT, Butterfield MI, Massing MW, Hamer RM, Morrow AL, Lieberman JA. Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology 2006; 31:1249-63. [PMID: 16319920 DOI: 10.1038/sj.npp.1300952] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence suggests that neuroactive steroids may be candidate modulators of schizophrenia pathophysiology and therapeutics. We therefore investigated neuroactive steroid levels in post-mortem brain tissue from subjects with schizophrenia, bipolar disorder, nonpsychotic depression, and control subjects to determine if neuroactive steroids are altered in these disorders. Posterior cingulate and parietal cortex tissue from the Stanley Foundation Neuropathology Consortium collection was analyzed for neuroactive steroids by negative ion chemical ionization gas chromatography/mass spectrometry preceded by high-performance liquid chromatography. Subjects with schizophrenia, bipolar disorder, nonpsychotic depression, and control subjects were group matched for age, sex, ethnicity, brain pH, and post-mortem interval (n = 14-15 per group, 59-60 subjects total). Statistical analyses were performed by ANOVA with post-hoc Dunnett tests on log transformed neuroactive steroid levels. Pregnenolone and allopregnanolone were present in human post-mortem brain tissue at considerably higher concentrations than typically observed in serum or plasma. Pregnenolone and dehydroepiandrosterone levels were higher in subjects with schizophrenia and bipolar disorder compared to control subjects in both posterior cingulate and parietal cortex. Allopregnanolone levels tended to be decreased in parietal cortex in subjects with schizophrenia compared to control subjects. Neuroactive steroids are present in human post-mortem brain tissue at physiologically relevant concentrations and altered in subjects with schizophrenia and bipolar disorder. A number of neuroactive steroids act at inhibitory GABA(A) and excitatory NMDA receptors and demonstrate neuroprotective and neurotrophic effects. Neuroactive steroids may therefore be candidate modulators of the pathophysiology of schizophrenia and bipolar disorder, and relevant to the treatment of these disorders.
Collapse
Affiliation(s)
- Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schiess AR, Partridge LD. Pregnenolone sulfate acts through a G-protein-coupled sigma1-like receptor to enhance short term facilitation in adult hippocampal neurons. Eur J Pharmacol 2005; 518:22-9. [PMID: 15996654 DOI: 10.1016/j.ejphar.2005.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 12/25/2022]
Abstract
Neurosteroids have been linked to cognitive performance, and their levels are altered in neuropsychiatric diseases. These neuromodulators are produced in the brain where they have important effects on synaptic transmission at postsynaptic gamma-amino-butyric acid receptors and N-methyl-D-aspartate receptors and at presynaptic sites. We previously found, in cultured neonatal hippocampal neurons, that the neurosteroid, pregnenolone sulfate, acts presynaptically through a sigma1-like receptor to modulate basal glutamate release. The present study was designed to test whether pregnenolone sulfate acts through a similar presynaptic receptor in adult hippocampal neurons. The sigma1-receptor agonist, 2-(4-morpholino)ethyl-1-phenylcyclohexane-1-carboxylate, enhanced paired-pulse facilitation (PPF) by a similar extent to that which we had previously reported for pregnenolone sulfate. The sigma1-receptor antagonists, 1-(4-Iodophenyl)-3-(2-adamantyl)guanidine and 1[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine, blocked the pregnenolone sulfate enhancement of PPF as did pretreatment of slices in pertussis toxin. We conclude that pregnenolone sulfate acts through a Gi/o-coupled sigma1-like receptor to enhance short-term presynaptic facilitation onto adult hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Adrian R Schiess
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | | |
Collapse
|