1
|
Bradley J, Bugg Z, Moore GR, Hemmings AM, Le Brun NE. Observation of the Assembly of the Nascent Mineral Core at the Nucleation Site of Human Mitochondrial Ferritin. J Am Chem Soc 2025; 147:13699-13710. [PMID: 40223208 PMCID: PMC12022971 DOI: 10.1021/jacs.5c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Ferritins play a crucial role in iron homeostasis and detoxification in organisms from all kingdoms of life. They are composed of 24 α-helical subunits arranged around an interior cavity where an iron-containing mineral core can be reversibly stored. Despite decades of study, leading to significant progress in defining the routes of Fe2+ uptake and the mechanism of its subsequent oxidation to Fe3+ at diiron catalytic sites termed ferroxidase centers, the process of core synthesis from the product of ferroxidase center activity remains poorly understood. In large part, this is due to the lack of high-resolution structural data on ferritin cores anchored to their nucleation sites on the inner surface of the protein. Mitochondrial ferritins are atypical of those found in higher eukaryotes in that they are homopolymers in which all subunits contain both a ferroxidase center and a presumed but undefined core nucleation site. Here, in conjunction with a novel method for producing iron-enriched ferritin crystals, we exploit these unusual features to structurally characterize both the nucleation site of mitochondrial ferritin and a pentanuclear, ferrihydrite-like iron-oxo cluster formed there. Kinetic data for wild-type and variant proteins confirmed the functional importance of this site, indicating a critical role for E61 in the transfer of Fe3+ from the ferroxidase center to the nascent mineral core.
Collapse
Affiliation(s)
- Justin
M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Zinnia Bugg
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Geoffrey R. Moore
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Andrew M. Hemmings
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- International
Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Nanhui New City, Shanghai 201306, China
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
2
|
Yuan Y, Yang X, Zhao Y, Flores JJ, Huang L, Gu L, Li R, Zhang X, Zhu S, Dong S, Kanamaru H, He Q, Tao Y, Yi K, Han M, Chen X, Wu L, Zhang JH, Xie Z, Tang J. Mitochondrial ferritin upregulation by deferiprone reduced neuronal ferroptosis and improved neurological deficits via NDRG1/Yap pathway in a neonatal rat model of germinal matrix hemorrhage. J Cereb Blood Flow Metab 2025; 45:510-527. [PMID: 39318194 PMCID: PMC11563512 DOI: 10.1177/0271678x241252110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 09/26/2024]
Abstract
Ferroptosis contributes to brain injury after germinal matrix hemorrhage (GMH). Mitochondrial ferritin (FTMT), a novel mitochondrial outer membrane protein, reduces oxidative stress in neurodegenerative diseases. In vitro, Deferiprone has been shown to upregulate FTMT. However, the effects of FTMT upregulation by Deferiprone on neuronal ferroptosis after GMH and its underlying mechanism has not been investigated. In our study, 389 Sprague-Dawley rat pups of postnatal day 7 were used to establish a collagenase-induced GMH model and an iron-overload model of intracerebral FeCl2 injection. The brain expressions of FTMT, N-myc downstream-regulated gene-1 (NDGR1), Yes-associated protein (YAP), ferroptosis-related molecules including transferrin receptor (TFR) and acyl-CoA synthase long-chain family member 4 (ACSL4) were increased after GMH. FTMT agonist Deferiprone improved neurological deficits and hydrocephalus after GMH. Deferiprone or Adenovirus-FTMT enhanced YAP phosphorylation at the Ser127 site and attenuated ferroptosis, which was reversed by NDRG1 CRISPR Knockout. Iron overload induced neuronal ferroptosis and neurological deficits, which were improved by YAP CRISPR Knockout. Collectively, FTMT upregulation by Deferiprone reduced neuronal ferroptosis and neurological deficits via the NDRG1/YAP signaling pathway after GMH. Deferiprone may serve as a potential non-invasive treatment for GMH patients.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xiao Yang
- Department of Obstetrics and Gynecology, University‐Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yutong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kun Yi
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, USA
- Departments of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
3
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
4
|
Mitochondrial Ferritin: Its Role in Physiological and Pathological Conditions. Cells 2021; 10:cells10081969. [PMID: 34440737 PMCID: PMC8393899 DOI: 10.3390/cells10081969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
In 2001, a new type of human ferritin was identified by searching for homologous sequences to H-ferritin in the human genome. After the demonstration that this ferritin is located specifically in the mitochondrion, it was called mitochondrial ferritin. Studies on the properties of this new type of ferritin have been limited by its very high homology with the cytosolic H-ferritin, which is expressed at higher levels in cells. This great similarity made it difficult to obtain specific antibodies against the mitochondrial ferritin devoid of cross-reactivity with cytosolic ferritin. Thus, the knowledge of the physiological role of mitochondrial ferritin is still incomplete despite 20 years of research. In this review, we summarize the literature on mitochondrial ferritin expression regulation and its physical and biochemical properties, with particular attention paid to the differences with cytosolic ferritin and its role in physiological condition. Until now, there has been no evidence that the alteration of the mitochondrial ferritin gene is causative of any disorder; however, the identified association of the mitochondrial ferritin with some disorders is discussed.
Collapse
|
5
|
Jin Z, Kim KE, Shin HJ, Jeong EA, Park KA, Lee JY, An HS, Choi EB, Jeong JH, Kwak W, Roh GS. Hippocampal Lipocalin 2 Is Associated With Neuroinflammation and Iron-Related Oxidative Stress in ob/ob Mice. J Neuropathol Exp Neurol 2020; 79:530-541. [PMID: 32296847 DOI: 10.1093/jnen/nlaa017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jae Hun Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Woori Kwak
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR).,C&K Genomics, Inc., Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| |
Collapse
|
6
|
Wu Q, Wu WS, Su L, Zheng X, Wu WY, Santambrogio P, Gou YJ, Hao Q, Wang PN, Li YR, Zhao BL, Nie G, Levi S, Chang YZ. Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from Hypoxia-Induced Cell Death in Brain. Antioxid Redox Signal 2019; 30:198-212. [PMID: 29402144 DOI: 10.1089/ars.2017.7063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Mitochondrial ferritin (protein [FtMt]) is preferentially expressed in cell types of high metabolic activity and oxygen consumption, which is consistent with its role of sequestering iron and preventing oxygen-derived redox damage. As of yet, the mechanisms of FtMt regulation and the protection FtMt affords remain largely unknown. Results: Here, we report that hypoxia-inducible factor 1α (HIF-1α) can upregulate FtMt expression. We verify one functional hypoxia-response element (HRE) in the positive regulatory region and two HREs possessing HIF-1α binding activity in the minimal promoter region of the human FTMT gene. We also demonstrate that FtMt can alleviate hypoxia-induced brain cell death by sequestering uncommitted iron, whose levels increase with hypoxia in these cells. Innovation: In the absence of FtMt, this catalytic metal excess catalyzes the production of cytotoxic reactive oxygen species. Conclusion: Thus, the cell ability to increase expression of FtMt during hypoxia may be a skill to avoid tissue damage derived from oxygen limitation.
Collapse
Affiliation(s)
- Qiong Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Wen-Shuang Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Lin Su
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Xin Zheng
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Wen-Yue Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Paolo Santambrogio
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy
| | - Yu-Jing Gou
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Qian Hao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Pei-Na Wang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Ya-Ru Li
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Bao-Lu Zhao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Guangjun Nie
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, China
| | - Sonia Levi
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,6 Vita-Salute San Raffaele University , Milano, Italy
| | - Yan-Zhong Chang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| |
Collapse
|
7
|
Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol 2017; 158:1-14. [DOI: 10.1016/j.pneurobio.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
|
8
|
Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 2017; 15:9. [PMID: 28193224 PMCID: PMC5304403 DOI: 10.1186/s12915-017-0354-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background A widespread modulation of gene expression occurs in the aging brain, but little is known as to the upstream drivers of these changes. MicroRNAs emerged as fine regulators of gene expression in many biological contexts and they are modulated by age. MicroRNAs may therefore be part of the upstream drivers of the global gene expression modulation correlated with aging and aging-related phenotypes. Results Here, we show that microRNA-29 (miR-29) is induced during aging in short-lived turquoise killifish brain and genetic antagonism of its function induces a gene-expression signature typical of aging. Mechanicistically, we identified Ireb2 (a master gene for intracellular iron delivery that encodes for IRP2 protein), as a novel miR-29 target. MiR-29 is induced by iron loading and, in turn, it reduces IRP2 expression in vivo, therefore limiting intracellular iron delivery in neurons. Genetically modified fish with neuro-specific miR-29 deficiency exhibit increased levels of IRP2 and transferrin receptor, increased iron content, and oxidative stress. Conclusions Our results demonstrate that age-dependent miR-29 upregulation is an adaptive mechanism that counteracts the expression of some aging-related phenotypes and its anti-aging activity is primarily exerted by regulating intracellular iron homeostasis limiting excessive iron-exposure in neurons. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0354-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberto Ripa
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Dolfi
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Terrigno
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Pandolfini
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Valeria Arcucci
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Eva Terzibasi Tozzini
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Alessandro Cellerino
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy. .,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
9
|
Guan H, Yang H, Yang M, Yanagisawa D, Bellier JP, Mori M, Takahata S, Nonaka T, Zhao S, Tooyama I. Mitochondrial ferritin protects SH-SY5Y cells against H 2O 2-induced oxidative stress and modulates α-synuclein expression. Exp Neurol 2017; 291:51-61. [PMID: 28163159 DOI: 10.1016/j.expneurol.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Abstract
Mitochondrial ferritin (FtMt) is a type of ferritin that sequesters iron. Previous studies have shown that FtMt is expressed by dopaminergic neurons in the substantia nigra and that it may be involved in the pathology of Parkinson's disease. However, the functional roles of FtMt in dopaminergic neurons remain unclear. In this study, we investigated the function of FtMt in α-synuclein regulation and its antioxidant roles in dopaminergic cells using human dopaminergic neuroblastoma cells, SH-SY5Y. In physiological conditions, FtMt knockdown increased α-synuclein expression at the protein level but not at the mRNA level. By contrast, FtMt overexpression reduced α-synuclein expression at the protein level but not at the mRNA level. FtMt enhanced the iron levels in mitochondria but decreased the iron levels in the intracellular labile iron pool. We found that FeCl2 could abolish the effects of FtMt overexpression on α-synuclein expression. Under oxidative stress conditions induced by H2O2, we found that H2O2 treatment induced FtMt and α-synuclein expression at both the mRNA and protein levels in a dose-dependent manner. FtMt overexpression protected cells against oxidative stress and alleviated the enhanced α-synuclein expression induced by H2O2 at the posttranscriptional level. Our results indicate that FtMt modulates α-synuclein expression at the posttranscriptional level via iron regulation in physiological conditions. FtMt expression is enhanced under oxidative stress conditions, where FtMt protects cells against the oxidative stress as well as plays an important role in maintaining α-synuclein levels.
Collapse
Affiliation(s)
- Hongpeng Guan
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan; Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongkuan Yang
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan; Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Mingchun Yang
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan; Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Shogo Takahata
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shiguang Zhao
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| |
Collapse
|
10
|
Chakkarapani E, Chau V, Poskitt KJ, Synnes A, Kwan E, Roland E, Miller SP. Low plasma magnesium is associated with impaired brain metabolism in neonates with hypoxic-ischaemic encephalopathy. Acta Paediatr 2016; 105:1067-73. [PMID: 27336238 DOI: 10.1111/apa.13505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022]
Abstract
AIM To determine the association between lowest plasma magnesium concentration and brain metabolism, and whether magnetic resonance imaging brain injury patterns moderated the association in hypoxic-ischemic encephalopathy. METHODS In 131 early (day-of-life 3) and 65 late (day-of-life 10) scans of term encephalopathic infants born between 2004 and 2012, we examined the association of lowest plasma magnesium (until day-of-life 3) on basal ganglia and white matter peak metabolite ratios on magnetic resonance spectroscopy independent of covariates, stratified by the predominant patterns of injury (normal, basal nuclei/total, watershed, multifocal) using multiple linear regression. RESULTS Lowest plasma magnesium was associated with lower white matter N-acetyl-aspartate/choline in the multifocal pattern on early scan (regression-coefficient, β: 0.13; 95% CI: 0.04, 0.22) and in the basal nuclei/total pattern on late scan (β: 0.08; 95% CI: 0.02, 0.15), and was negatively associated with basal ganglia lactate/N-acetyl-aspartate (β: -0.16; 95% CI: -0.05, -0.28) and lactate/choline (β: -0.1; 95% CI: -0.03, -0.17) ratio in the basal nuclei/total pattern on late scan independent of hypomagnesaemia correction, cooling and postmenstrual age at scan. Lowest plasma magnesium was not associated with metabolite ratios in other brain injury patterns. CONCLUSION In infants with hypoxic-ischaemic encephalopathy, predominant patterns of brain injury moderated the association between lowest plasma magnesium in the first three days of life and impaired brain metabolism.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
- School of Clinical Sciences, St Michael's Hospital, University of Bristol, Bristol, UK
| | - Vann Chau
- Child and Family Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of Toronto and the Hospital for Sick Children, Toronto, ON, Canada
| | - Kenneth J Poskitt
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
- Child and Family Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
- Child and Family Research Institute, Vancouver, BC, Canada
| | - Eddie Kwan
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
| | - Elke Roland
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Pediatrics, University of British Columbia and Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
- Child and Family Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of Toronto and the Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
11
|
Mapping of mitochondrial ferritin in the brainstem of Macaca fascicularis. Neuroscience 2016; 328:92-106. [DOI: 10.1016/j.neuroscience.2016.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
|
12
|
Mitochondrial ferritin in neurodegenerative diseases. Neurosci Res 2013; 77:1-7. [PMID: 23916831 DOI: 10.1016/j.neures.2013.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial ferritin (FtMt) is a novel protein encoded by an intronless gene mapped to chromosome 5q23.1. Ferritin is ubiquitously expressed; however, FtMt expression is restricted to specific tissues such as the testis and the brain. The distribution pattern of FtMt suggests a functional role for this protein in the brain; however, data concerning the roles of FtMt in neurodegenerative diseases remain scarce. In the human cerebral cortex, FtMt expression was increased in Alzheimer's disease patients compared to control cases. Cultured neuroblastoma cells showed low-level expression of FtMt, which was increased by H2O2 treatment. FtMt overexpression showed a neuroprotective effect against H2O2-induced oxidative stress and Aβ-induced neurotoxicity in neuroblastoma cells. FtMt expression was also detected in dopaminergic neurons in the substantia nigra and was increased in patients with restless legs syndrome, while FtMt had a protective effect against cell death in a neuroblastoma cell line model of Parkinson's disease. FtMt is involved in other neurodegenerative diseases such as age-related macular degeneration (AMD), with an FtMt gene mutation identified in AMD patients, and Friedreich's ataxia, which is caused by a deficiency in frataxin. FtMt overexpression in frataxin-deficient cells increased cell resistance to H2O2 damage. These results implicate a neuroprotective role of FtMt in neurodegenerative diseases.
Collapse
|
13
|
Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat 2013; 137:733-44. [PMID: 23306463 DOI: 10.1007/s10549-012-2405-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
Abstract
Tumor-associated macrophages play a critical role in breast tumor progression; however, it is still unclear what effector molecular mechanisms they employ to impact tumorigenesis. Ferritin is the primary intracellular iron storage protein and is also abundant in circulation. In breast cancer patients, ferritin is detected at higher levels in both serum and tumor lysates, and its increase correlates with poor clinical outcome. In this study, we comprehensively examined the distribution of ferritin in normal and malignant breast tissue at different stages in tumor development. Decreased ferritin expression in cancer cells but increased infiltration of ferritin-rich CD68-positive macrophages was observed with increased tumor histological grade. Interestingly, ferritin stained within the stroma surrounding tumors suggesting local release within the breast. In cell culture, macrophages, but not breast cancer cells, were capable of ferritin secretion, and this secretion was further increased in response to pro-inflammatory cytokines. We next examined the possible functional significance of extracellular ferritin in a breast cancer cell culture model. Ferritin stimulated the proliferation of the epithelial breast cancer cell lines MCF7 and T47D. Moreover, this proliferative effect was independent of the iron content of ferritin and did not increase intracellular iron levels in cancer cells indicating a novel iron-independent function for this protein. Together, these findings suggest that the release of ferritin by infiltrating macrophages in breast tumors may represent an inflammatory effector mechanism by which ferritin directly stimulates tumorigenesis.
Collapse
|
14
|
Analysis of methylprednisolone-induced inhibition on the proliferation of neural progenitor cells in vitro by gene expression profiling. Neurosci Lett 2012; 526:154-9. [PMID: 22884643 DOI: 10.1016/j.neulet.2012.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/06/2023]
Abstract
Recently, it has been proved that methylprednisolone has inhibition effect on the proliferation of endogenous neural progenitor cells (NPCs) after spinal cord injury (SCI). Similar effect has also been found on NPCs cultured in vitro. However, the mechanism remains to be fully delineated. The purpose of this study is to investigate the potential molecular mechanism of this effect in NPCs cultured in vitro by gene expression profiling. Fetal mouse brain-derived NPCs were divided into 2 groups: NPCs incubated with methylprednisolone as a model of the methylprednisolone treatment after SCI, and without methylprednisolone as the control group. After the cell quantitative analysis and CCK-8 assay, the microarray analysis was carried out. Genes differentially expressed between NPCs treated with and without methylprednisolone were extracted. It was observed that the expression of 143 genes, including many members of distinct families, such as hypoxia inducible factors and neurotransmitter receptors, were significantly changed in response to the methylprednisolone treatment. Our results provide global molecular insights into the mechanisms of methylprednisolone-induced proliferation inhibition effect and suggest that EdnrB may play an important role in this effect.
Collapse
|
15
|
Friedman A, Arosio P, Finazzi D, Koziorowski D, Galazka-Friedman J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord 2011; 17:423-30. [DOI: 10.1016/j.parkreldis.2011.03.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/22/2023]
|