1
|
Arab HH, Khames A, Alsufyani SE, El-Sheikh AAK, Gad AM. Targeting the Endoplasmic Reticulum Stress-Linked PERK/GRP78/CHOP Pathway with Magnesium Sulfate Attenuates Chronic-Restraint-Stress-Induced Depression-like Neuropathology in Rats. Pharmaceuticals (Basel) 2023; 16:300. [PMID: 37259443 PMCID: PMC9961498 DOI: 10.3390/ph16020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 09/29/2023] Open
Abstract
Magnesium sulfate has demonstrated marked neuroprotection in eclampsia, hypoxia, stroke, and post-traumatic brain injury rodent models. However, its potential impact against chronic-restraint-stress (CRS)-induced depression-like neuropathology and associated alterations in endoplasmic reticulum (ER) stress have not been adequately examined. The present study aimed to investigate the neuroprotective potential of magnesium sulfate in a rat model of CRS-triggered depression-like behavioral disturbance and the underlying molecular mechanisms. Herein, CRS was induced by placing rats into restraining tubes for 6 h/day for 21 days and the animals were intraperitoneally injected with magnesium sulfate (100 mg/kg/day) during the study period. After stress cessation, the depression-like behavior was examined by the open-field test, sucrose preference test, and forced swimming test. The present data demonstrated that CRS triggered typical depression-like behavioral changes which were confirmed by the Z-normalization scores. Mechanistically, serum circulating corticosterone levels spiked, and the hippocampi of CRS-exposed animals demonstrated a significant decline in serotonin, norepinephrine, and dopamine neurotransmitters. At the molecular level, the hippocampal pro-inflammatory TNF-alpha and IL-1β cytokines and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-HG) increased in stressed animals. In tandem, enhancement of hippocampal ER stress was evidenced by the activation of iNOS/PERK/GRP78/CHOP axis seen by increased protein expression of iNOS, PERK, GRP78, and CHOP signal proteins in the hippocampi of stressed rats. Interestingly, magnesium sulfate administration attenuated the depression-like behavioral outcomes and the histopathological changes in the brain hippocampi. These favorable actions were driven by magnesium sulfate's counteraction of corticosterone spike, and hippocampal neurotransmitter decline, alongside the attenuation of neuroinflammation, pro-oxidation, and ER stress. In conclusion, the current results suggest the promising neuroprotective/antidepressant actions of magnesium sulfate in CRS by dampening inflammation, ER stress, and the associated PERK/GRP78/CHOP pathway.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82511, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amany M. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
2
|
Wei X, Ma Y, Li F, He H, Huang H, Huang C, Chen Z, Chen D, Chen J, Yuan X. Acute Diallyl Disulfide Administration Prevents and Reveres Lipopolysaccharide-Induced Depression-Like Behaviors in Mice via Regulating Neuroinflammation and Oxido-Nitrosative Stress. Inflammation 2021; 44:1381-1395. [PMID: 33511484 DOI: 10.1007/s10753-021-01423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Neuroinflammation and oxidative stress play critical roles in pathogenesis of depression. Diallyl disulfide (DADS), an active compound in garlic oil, has been shown to exhibit obvious anti-inflammatory and anti-oxidative activities. Preliminary evidence indicates that depression is associated with high levels of pro-inflammatory cytokines and oxidative markers, suggesting that inhibition of neuroinflammatory response and oxidative stress may be beneficial for depression interruption. Here, we investigated the antidepressant effect of DADS as well as it mechanisms in a depression-like model induced by lipopolysaccharide (LPS). Similarly to imipramine (10 mg/kg), a clinical antidepressant, DADS (40 or 80 mg/kg), which was administered 1 h before LPS treatment (pre-LPS) or 1.5 h and 23.5 h after LPS treatment (post-LPS), prevented and reversed LPS (100 μg/kg)-induced increase in immobility time in the tail suspension test (TST) and forced swim test (FST) in mice. Mechanistic studies revealed that DADS pre-treatment or post-treatment at the dose of 40 and 80 mg/kg prevented and reversed (i) LPS-induced increases in interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) levels in the hippocampus and prefrontal cortex, (ii) LPS-induced increases in contents of malondialdehyde (MDA), a parameter reflecting high levels of oxidative stress, and (iii) LPS-induced decreases in contents of GSH, a marker reflecting weakened anti-oxidative ability, in the hippocampus and prefrontal cortex in mice. These results indicate that DADS is comparable to imipramine in effectively ameliorating LPS-induced depression-like behaviors in mice, providing a potential value for DADS in prevention and/or therapy of depression.
Collapse
Affiliation(s)
- Xiaoyou Wei
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Fu Li
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Haiyan He
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Huaxing Huang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 Xi'er Duan, 1ST Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
3
|
Mitochondrial Metabolism as Target of the Neuroprotective Role of Erythropoietin in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010121. [PMID: 33467745 PMCID: PMC7830512 DOI: 10.3390/antiox10010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.
Collapse
|
4
|
Cui YH, Fu A, Wang XQ, Tu BX, Chen KZ, Wang YK, Hu QG, Wang LF, Hu ZL, Pan PH, Li F, Bi FF, Li CQ. Hippocampal LASP1 ameliorates chronic stress-mediated behavioral responses in a mouse model of unpredictable chronic mild stress. Neuropharmacology 2020; 184:108410. [PMID: 33242526 DOI: 10.1016/j.neuropharm.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China; Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ao Fu
- Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xue-Qin Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Kang-Zhi Chen
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yi-Kai Wang
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qiong-Gui Hu
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Lai-Fa Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pin-Hua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Fang-Fang Bi
- Department of Neurology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Saad MA, El-Sahar AE, Sayed RH, Elbaz EM, Helmy HS, Senousy MA. Venlafaxine Mitigates Depressive-Like Behavior in Ovariectomized Rats by Activating the EPO/EPOR/JAK2 Signaling Pathway and Increasing the Serum Estradiol Level. Neurotherapeutics 2019; 16:404-415. [PMID: 30361931 PMCID: PMC6554373 DOI: 10.1007/s13311-018-00680-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reduced estradiol levels are associated with depression in women during the transition to and after menopause. A considerable number of studies focusing on the theme of treating depression through the activation of erythropoietin (EPO)-induced signaling pathways have been published. Venlafaxine is an approved antidepressant drug that inhibits both serotonin and norepinephrine transporters. The aim of the present study was to investigate the effects of venlafaxine on the depressive-like behaviors and serum estradiol levels in female rats following ovariectomy (OVX) and the possible roles of EPO-induced signaling pathways. Venlafaxine (10 mg/kg/day) was orally administered to OVX rats over a period of 4 weeks using two different treatment regimens: either starting 24 h or 2 weeks after OVX. Venlafaxine showed a superior efficacy in inducing antidepressant-like effects after an acute treatment (24 h post-OVX) than after the delayed treatment (2 weeks post-OVX) and was characterized by a decreased immobility time in the forced swimming test. In parallel, venlafaxine induced EPO and EPO receptor mRNA expression and increased levels of phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 5, and phospho-extracellular signal-regulated kinase 1/2 in the hippocampus of OVX rats. Meanwhile, rats exhibited a marked reduction in the hippocampal Bax/Bcl2 ratio, caspase-3 activity, and tumor necrosis factor alpha levels after venlafaxine treatment. Venlafaxine also increased the hippocampal brain-derived neurotrophic factor and serum estradiol levels. Based on these findings, venlafaxine exerts a neuroprotective effect on OVX rats that is at least partially attributed to the activation of EPO/EPOR/JAK2 signaling pathways, anti-apoptotic activities, anti-inflammatory activities, and neurotrophic activities, as well as an increase in serum estradiol level. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatullah S Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Guo Y, Xie J, Li X, Yuan Y, Zhang L, Hu W, Luo H, Yu H, Zhang R. Antidepressant Effects of Rosemary Extracts Associate With Anti-inflammatory Effect and Rebalance of Gut Microbiota. Front Pharmacol 2018; 9:1126. [PMID: 30364169 PMCID: PMC6192164 DOI: 10.3389/fphar.2018.01126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
It is currently believed that inflammation acts as a central part in the pathophysiology of depression. Rosemary extracts (RE), the crucial active constituents extracted from Rosmarinus officinalis Linn, have drawn wide concerns because of their potential for anti-inflammatory effects. However, no study has highlighted the antidepressant effects of RE on chronic restraint stress (CRS) mice, and the inflammatory mechanisms related to gut microbiome have not yet been elucidated. This study showed that depressive-like behaviors, gut microbiota dysbiosis, and activation of inflammatory reactions in the hippocampus and serum of CRS mice, as well as activation of inflammatory reactions in BV-2 microglia cells induced by lipopolysaccharide (LPS), could be attenuated by RE. We found that the pretreatment with RE increased the time in the center of open field test (OFT), and decreased immobility duration in tail suspension test (TST) as well as forced swimming test (FST). Furthermore, RE enhanced the sequences proportion of Lactobacillus and Firmicutes, and reduced the sequences proportion of Bacteroidetes and Proteobacteria in feces. Moreover, RE obviously suppressed protein expression of IL-1β, TNF-α, p-NF-κ B p65 and Iba1 in hippocampus, and elevated BDNF as well as p-AKT/AKT expression. Importantly, pre-incubation with RE protected microglia by alleviating protein expression of IL-1β, TNF-α and p-NF-κ B p65 induced by LPS. Additionally, RE downregulated the level of IL-1β and TNF-α in serum. In conclusion, this study showed the antidepressant effects of RE are mediated by anti-inflammatory effects in hippocampus, serum and BV-2 microglia as well as rebalancing gut microbiota.
Collapse
Affiliation(s)
- Ying Guo
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.,School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jianping Xie
- Library, Yunnan Minzu University, Kunming, China
| | - Xia Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lanchun Zhang
- Department of Zoology, Kunming Medical University, Kunming, China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Haiyun Luo
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Haofei Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Rongping Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Dik A, Saffari R, Zhang M, Zhang W. Contradictory effects of erythropoietin on inhibitory synaptic transmission in left and right prelimbic cortex of mice. Neurobiol Stress 2018; 9:113-123. [PMID: 30450377 PMCID: PMC6234276 DOI: 10.1016/j.ynstr.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin (EPO) has been shown to improve cognitive function in mammals as well as in patients of psychiatric diseases by directly acting on the brain. In addition, EPO attenuates the synaptic transmission and enhances short- and long-term synaptic plasticity in hippocampus of mice, although there are still many discrepancies between different studies. It has been suggested that the divergences of different studies take root in different in-vivo application schemata or in long-term trophic effects of EPO. In the current study, we investigated the direct effects of EPO in slices of prelimbic cortex (PrL) by acute ex-vivo application of EPO, so that the erythropoietic or other trophic effects could be entirely excluded. Our results showed that the EPO effects were contradictory between the left and the right PrL. It enhanced the inhibitory transmission in the left and depressed the inhibitory transmission in the right PrL. Strikingly, this lateralized effect of EPO could be consistently found in individual bi-lateral PrL of all tested mice. Thus, our data suggest that EPO differentially modulates the inhibitory synaptic transmission of neuronal networks in the left and the right PrL. We hypothesize that such lateralized effects of EPO contribute to the development of the lateralization of stress reaction in PFC and underlie the altered bilateral GAGAergic synaptic transmission and oscillation patterns under stress that impact the central emotional and cognitive control in physiology as well as in pathophysiology. EPO showed fast effects on inhibitory transmission in the prefrontal cortex of mice. EPO enhanced the inhibitory transmission in the left and depressed it in the right prelimbic cortex of mice. The expression of EPOR in GAD+-neurons is different between the left and right PFC.
Collapse
Affiliation(s)
- Andre Dik
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany.,Department of Neurology, University of Muenster, Germany
| | - Roja Saffari
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| |
Collapse
|