1
|
Hurst J, Attrodt G, Bartz-Schmidt KU, Mau-Holzmann UA, Spitzer MS, Schnichels S. A Case Study from the Past: "The RGC-5 vs. the 661W Cell Line: Similarities, Differences and Contradictions-Are They Really the Same?". Int J Mol Sci 2023; 24:13801. [PMID: 37762103 PMCID: PMC10531351 DOI: 10.3390/ijms241813801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
In the pursuit of identifying the underlying pathways of ocular diseases, the use of cell lines such as (retinal ganglion cell-5) RGC-5 and 661W became a valuable tool, including pathologies like retinal degeneration and glaucoma. In 2001, the establishment of the RGC-5 cell line marked a significant breakthrough in glaucoma research. Over time, however, concerns arose about the true nature of RGC-5 cells, with conflicting findings in the literature regarding their identity as retinal ganglion cells or photoreceptor-like cells. This study aimed to address the controversy surrounding the RGC-5 cell line's origin and properties by comparing it with the 661W cell line, a known cone photoreceptor model. Both cell lines were differentiated according to two prior published redifferentiation protocols under the same conditions using 500 nM of trichostatin A (TSA) and investigated for their morphological and neuronal marker properties. The results demonstrated that both cell lines are murine, and they exhibited distinct morphological and neuronal marker properties. Notably, the RGC-5 cells showed higher expression of the neuronal marker β-III tubulin and increased Thy-1-mRNA compared with the 661W cells, providing evidence of their different properties. The findings emphasize the importance of verifying the authenticity of cell lines used in ocular research and highlight the risks of contamination and altered cell properties.
Collapse
Affiliation(s)
- José Hurst
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Gesine Attrodt
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Karl-Ulrich Bartz-Schmidt
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Ulrike Angelika Mau-Holzmann
- Institute for Medical Genetics and Applied Genomics, Center for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tübingen, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany;
| | - Sven Schnichels
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| |
Collapse
|
2
|
Schmitt HM, Fehrman RL, Maes ME, Yang H, Guo LW, Schlamp CL, Pelzel HR, Nickells RW. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34398198 PMCID: PMC8375002 DOI: 10.1167/iovs.62.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. Methods Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. Results Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. Conclusions Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Heather M. Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Rachel L. Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
| | - Margaret E. Maes
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Huan Yang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Heather R. Pelzel
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Zhao M, Tao Y, Peng GH. The Role of Histone Acetyltransferases and Histone Deacetylases in Photoreceptor Differentiation and Degeneration. Int J Med Sci 2020; 17:1307-1314. [PMID: 32624685 PMCID: PMC7330661 DOI: 10.7150/ijms.43140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Photoreceptors are critical components of the retina and play a role in the first step of the conversion of light to electrical signals. The differentiation and degeneration of photoreceptors are regulated by specific genes and proteins. With the development of epigenetic approaches, scientists have discovered that histone modifications, such as acetylation, methylation, ubiquitylation, and phosphorylation, may modulate the processes of photoreceptor differentiation and degeneration. Histone acetylation is regulated by two opposing classes of enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs), which add and remove acetyl groups to and from target histones, respectively, causing changes in transcriptional activity. Herein, we review the effects of HATs and HDACs on the differentiation and degeneration of photoreceptors and discuss the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Meng Zhao
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Tao
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.,Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China.,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Yuan H, Li H, Yu P, Fan Q, Zhang X, Huang W, Shen J, Cui Y, Zhou W. Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury. BMC Ophthalmol 2018; 18:300. [PMID: 30453928 PMCID: PMC6245782 DOI: 10.1186/s12886-018-0951-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The role of histone deacetylases 6 (HDAC6) has been elucidated in various neurodegenerative diseases. However, the effect of HDAC6 on retinal degenerative processes remains unknown. The aim of this study was to elucidate the potential role of HDAC6 in the retinal ischaemia and reperfusion (I/R) injury model. METHODS The retinal pathological lesion was evaluated by haematoxylin and eosin (H&E) staining. HDAC expression or activity was detected by immunohistochemistry, Western blotting assays or colorimetric assays. The expression of apoptotic- and autophagic- related proteins were quantified by Western blotting and RT-PCR. The expression of peroxiredoxin 2 (Prx2) was determined by RT-PCR and ELISA. The levels of acetylated α-tubulin and acetylated histone 3 in the retina were assayed by Western blotting. RESULTS We found that I/R-induced reduction of the retinal thickness was ameliorated, and the survival of RGCs was increased by the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) as well as by tubacin (an HDAC6 selective inhibitor). The decreased expression of THY (thymus cell antigen) in the I/R-induced retinas was also reversed by TSA and tubacin. Elevated HDAC6 expression and activity in the retina from I/R injury were significantly inhibited by tubacin, which also attenuated I/R-mediated apoptosis by decreasing TUNEL-positive RGCs and Bax expression and increasing Bcl-2 expression. Additionally, tubacin increased the expression of autophagy-related gene Beclin 1 and microtubule-associated protein 1 light chain 3B (LC3B) and the levels of Prx2. Furthermore, the protective effect of tubacin was associated with acetylated α-tubulin and was independent of acetylated histone 3. CONCLUSIONS Our findings suggest that tubacin exhibits neuroprotective effects after I/R retinal injury, and HDAC6 may be a potential therapeutic target for the retinal neurodegenerative disease of glaucoma.
Collapse
Affiliation(s)
- Haihong Yuan
- Department of Pharmacy, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Hui Li
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Department of Pharmacy, Qingpu Branch of Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Ping Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Qichen Fan
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xuan Zhang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wei Huang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Junyi Shen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yongyao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jin Zun Road, Shanghai, 200125, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
5
|
Natoli R, Rutar M, Lu YZ, Chu-Tan JA, Chen Y, Saxena K, Madigan M, Valter K, Provis JM. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death. Curr Eye Res 2016; 41:1473-1481. [PMID: 27217092 DOI: 10.3109/02713683.2016.1139725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. METHODS 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. RESULTS We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. CONCLUSIONS Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.
Collapse
Affiliation(s)
- Riccardo Natoli
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| | - Matt Rutar
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Yen-Zhen Lu
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Joshua A Chu-Tan
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Yuwei Chen
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Kartik Saxena
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Michele Madigan
- c School of Optometry and Vision Sciences, University of New South Wales , Sydney , Australia
- d The Save Sight Institute, University of Sydney , Sydney , Australia
| | - Krisztina Valter
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| | - Jan M Provis
- a John Curtin School of Medical Research, Australian National University , Canberra , Australia
- b ANU Medical School, The Australian National University , Canberra , Australia
| |
Collapse
|
6
|
Natalino RJM, Antoneli CBG, Ribeiro KDCB, Campos AHJFM, Soares FA. Immunohistochemistry of apoptosis-related proteins in retinoblastoma. Pathol Res Pract 2016; 212:1144-1150. [PMID: 27697297 DOI: 10.1016/j.prp.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Retinoblastoma is the most common intraocular malignant neoplasia during childhood and results from the partial or total inactivity of the retinoblastoma protein (pRb). In the absence of pRb, the E2F transcription factors increase the levels of cell cycle proteins as well as some pro-apoptotic proteins. We intended to study the immunohistochemistry profile of apoptotic-related proteins in retinoblastoma. We also evaluated the association between the expression of apoptotic protein and stage of tumor or survivor after a 5year follow up. Apoptosis-related proteins (Apaf-1, Bak, Bax, Bcl-2, Bcl-xL, Bim-long, MDM2, p53, pro-caspase-3, PUMA, Smac/DIABLO and cleaved caspase-3) were evaluated using immunohistochemistry on tissue microarrays which contained samples of retinoblastoma tumors taken from ninety-three patients without any treatment previous to surgery. The immunohistochemistry reactions were evaluated using an optical microscope as well as the ACIS III® platform. The pro-apoptotic proteins (APAF-1, Bax, p53, PUMA, Smac/DIABLO) were more frequently expressed than the anti-apoptotic proteins (Bcl-2, Bcl-xL and MDM2). The protein Bcl-xL had a negative correlation with cleaved caspase-3, a marker of cell apoptosis. Bcl-xL may be implicated in an apoptosis block.
Collapse
|
7
|
Buurman R, Sandbothe M, Schlegelberger B, Skawran B. HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma. Eur J Med Res 2016; 21:26. [PMID: 27342975 PMCID: PMC4919854 DOI: 10.1186/s40001-016-0217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/11/2016] [Indexed: 01/04/2023] Open
Abstract
Background Histone deacetylation, a common hallmark in malignant tumors, strongly alters the transcription of genes involved in the control of proliferation, cell survival, differentiation and genetic stability. We have previously shown that HDAC1, HDAC2, and HDAC3 (HDAC1–3) genes encoding histone deacetylases 1–3 are upregulated in primary human hepatocellular carcinoma (HCC). The aim of this study was to characterize the functional effects of HDAC1–3 downregulation and to identify functionally important target genes of histone deacetylation in HCC. Methods Therefore, HCC cell lines were treated with the histone deacetylase inhibitor (HDACi) trichostatin A and by siRNA-knockdown of HDAC1–3. Differentially expressed mRNAs were identified after siRNA-knockdown of HDAC1–3 using mRNA expression profiling. Findings were validated after siRNA-mediated silencing of HDAC1–3 using qRTPCR and Western blotting assays. Results mRNA profiling identified apoptotic protease-activating factor 1 (Apaf1) to be significantly upregulated after HDAC inhibition (HLE siRNA#1/siRNA#2 p < 0.05, HLF siRNA#1/siRNA#2 p < 0.05). As a component of the apoptosome, a caspase-activating complex, Apaf1 plays a central role in the mitochondrial caspase activation pathway of apoptosis. Using annexin V, a significant increase in apoptosis could also be shown in HLE (siRNA #1 p = 0.0034) and HLF after siRNA against HDAC1–3 (Fig. 3a, b). In parallel, caspase-9 activity was increased after siRNA-knockdown of HDAC1–3 leading to enhanced apoptosis after HDAC inhibition (Fig. 3c, d). Conclusions The present data show that siRNA-knockdown of HDAC1–3 plays a major role in mediating apoptotic response to HDAC inhibitors through regulation of Apaf1.
Collapse
Affiliation(s)
- Reena Buurman
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maria Sandbothe
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Brigitte Schlegelberger
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Britta Skawran
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Ariza J, González-Reyes JA, Jódar L, Díaz-Ruiz A, de Cabo R, Villalba JM. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2. Free Radic Biol Med 2016; 95:82-95. [PMID: 27016073 PMCID: PMC4906443 DOI: 10.1016/j.freeradbiomed.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.
Collapse
Affiliation(s)
- Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Laura Jódar
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Alberto Díaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
9
|
Choi OR, Ryu MS, Lim IK. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein. Cell Signal 2016; 28:1172-1185. [PMID: 27208501 DOI: 10.1016/j.cellsig.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy.
Collapse
Affiliation(s)
- Ok Ran Choi
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Min Sook Ryu
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
10
|
The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization. Mol Immunol 2015; 68:445-55. [PMID: 26471700 DOI: 10.1016/j.molimm.2015.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 01/31/2023]
Abstract
Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen invasion, and NaB may exert anti-inflammatory effects during infection.
Collapse
|
11
|
Zhou Y, Wei L, Zhang H, Dai Q, Li Z, Yu B, Guo Q, Lu N. FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells. J Cell Biochem 2015; 116:1624-37. [PMID: 25650185 DOI: 10.1002/jcb.25118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/23/2015] [Indexed: 01/30/2023]
Abstract
Following our previous finding which revealed that FV-429 induces apoptosis in human hepatocellular carcinoma HepG2 cells, in this study, we found that FV-429 could also induce apoptosis in human gastric cancer cells. Firstly, FV-429 inhibited the viability of BGC-823 and MGC-803 cells with IC50 values in the range of 38.10 ± 6.28 and 31.53 ± 6.84 µM for 24 h treatment by MTT-assay. Secondly, FV-429 induced apoptosis in BGC-823 and MGC-803 cells through the mitochondrial-mediated pathway, showing an increase in Bax/Bcl-2 ratios, and caspase-9 activation, without change in caspase-8. Further research revealed that the mitogen-activated protein kinases, including c-Jun N-terminal kinase, extracellular regulated kinase, and p38 mitogen-activated protein kinase, could be activated by FV-429-induced high level ROS. Moreover, FV-429 also promoted the ERK2 nuclear translocation, resulting in the co-translocation of p53 to the nucleus and increased transcription of p53-regulated proapoptotic genes. FV-429 significantly inhibited the nude mice xenograft tumors growth of BGC-823 or MGC-803 cells in vivo.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Haiwei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Qinsheng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Boyang Yu
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P.R. China
| |
Collapse
|
12
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
13
|
Zhao GX, Pan H, Ouyang DY, He XH. The critical molecular interconnections in regulating apoptosis and autophagy. Ann Med 2015; 47:305-315. [PMID: 25982797 DOI: 10.3109/07853890.2015.1040831] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Apoptosis and autophagy are both highly regulated biological processes that have important roles in development, differentiation, homeostasis, and disease. These processes may take place independently, with autophagy being cytoprotective for preventing cells from apoptosis and apoptosis blocking autophagy. But in most circumstances, both may be induced sequentially with autophagy preceding apoptosis. The simultaneous activation of both processes has been observed not only in experimental settings but also in pathophysiological conditions. In fact, these two pathways are tightly connected with each other by substantial interplays between them, enabling the coordinated regulation of cell fates by these two pathways. They share some common upstream signaling components, and some components of one pathway may play important roles in the other, and vice versa. Such proteins represent the critical interconnections of the two pathways, which seem to determine the cell for survival or death. Here several critical molecular interconnections between apoptosis and autophagy pathways are reviewed, with their action mechanisms being highlighted.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632 , China
| | | | | | | |
Collapse
|
14
|
Vashishta A, Hetman M. Inhibitors of histone deacetylases enhance neurotoxicity of DNA damage. Neuromolecular Med 2014; 16:727-41. [PMID: 25063076 DOI: 10.1007/s12017-014-8322-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/18/2014] [Indexed: 12/11/2022]
Abstract
The nonselective inhibitors of class I/II histone deacetylases (HDACs) including trichostatin A and the clinically used suberoylanilide hydroxamic acid (SAHA, vorinostat) are neuroprotective in several models of neuronal injury. Here, we report that in cultured cortical neurons from newborn rats and in the cerebral cortex of whole neonate rats, these HDAC inhibitors exacerbated cytotoxicity of the DNA double-strand break (DSB)-inducing anticancer drug etoposide by enhancing apoptosis. Similar neurotoxic interactions were also observed in neurons that were treated with other DNA damaging drugs including cisplatin and camptothecin. In addition, in rat neonates, SAHA increased cortical neuron apoptosis that was induced by a single injection of the NMDA receptor antagonist dizocilpine (MK801). In etoposide-treated neurons, the nonselective HDAC inhibition resulted in more DSBs. It also potentiated etoposide-induced accumulation and phosphorylation of the pro-apoptotic transcription factor p53. Moreover, nonselective HDAC inhibition exacerbated neuronal apoptosis that was induced by the overexpressed p53. Importantly, such effects cannot be fully explained by inhibition of HDAC1, which is known to play a role in DSB repair and regulation of p53. The specific HDAC1 inhibitor MS275 only moderately enhanced etoposide-induced neuronal death. Although in etoposide-treated neurons MS275 increased DSBs, it did not affect activation of p53. Our findings suggest that besides HDAC1, there are other class I/II HDACs that participate in neuronal DNA damage response attenuating neurotoxic consequences of genotoxic insults to the developing brain.
Collapse
Affiliation(s)
- A Vashishta
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA
| | | |
Collapse
|
15
|
Liu D, Wang Y, Feng C, Cui T, Zhao M, Wang P, Jia Z. LBH589 Promotes Osteogenic and Dentinogenic Differentiation of Stem Cells from the Apical Papilla by Inhibiting Histone Deacetylation. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
17
|
Lee J, Lee BK, Gross JM. Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata. Hum Mol Genet 2013; 22:3568-82. [PMID: 23669349 DOI: 10.1093/hmg/ddt211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in BCOR (Bcl6 corepressor) are found in patients with oculo-facio-cardio-dental (OFCD) syndrome, a congenital disorder affecting visual system development, and loss-of-function studies in zebrafish and Xenopus demonstrate a role for Bcor during normal optic cup development in preventing colobomata. The mechanism whereby BCOR functions during eye development to prevent colobomata is not known, but in other contexts it serves as a transcriptional corepressor that potentiates transcriptional repression by B cell leukemia/lymphoma 6 (BCL6). Here, we have explored the function of the zebrafish ortholog of Bcl6, Bcl6a, during eye development, and our results demonstrate that Bcl6a, like Bcor, is required to prevent colobomata during optic cup formation. Our data demonstrate that Bcl6a acts downstream of Vax1 and Vax2, known regulators of ventral optic cup formation and choroid fissure closure, and that bcl6a is a direct target of Vax2. Together, this regulatory network functions to repress p53 expression and thereby suppress apoptosis in the developing optic cup. Furthermore, our data demonstrate that Bcl6a functions cooperatively with Bcor, Rnf2 and Hdac1 in a common gene regulatory network that acts to repress p53 and prevent colobomata. Together, these data support a model in which p53-dependent apoptosis needs to be tightly regulated for normal optic cup formation and that Bcl6a, Bcor, Rnf2 and Hdac1 activities mediate this regulation.
Collapse
Affiliation(s)
- Jiwoon Lee
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
18
|
Chen J, Cui Z, Li W, Shen A, Xu G, Bao G, Sun Y, Wang L, Fan J, Zhang J, Yang L, Cui Z. MCM7 expression is altered in rat after spinal cord injury. J Mol Neurosci 2013; 51:82-91. [PMID: 23526403 DOI: 10.1007/s12031-013-0003-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
Minichromosome maintenance protein 7 (MCM7), a member of the minichromosome maintenance protein family, is essential for eukaryotic DNA replication initiation and the early stage of the elongation process. MCM7 participates in the cell cycle control of genome duplication. While it is ubiquitously expressed in all tissues, the biological function of MCM7 in the central nervous system is still with limited acquaintance. In the present study, we performed a spinal cord injury (SCI) model in adult rats. Western blotting indicated a marked alteration of MCM7 after SCI. Immunohistochemistry analysis revealed a wide distribution of MCM7 in the spinal cord. Double immunofluorescence staining showed that MCM7 immunoreactivity was increased predominantly in neurons, astrocytes, and microglia after SCI. We also examined the expression profiles of active caspase-3, proliferating cell nuclear antigen (PCNA), and Ki67, whose changes were correlated with the expression profiles of MCM7. Moreover, colocalization of MCM7/active caspase-3 was detected in neuronal nuclei (NeuN), and colocalization of MCM7/PCNA was detected in NeuN, glial fibrillary acidic protein, and CD11b, respectively. Our results suggest that MCM7 might be implicated in the apoptosis of neuron and proliferation of astrocytes and microglia after SCI.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang J, Xu E, Chen X. TAp73 protein stability is controlled by histone deacetylase 1 via regulation of Hsp90 chaperone function. J Biol Chem 2013; 288:7727-7737. [PMID: 23362263 PMCID: PMC3597813 DOI: 10.1074/jbc.m112.429522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616
| | - Enshun Xu
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616.
| |
Collapse
|
20
|
Shinde VM, Sizova OS, Lin JH, LaVail MM, Gorbatyuk MS. ER stress in retinal degeneration in S334ter Rho rats. PLoS One 2012; 7:e33266. [PMID: 22432009 PMCID: PMC3303830 DOI: 10.1371/journal.pone.0033266] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
The S334ter rhodopsin (Rho) rat (line 4) bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP). The Unfolded Protein Response (UPR) is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12–P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.
Collapse
Affiliation(s)
- Vishal M Shinde
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, United States of America
| | | | | | | | | |
Collapse
|
21
|
Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation. Exp Eye Res 2012; 94:98-108. [DOI: 10.1016/j.exer.2011.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 01/13/2023]
|
22
|
Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallàs M, Camins A. Role of Cell Cycle Re-Entry in Neurons: A Common Apoptotic Mechanism of Neuronal Cell Death. Neurotox Res 2011; 22:195-207. [DOI: 10.1007/s12640-011-9277-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/24/2023]
|
23
|
Abstract
Traumatic spinal cord injury (SCI) evokes a complex cascade of events with initial mechanical damage leading to secondary injury processes that contribute to further tissue loss and functional impairment. Growing evidence suggests that the cell cycle is activated following SCI. Up-regulation of cell cycle proteins after injury appears to contribute not only to apoptotic cell death of postmitotic cells, including neurons and oligodendrocytes, but also to post-traumatic gliosis and microglial activation. Inhibition of key cell cycle regulatory pathways reduces injury-induced cell death, as well as microglial and astroglial proliferation both in vitro and in vivo. Treatment with cell cycle inhibitors in rodent SCI models prevents neuronal cell death and reduces inflammation, as well as the surrounding glial scar, resulting in markedly reduced lesion volumes and improved motor recovery. Here we review the effects of SCI on cell cycle pathways, as well as the therapeutic potential and mechanism of action of cell cycle inhibitors for this disorder.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
24
|
De Zio D, Bordi M, Tino E, Lanzuolo C, Ferraro E, Mora E, Ciccosanti F, Fimia GM, Orlando V, Cecconi F. The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage. Cell Death Differ 2011; 18:516-27. [PMID: 20966962 PMCID: PMC3132004 DOI: 10.1038/cdd.2010.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 12/13/2022] Open
Abstract
Apaf1 is a key regulator of the mitochondrial intrinsic pathway of apoptosis, as it activates executioner caspases by forming the apoptotic machinery apoptosome. Its genetic regulation and its post-translational modification are crucial under the various conditions where apoptosis occurs. Here we describe Ku70/86, a mediator of non-homologous end-joining pathway of DNA repair, as a novel regulator of Apaf1 transcription. Through analysing different Apaf1 promoter mutants, we identified an element repressing the Apaf1 promoter. We demonstrated that Ku70/86 is a nuclear factor able to bind this repressing element and downregulating Apaf1 transcription. We also found that Ku70/86 interaction with Apaf1 promoter is dynamically modulated upon DNA damage. The effect of this binding is a downregulation of Apaf1 expression immediately following the damage to DNA; conversely, we observed Apaf1 upregulation and apoptosis activation when Ku70/86 unleashes the Apaf1-repressing element. Therefore, besides regulating DNA repair, our results suggest that Ku70/86 binds to the Apaf1 promoter and represses its activity. This may help to inhibit the apoptosome pathway of cell death and contribute to regulate cell survival.
Collapse
Affiliation(s)
- D De Zio
- Department of Biology, Dulbecco Telethon Institute, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - M Bordi
- Department of Biology, Dulbecco Telethon Institute, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - E Tino
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - C Lanzuolo
- Dulbecco Telethon Institute at the IRCCS Fondazione Santa Lucia and EBRI, 00143 Rome, Italy
- CNR Institute of Neurobiology and Molecular Medicine, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - E Ferraro
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - E Mora
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases, ‘Lazzaro Spallanzani', 00149 Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases, ‘Lazzaro Spallanzani', 00149 Rome, Italy
| | - V Orlando
- Dulbecco Telethon Institute at the IRCCS Fondazione Santa Lucia and EBRI, 00143 Rome, Italy
| | - F Cecconi
- Department of Biology, Dulbecco Telethon Institute, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
25
|
Malinen M, Ryynänen J, Heinäniemi M, Väisänen S, Carlberg C. Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1alpha,25-dihydroxyvitamin D3. Nucleic Acids Res 2011; 39:502-12. [PMID: 20855290 PMCID: PMC3025564 DOI: 10.1093/nar/gkq820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/29/2010] [Indexed: 12/26/2022] Open
Abstract
The nuclear receptor vitamin D receptor (VDR) is known to associate with two vitamin D response element (VDRE) containing chromatin regions of the insulin-like growth factor binding protein 3 (IGFBP3) gene. In non-malignant MCF-10A human mammary cells, we show that the natural VDR ligand 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)) causes cyclical IGFBP3 mRNA accumulation with a periodicity of 60 min, while in the presence of the potent VDR agonist Gemini the mRNA is continuously accumulated. Accordingly, VDR also showed cyclical ligand-dependent association with the chromatin regions of both VDREs. Histone deacetylases (HDACs) play an important role both in VDR signalling and in transcriptional cycling. From the 11 HDAC gene family members, only HDAC4 and HDAC6 are up-regulated in a cyclical fashion in response to 1α,25(OH)(2)D(3), while even these two genes do not respond to Gemini. Interestingly, HDAC4 and HDAC6 proteins show cyclical VDR ligand-induced association with both VDRE regions of the IGFBP3 gene, which coincides with histone H4 deacetylation on these regions. Moreover, combined silencing of HDAC4 and HDAC6 abolishes the cycling of the IGFBP3 gene. We assume that due to more efficient VDR interaction, Gemini induces longer lasting chromatin activation and therefore no transcriptional cycling but monotonically increasing IGFBP3 mRNA. In conclusion, 1α,25(OH)(2)D(3) regulates IGFBP3 transcription through short-term cyclical association of VDR, HDAC4 and HDAC6 to both VDRE-containing chromatin regions.
Collapse
Affiliation(s)
- Marjo Malinen
- Department of Biosciences, University of Eastern Finland, FIN-70210, Kuopio, Finland and Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Jussi Ryynänen
- Department of Biosciences, University of Eastern Finland, FIN-70210, Kuopio, Finland and Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Merja Heinäniemi
- Department of Biosciences, University of Eastern Finland, FIN-70210, Kuopio, Finland and Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Sami Väisänen
- Department of Biosciences, University of Eastern Finland, FIN-70210, Kuopio, Finland and Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Carsten Carlberg
- Department of Biosciences, University of Eastern Finland, FIN-70210, Kuopio, Finland and Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
26
|
Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: An update. Clin Chim Acta 2010; 411:1401-11. [PMID: 20598676 DOI: 10.1016/j.cca.2010.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 01/06/2023]
Abstract
Although the role of histone acetylation in gene regulation has been the subject of many reviews, their impact on cell physiology and pathological states of proliferation, differentiation and genome stability in eukaryotic cells remain to be elucidated. Therefore, this review will discuss the molecular, physiological and biochemical aspects of histone acetylation and focus on the interplay of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different disease states. Current treatment strategies are mostly limited to enzyme inhibitors, though potential lies in targeting other imperative chromatin remodeling factors involved in gene regulation.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
27
|
Makkonen KM, Malinen M, Ropponen A, Väisänen S, Carlberg C. Cell cycle regulatory effects of retinoic Acid and forskolin are mediated by the cyclin C gene. J Mol Biol 2009; 393:261-71. [PMID: 19683536 DOI: 10.1016/j.jmb.2009.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
Abstract
As a partner of cyclin-dependent kinase (CDK) 3, Cyclin C controls cellular proliferation and, together with CDK8, represses gene transcription. In this study, we showed that the highly expressed Cyclin C gene is a direct target of the nuclear hormone all-trans retinoic acid (RA) in HEK293 human embryonal kidney cells. The RA receptor (RAR) gamma associates with a Cyclin C promoter region containing two RAR binding sites. The Cyclin C gene also directly responds to the cAMP activator Forskolin via the transcription factor CREB1 (cAMP response element-binding protein 1), for which we identified four binding sites within the first 2250 bp of its promoter. RARgamma and CREB1 show functional convergence via the corepressor NCoR1, which controls in particular the Forskolin response of Cyclin C. The histone deacetylases 1, 5, 6, 7 and 11 are involved in the basal expression of Cyclin C, but in HEK293 and MCF-7 human breast carcinoma cells the antiproliferative effects of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) are not mediated by Cyclin C. However, cell cycle progressing effects of all-trans RA and Forskolin are dependent on Cyclin C expression levels. This suggests that the primary regulation of Cyclin C by all-trans RA and Forskolin mediates some of the cell cycle control actions of these compounds.
Collapse
|
28
|
Todoerti K, Barbui V, Pedrini O, Lionetti M, Fossati G, Mascagni P, Rambaldi A, Neri A, Introna M, Lombardi L, Golay J. Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 2009; 95:260-9. [PMID: 19713220 DOI: 10.3324/haematol.2009.012088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The histone deacetylase inhibitor ITF2357 has potent cytotoxic activity in multiple myeloma in vitro and has entered clinical trials for this disease. DESIGN AND METHODS In order to gain an overall view of the activity of ITF2357 and identify specific pathways that may be modulated by the drug, we performed gene expression profiling of the KMS18 multiple myeloma cell line treated with the drug. The modulation of several genes and their biological consequence were verified in a panel of multiple myeloma cell lines and cells freshly isolated from patients by using polymerase chain reaction analysis and western blotting. RESULTS Out of 38,500 human genes, we identified 140 and 574 up-regulated genes and 102 and 556 down-modulated genes at 2 and 6 h, respectively, with a significant presence of genes related to transcription regulation at 2 h and to cell cycling and apoptosis at 6 h. Several of the identified genes are particularly relevant to the biology of multiple myeloma and it was confirmed that ITF2357 also modulated their encoded proteins in different multiple myeloma cell lines. In particular, ITF2357 down-modulated the interleukin-6 receptor alpha (CD126) transcript and protein in both cell lines and freshly isolated patients' cells, whereas it did not significantly modify interleukin-6 receptor beta (CD130) expression. The decrease in CD126 expression was accompanied by decreased signaling by interleukin-6 receptor, as measured by STAT3 phosphorylation in the presence and absence of inter-leukin-6. Finally, the drug significantly down-modulated the MIRHG1 transcript and its associated microRNA, miR-19a and miR-19b, known to have oncogenic activity in multiple myeloma. CONCLUSIONS ITF2357 inhibits several signaling pathways involved in myeloma cell growth and survival.
Collapse
Affiliation(s)
- Katia Todoerti
- Department of Medical Sciences, University of Milan, Fondazione IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cell Cycle Activation and CNS Injury. Neurotox Res 2009; 16:221-37. [PMID: 19526282 DOI: 10.1007/s12640-009-9050-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/28/2022]
|
30
|
Walker JC, Harland RM. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009; 23:1046-51. [PMID: 19372388 DOI: 10.1101/gad.1777709] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Programmed cell death is important for the proper development of the retina, and microRNAs (miRNAs) may be critical for its regulation. Here, we report that miR-24a is expressed in the neural retina and is required for correct eye morphogenesis in Xenopus. Inhibition of miR-24a during development causes a reduction in eye size due to a significant increase in apoptosis in the retina, whereas overexpression of miR-24a is sufficient to prevent apoptosis. We show that miR-24a negatively regulates the proapoptotic factors caspase9 and apaf1, demonstrating a role for miRNAs in the regulation of apoptosis during normal development.
Collapse
Affiliation(s)
- James C Walker
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|