1
|
Agarwal S, Nayak MA, Sood S. Multimodal imaging in autosomal recessive Stargardt's disease. BMJ Case Rep 2025; 18:e257508. [PMID: 40355273 DOI: 10.1136/bcr-2023-257508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Autosomal recessive Stargardt disease type 1 (STGD-1) is a common inherited retinal disorder caused by mutations in the ABCA4 gene. This case series highlights the role of multimodal imaging (MMI): fundus autofluorescence, optical coherence tomography, optical coherence tomography angiography and fluorescein angiography in diagnosing and staging STGD-1 in three patients with varying disease severities. Imaging revealed characteristic retinal changes, including flecks and atrophic lesions, which were correlated with genotype and clinical presentation. Genotype-phenotype correlation demonstrated the influence of specific ABCA4 mutations on disease severity. MMI proved valuable in detecting subclinical changes, distinguishing disease stages and providing prognostic insights. Genetic analysis remains essential for definitive diagnosis, particularly in atypical presentations. This report emphasises the importance of integrating imaging findings with clinical and genetic data to enhance diagnostic accuracy and patient care, especially in resource-limited settings, where genetic testing may not be readily available.
Collapse
Affiliation(s)
| | - Madhurima A Nayak
- Ophthalmology, Father Muller Medical College, Mangalore, Karnataka, India
| | - Shilpa Sood
- Ophthalmology, Garg Eye Hospital, Kangra, Himachal Pradesh, India
| |
Collapse
|
2
|
Kellner S, Weinitz S, Farmand G, Kellner U. Near-Infrared Autofluorescence: Early Detection of Retinal Pigment Epithelial Alterations in Inherited Retinal Dystrophies. J Clin Med 2024; 13:6886. [PMID: 39598030 PMCID: PMC11594703 DOI: 10.3390/jcm13226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique used to examine the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within RPE cells. It serves as a protective antioxidative factor and is involved in the phagocytosis of photoreceptor outer segments. Disorders affecting the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. NIA allows us to detect early alterations in various chorioretinal disorders, frequently before they are ophthalmoscopically visible and often prior to alterations in lipofuscin-associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, the findings for both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders, especially inherited retinal dystrophies (IRDs), indicating that NIA detects earlier alterations compared to FAF. Foveal alterations can be much more easily detected using NIA compared to FAF. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant Best disease, when FAF and OCT are still normal. In other IRDs, a preserved subfoveal NIA intensity is associated with good visual acuity. So far, the current knowledge on NIA in IRD has been presented in multiple separate publications but has not been summarized in an overview. This review presents the current knowledge on NIA in IRD and demonstrates NIA biomarkers.
Collapse
Affiliation(s)
- Simone Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Silke Weinitz
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Ghazaleh Farmand
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| |
Collapse
|
3
|
Sabharwal J, Liu TYA, Antonio-Aguirre B, Abousy M, Patel T, Cai CX, Jones CK, Singh MS. Automated identification of fleck lesions in Stargardt disease using deep learning enhances lesion detection sensitivity and enables morphometric analysis of flecks. Br J Ophthalmol 2024; 108:1226-1233. [PMID: 38408857 DOI: 10.1136/bjo-2023-323592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/20/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE To classify fleck lesions and assess artificial intelligence (AI) in identifying flecks in Stargardt disease (STGD). METHODS A retrospective study of 170 eyes from 85 consecutive patients with confirmed STGD. Fundus autofluorescence images were extracted, and flecks were manually outlined. A deep learning model was trained, and a hold-out testing subset was used to compare with manually identified flecks and for graders to assess. Flecks were clustered using K-means clustering. RESULTS Of the 85 subjects, 45 were female, and the median age was 37 years (IQR 25-59). A subset of subjects (n=41) had clearly identifiable fleck lesions, and an AI was successfully trained to identify these lesions (average Dice score of 0.53, n=18). The AI segmentation had smaller (0.018 compared with 0.034 mm2, p<0.001) but more numerous flecks (75.5 per retina compared with 40.0, p<0.001), but the total size of flecks was not different. The AI model had higher sensitivity to detect flecks but resulted in more false positives. There were two clusters of flecks based on morphology: broadly, one cluster of small round flecks and another of large amorphous flecks. The per cent frequency of small round flecks negatively correlated with subject age (r=-0.31, p<0.005). CONCLUSIONS AI-based detection of flecks shows greater sensitivity than human graders but with a higher false-positive rate. With further optimisation to address current shortcomings, this approach could be used to prescreen subjects for clinical research. The feasibility and utility of quantifying fleck morphology in conjunction with AI-based segmentation as a biomarker of progression require further study.
Collapse
Affiliation(s)
| | | | | | - Mya Abousy
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tapan Patel
- Johns Hopkins Wilmer Eye Institute, Baltimore, Maryland, USA
| | - Cindy X Cai
- Johns Hopkins Wilmer Eye Institute, Baltimore, Maryland, USA
| | - Craig K Jones
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mandeep S Singh
- Johns Hopkins Wilmer Eye Institute, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Song H, Hang H, Li K, Rossi EA, Zhang J. LONGITUDINAL ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY REVEALS REGIONAL VARIATION IN CONE AND ROD PHOTORECEPTOR LOSS IN STARGARDT DISEASE. Retina 2024; 44:1403-1412. [PMID: 38484106 PMCID: PMC11269039 DOI: 10.1097/iae.0000000000004104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE To investigate the temporal sequence of changes in the photoreceptor cell mosaic in patients with Stargardt disease type 1, using adaptive optics scanning laser ophthalmoscopy. METHODS Two brothers with genetically confirmed Stargardt disease type 1 underwent comprehensive eye exams, spectral-domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy imaging 3 times over the course of 28 months. Confocal images of the cones and rods were obtained from the central fovea to 10° inferiorly. Photoreceptors were counted in sampling windows at 100- µ m intervals of 200 µ m × 200 µ m for cones and 50 µ m × 50 µ m for rods, using custom cell marking software with manual correction. Photoreceptor density and spacing were measured and compared across imaging sessions using one-way analysis of variance. RESULTS Adaptive optics scanning laser ophthalmoscopy revealed the younger brother had a 30% decline in foveal cone density after 8 months, followed by complete loss of foveal cones at 28 months; the older brother had no detectable foveal cones at baseline. In the peripheral macula, cone and rod spacings were greater than normal in both patients. The ratio of the cone spacing to rod spacing was greater than normal across all eccentricities, with a greater divergence closer to the foveal center. CONCLUSION Cone cell loss may be an early pathogenetic step in Stargardt disease. Adaptive optics scanning laser ophthalmoscopy provides the capability to track individual photoreceptor changes longitudinally in Stargardt disease.
Collapse
Affiliation(s)
- Hongxin Song
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and visual Sciences, National Engineering Research Center for Ophthalmology. Beijing, China
| | - Hui Hang
- Department of Ophthalmology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital. Nanjing, China
| | - Kaiwen Li
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, China
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Zhang
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, China
| |
Collapse
|
5
|
Mizobuchi K, Hayashi T, Tanaka K, Kuniyoshi K, Murakami Y, Nakamura N, Torii K, Mizota A, Sakai D, Maeda A, Kominami T, Ueno S, Kusaka S, Nishiguchi KM, Ikeda Y, Kondo M, Tsunoda K, Hotta Y, Nakano T. Genetic and Clinical Features of ABCA4-Associated Retinopathy in a Japanese Nationwide Cohort. Am J Ophthalmol 2024; 264:36-43. [PMID: 38499139 DOI: 10.1016/j.ajo.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE To clarify the genetic and clinical features of Japanese patients with ABCA4-associated retinopathy. DESIGN Retrospective, multicenter cohort study. METHODS Patients with retinal degeneration and biallelic ABCA4 variants were recruited from 13 different hospitals. Whole exome sequencing analysis was used for genetic testing. Comprehensive ophthalmic examinations were performed on matched patients. The primary outcome measure was identifying multimodal retinal imaging findings associated with disease progression. RESULTS This study included 63 patients: 19 with missense/missense, 23 with missense/truncation, and 21 with truncation/truncation genotypes. In total, 62 variants were identified, including 29 novel variants. Six patients had a mild phenotype characterized by foveal-sparing or preserved foveal structure, including 4 with missense/missense and 2 with missense/truncation genotypes. The p.Arg212His variant was the most frequent in patients with mild phenotypes (4/12 alleles). Clinical findings showed a disease duration-dependent worsening of the phenotypic stage. Patients with the truncation/truncation genotype exhibited rapid retinal degeneration within a few years and definite fundus autofluorescence imaging patterns, including hyper autofluorescence at the macula and few or no flecks. CONCLUSIONS Our results indicate that missense/missense or missense/truncation genotypes, including the p.Arg212His variant, are associated with a relatively mild phenotype. In contrast, the truncation/truncation genotype causes rapid and severe retinal degeneration in Japanese patients with ABCA4-associated retinopathy. These data are vital in predicting patient prognosis, guiding genetic counseling, and stratifying patients for future clinical trials.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Katsushika Medical Center (T.H.), The Jikei University School of Medicine, Tokyo, Japan.
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences (K.T.), Nihon University School of Medicine, Nihon University Hospital, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yusuke Murakami
- Department of Ophthalmology (Y.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Natsuko Nakamura
- Department of Ophthalmology (N.N.), The University of Tokyo, Tokyo, Japan
| | - Kaoruko Torii
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Mizota
- Department of Ophthalmology (A.M.), Teikyo University, Tokyo, Japan
| | - Daiki Sakai
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Taro Kominami
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Ueno
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan; Department of Ophthalmology (S.U.), Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Shunji Kusaka
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology (Y.I.), Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mineo Kondo
- Department of Ophthalmology (M.K.), Mie University Graduate School of Medicine, Mie, Japan
| | - Kazushige Tsunoda
- Division of Vision Research (K.T.), National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
7
|
Abousy M, Antonio-Aguirre B, Aziz K, Hu MW, Qian J, Singh MS. Multimodal Phenomap of Stargardt Disease Integrating Structural, Psychophysical, and Electrophysiologic Measures of Retinal Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100327. [PMID: 37869022 PMCID: PMC10585476 DOI: 10.1016/j.xops.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 10/24/2023]
Abstract
Objective To cluster the diverse phenotypic features of Stargardt disease (STGD) using unsupervised clustering of multimodal retinal structure and function data. Design Retrospective cross-sectional study. Subjects Eyes of subjects with STGD and fundus autofluorescence (FAF), OCT, electroretinography (ERG), and microperimetry (MP) data available within 1 year of the baseline evaluation. Methods A total of 46 variables from FAF, OCT, ERG, and MP results were recorded for subjects with STGD as defined per published criteria. Factor analysis of mixed data identified the most informative variables. Unsupervised hierarchical clustering and silhouette analysis identified the optimal number of clusters to classify multimodal phenotypes. Main Outcome Measures Phenotypic clusters of STGD subjects and the corresponding cluster features. Results We included 52 subjects and 102 eyes with a mean visual acuity (VA) at the time of multimodal testing of 0.69 ± 0.494 logarithm of minimum angle of resolution (20/63 Snellen). We identified 4 clusters of eyes. Compared to the other clusters, cluster 1 (n = 16) included younger subjects, VA greater than that of clusters 2 and 3, normal or moderately low total macular volume (TMV), greater preservation of scotopic and photopic ERG responses and fixation stability, less atrophy, and fewer flecks. Cluster 2 (n = 49) differed from cluster 1 mainly with less atrophy and relatively stable fixation. Cluster 3 (n = 10) included older subjects than clusters 1 and 2 and showed the lowest VA, TMV, ERG responses, and fixation stability, with extensive atrophy. Cluster 4 (n = 27) showed better VA, TMV similar to clusters 1 and 2, moderate ERG activity, stable fixation, and moderate-high atrophy and flecks. Conclusions Reflecting the phenotypic complexity of STGD, an unsupervised clustering approach incorporating phenotypic measures can be used to categorize STGD eyes into distinct clusters. The clusters exhibit differences in structural and functional measures including quantity of flecks, extent of retinal atrophy, visual fixation accuracy, and ERG responses, among other features. If novel pharmacologic, gene, or cell therapy modalities become available in the future, the multimodal phenomap approach may be useful to individualize treatment decisions, and its utility in aiding prognostication requires further evaluation. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Mya Abousy
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Kanza Aziz
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
8
|
Cohen SY, Chowers I, Nghiem-Buffet S, Mrejen S, Souied E, Gaudric A. Subretinal autofluorescent deposits: A review and proposal for clinical classification. Surv Ophthalmol 2023; 68:1050-1070. [PMID: 37392968 DOI: 10.1016/j.survophthal.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Subretinal autofluorescent deposits (SADs) may be found in the posterior pole, associated with very various conditions. These disorders usually present a typical pattern of autofluorescent lesions seen on short-wavelength fundus autofluorescence. We describe SADs according to their putative pathophysiological origin and also according to their clinical pattern, i.e., number, shape, and usual location. Five main putative pathophysiological origins of SADs were identified in disorders associated with an intrinsic impairment of phagocytosis and protein transportation, with excess of retinal pigment epithelium phagocytic capacity, with direct or indirect retinal pigment epithelium injury, and/or disorders associated with long-standing serous retinal detachment with mechanical separation between the retinal pigment epithelium and the photoreceptor outer segments. Clinically, however, they could be classified into eight subclasses of SADs, as observed on fundus autofluorescence as follows: single vitelliform macular lesion, multiple roundish or vitelliform lesions, multiple peripapillary lesions, flecked lesions, leopard-spot lesions, macular patterned lesions, patterned lesions located in the same area as the causal disorder, or nonpatterned lesions. Thus, if multimodal imaging may be required to diagnose the cause of SADs, the proposed classification based on noninvasive, widely available short-wavelength fundus autofluorescence could guide clinicians in making their diagnosis decision tree before considering the use of more invasive tools.
Collapse
Affiliation(s)
- Salomon Yves Cohen
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, University of Paris-Est Créteil, Créteil, France.
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Hospital, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Sarah Mrejen
- Ophthalmology Center for Imaging and Laser, Paris, France
| | - Eric Souied
- Department of Ophthalmology, University of Paris-Est Créteil, Créteil, France
| | - Alain Gaudric
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, AP-HP, Hôpital Lariboisière, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
10
|
Ferraro G, Gigante Y, Pitea M, Mautone L, Ruocco G, Di Angelantonio S, Leonetti M. A model eye for fluorescent characterization of retinal cultures and tissues. Sci Rep 2023; 13:10983. [PMID: 37415074 PMCID: PMC10326009 DOI: 10.1038/s41598-023-37806-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Many human neural or neurodegenerative diseases strongly affect the ocular and retinal environment showing peculiar alterations which can be employed as specific disease biomarkers. The noninvasive optical accessibility of the retina makes the ocular investigation a potentially competitive strategy for screening, thus the development of retinal biomarkers is rapidly growing. Nevertheless, a tool to study and image biomarkers or biological samples in a human-like eye environment is still missing. Here we report on a modular and versatile eye model designed to host biological samples, such as retinal cultures differentiated from human induced pluripotent stem cells and ex-vivo retinal tissue, but also suited to host any kind of retinal biomarkers. We characterized the imaging performance of this eye model on standard biomarkers such as Alexa Fluor 532 and Alexa Fluor 594.
Collapse
Affiliation(s)
- G Ferraro
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy
| | - Y Gigante
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy
| | - M Pitea
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy
| | - L Mautone
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - G Ruocco
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy
- Dipartimento di Fisica, Sapienza University, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - S Di Angelantonio
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy.
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy.
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - M Leonetti
- Center for Life Nano- & Neuro-Science , Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy.
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy.
- Institute of Nanotechnology, Soft and Living Matter Laboratory, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
11
|
Birtel J, Bauer T, Pauleikhoff L, Rüber T, Gliem M, Charbel Issa P. Fundus autofluorescence imaging using red excitation light. Sci Rep 2023; 13:9916. [PMID: 37336979 DOI: 10.1038/s41598-023-36217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Retinal disease accounts significantly for visual impairment and blindness. An important role in the pathophysiology of retinal disease and aging is attributed to lipofuscin, a complex of fluorescent metabolites. Fundus autofluorescence (AF) imaging allows non-invasive mapping of lipofuscin and is a key technology to diagnose and monitor retinal disease. However, currently used short-wavelength (SW) excitation light has several limitations, including glare and discomfort during image acquisition, reduced image quality in case of lens opacities, limited visualization of the central retina, and potential retinal light toxicity. Here, we establish a novel imaging modality which uses red excitation light (R-AF) and overcomes these drawbacks. R-AF images are high-quality, high-contrast fundus images and image interpretation may build on clinical experience due to similar appearance of pathology as on SW-AF images. Additionally, R-AF images may uncover disease features that previously remained undetected. The R-AF signal increases with higher abundance of lipofuscin and does not depend on photopigment bleaching or on the amount of macular pigment. Improved patient comfort, limited effect of cataract on image quality, and lack of safety concerns qualify R-AF for routine clinical monitoring, e.g. for patients with age-related macular degeneration, Stargardt disease, or for quantitative analysis of AF signal intensity.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurenz Pauleikhoff
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Charbel Issa
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wang CT, Chang YH, Tan GSW, Lee SY, Chan RVP, Wu WC, Tsai ASH. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Pediatric Retinal Diseases. Diagnostics (Basel) 2023; 13:diagnostics13081461. [PMID: 37189561 DOI: 10.3390/diagnostics13081461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Indirect ophthalmoscopy and handheld retinal imaging are the most common and traditional modalities for the evaluation and documentation of the pediatric fundus, especially for pre-verbal children. Optical coherence tomography (OCT) allows for in vivo visualization that resembles histology, and optical coherence tomography angiography (OCTA) allows for non-invasive depth-resolved imaging of the retinal vasculature. Both OCT and OCTA were extensively used and studied in adults, but not in children. The advent of prototype handheld OCT and OCTA have allowed for detailed imaging in younger infants and even neonates in the neonatal care intensive unit with retinopathy of prematurity (ROP). In this review, we discuss the use of OCTA and OCTA in various pediatric retinal diseases, including ROP, familial exudative vitreoretinopathy (FEVR), Coats disease and other less common diseases. For example, handheld portable OCT was shown to detect subclinical macular edema and incomplete foveal development in ROP, as well as subretinal exudation and fibrosis in Coats disease. Some challenges in the pediatric age group include the lack of a normative database and the difficulty in image registration for longitudinal comparison. We believe that technological improvements in the use of OCT and OCTA will improve our understanding and care of pediatric retina patients in the future.
Collapse
Affiliation(s)
- Chung-Ting Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Gavin S W Tan
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL 60612, USA
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Strauss RW, Ho A, Jha A, Fujinami K, Michaelides M, Cideciyan AV, Audo I, Birch DG, Sadda S, Ip M, West S, Schönbach EM, Kong X, Scholl HPN. Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17). Am J Ophthalmol 2023; 250:157-170. [PMID: 36764427 DOI: 10.1016/j.ajo.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To estimate the progression rate of atrophic lesions in Stargardt disease derived from fundus autofluorescence (FAF). DESIGN International, multicenter, prospective cohort study. METHODS A total of 259 participants aged ≥6 years with disease-causing variants in the ABCA4 gene were enrolled from 9 centers and followed over a 24-month period. FAF images were obtained every 6 months, and areas of definitely decreased autofluorescence (DDAF) and decreased autofluorescence (DAF) were quantified. Progression rates were estimated from linear mixed models with time as the independent variable. RESULTS A total of 488 study eyes of 259 participants (88.8% with both eyes) were enrolled and images from 432 eyes were followed for 24 months. The overall estimated progression of DDAF was 0.74 mm2/y (95% CI 0.64-0.85, P < .0001) and that of DAF was 0.64 mm2/y (95% CI 0.57-0.71) over a 24-month period in univariate analysis. Growth rates were strongly dependent on baseline lesion area. After square root transformation, the DDAF growth rate was not dependent on baseline lesion radius (P = .11), whereas the DAF growth rate was dependent (P < .0001). Genotype was not found to significantly impact the growth rate of DDAF or DAF lesions. CONCLUSIONS FAF may serve as a convenient monitoring tool and suitable end point for interventional clinical trials that aim to slow disease progression. DDAF and DAF lesion sizes at baseline are strong predicting factors for lesion area growth and can be partially accounted for by square root transformation.
Collapse
Affiliation(s)
- Rupert W Strauss
- From the Department of Ophthalmology, Medical University Graz (R.W.S.), Graz, Austria; Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London (R.W.S., K.F., M.M.), London, United Kingdom; Department of Ophthalmology, Kepler University Clinic (R.W.S.), Linz, Austria; Institute of Clinical and Molecular Ophthalmology Basel (IOB) (R.W.S., H.P.N.S.), Basel, Switzerland
| | - Alexander Ho
- Doheny Eye Institute, David Geffen School of Medicine at University of California Los Angeles (A.H., A.J., S.S., M.I.), California, USA
| | - Anamika Jha
- Doheny Eye Institute, David Geffen School of Medicine at University of California Los Angeles (A.H., A.J., S.S., M.I.), California, USA
| | - Kaoru Fujinami
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London (R.W.S., K.F., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division for Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center (K.F.), Tokyo, Japan
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London (R.W.S., K.F., M.M.), London, United Kingdom
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania (A.V.C.), Philadelphia, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Universités, University Pierre et Marie Curie (UPMC) Université de Paris 06, Institut national de la santé et de la recherche médicale (INSERM), Centre national de la recherche scientifique (CNRS), Institut de la Vision, Centre Hospitalier National d'Ophtalmologie (CHNO) des Quinze-Vingts (I.A.), Paris, France
| | - David G Birch
- Retina Foundation of the Southwest, Dallas (D.G.B.), Texas, USA
| | - Srinivas Sadda
- Doheny Eye Institute, David Geffen School of Medicine at University of California Los Angeles (A.H., A.J., S.S., M.I.), California, USA
| | - Michael Ip
- Doheny Eye Institute, David Geffen School of Medicine at University of California Los Angeles (A.H., A.J., S.S., M.I.), California, USA
| | - Sheila West
- Wilmer Eye Institute, Johns Hopkins University (S.W., X.K.), Baltimore, USA
| | - Etienne M Schönbach
- Shiley Eye Institute and Jacobs Retina Center, University of California, San Diego (E.M.S.), La Jolla, California, USA
| | - Xiangrong Kong
- Wilmer Eye Institute, Johns Hopkins University (S.W., X.K.), Baltimore, USA
| | - Hendrik P N Scholl
- Institute of Clinical and Molecular Ophthalmology Basel (IOB) (R.W.S., H.P.N.S.), Basel, Switzerland; Department of Ophthalmology, University of Basel (H.P.N.S.), Basel, Switzerland.
| | | |
Collapse
|
14
|
Hussain HMJ, Wang M, Huang A, Schmidt R, Qian X, Yang P, Marra M, Li Y, Pennesi ME, Chen R. Novel Pathogenic Mutations Identified from Whole-Genome Sequencing in Unsolved Cases of Patients Affected with Inherited Retinal Diseases. Genes (Basel) 2023; 14:447. [PMID: 36833373 PMCID: PMC9956865 DOI: 10.3390/genes14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse set of visual disorders that collectively represent a major cause of early-onset blindness. With the reduction in sequencing costs in recent years, whole-genome sequencing (WGS) is being used more frequently, particularly when targeted gene panels and whole-exome sequencing (WES) fail to detect pathogenic mutations in patients. In this study, we performed mutation screens using WGS for a cohort of 311 IRD patients whose mutations were undetermined. A total of nine putative pathogenic mutations in six IRD patients were identified, including six novel mutations. Among them, four were deep intronic mutations that affected mRNA splicing, while the other five affected protein-coding sequences. Our results suggested that the rate of resolution of unsolved cases via targeted gene panels and WES can be further enhanced with WGS; however, the overall improvement may be limited.
Collapse
Affiliation(s)
- Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Austin Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Schmidt
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Thuma TBT, Bogovic JA, Gunton KB, Jimenez H, Negreiros B, Pulido JS. The big warp: Registration of disparate retinal imaging modalities and an example overlay of ultrawide-field photos and en-face OCTA images. PLoS One 2023; 18:e0284905. [PMID: 37098039 PMCID: PMC10129009 DOI: 10.1371/journal.pone.0284905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
PURPOSE To develop an algorithm and scripts to combine disparate multimodal imaging modalities and show its use by overlaying en-face optical coherence tomography angiography (OCTA) images and Optos ultra-widefield (UWF) retinal images using the Fiji (ImageJ) plugin BigWarp. METHODS Optos UWF images and Heidelberg en-face OCTA images were collected from various patients as part of their routine care. En-face OCTA images were generated and ten (10) images at varying retinal depths were exported. The Fiji plugin BigWarp was used to transform the Optos UWF image onto the en-face OCTA image using matching reference points in the retinal vasculature surrounding the macula. The images were then overlayed and stacked to create a series of ten combined Optos UWF and en-face OCTA images of increasing retinal depths. The first algorithm was modified to include two scripts that automatically aligned all the en-face OCTA images. RESULTS The Optos UWF image could easily be transformed to the en-face OCTA images using BigWarp with common vessel branch point landmarks in the vasculature. The resulting warped Optos image was then successfully superimposed onto the ten Optos UWF images. The scripts more easily allowed for automatic overlay of the images. CONCLUSIONS Optos UWF images can be successfully superimposed onto en-face OCTA images using freely available software that has been applied to ocular use. This synthesis of multimodal imaging may increase their potential diagnostic value. Script A is publicly available at https://doi.org/10.6084/m9.figshare.16879591.v1 and Script B is available at https://doi.org/10.6084/m9.figshare.17330048.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
| | - Hiram Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
| | | | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
- Retina Service, Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Parmann R, Greenstein VC, Tsang SH, Sparrow JR. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35816046 PMCID: PMC9284471 DOI: 10.1167/iovs.63.8.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In choroideremia (CHM) carriers, scotopic sensitivity was assessed by dark adapted chromatic perimetry (DACP) and outer retinal structure was evaluated by multimodal imaging. Methods Nine carriers (18 eyes) and 13 healthy controls (13 eyes) underwent DACP testing with cyan and red stimuli. Analysis addressed peripapillary (4 test locations closest to the optic disc), macular (52 locations), and peripheral (60 locations outside the macula) regions. Responses were considered to be rod-mediated when cyan relative to red sensitivity was >5 dB. Fundus imaging included spectral domain optical coherence tomography (SD-OCT), short-wavelength (SW-AF), near-infrared (NIR-AF), ultrawide-field (200 degrees) pseudocolor fundus imaging, and quantitative (qAF) fundus autofluorescence. Results Detection of the cyan stimulus was rod mediated in essentially all test locations (99.7%). In the macular and peripheral areas, DACP sensitivity values were not significantly different from healthy eyes. In the peripapillary area, sensitivities were significantly decreased (P < 0.05). SD-OCT imaging ranged from hyper-reflective lesions and discontinuities of the outer retinal bands to hypertransmission of signal. SW-AF and NIR-AF images presented with peripapillary atrophy in seven patients (14 eyes). Mosaicism was detectable in SW-AF images in seven patients and in NIR-AF images in five patients. Frank hypo-autofluorescence was visible in eight patients with distinct chorioretinopathy in seven patients. The qAF values were below the 95% confidence interval (CI) of healthy age-matched individuals in 12 eyes. Conclusions Rod mediated scotopic sensitivity was comparable to that in control eyes in macular and peripheral areas but was decreased in the peripapillary area where changes in retinal structure were also most severe.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Stephen H Tsang
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Kellner S, Weinitz S, Farmand G, Kellner U. Nahinfrarot-Autofluoreszenz: klinische Anwendung und diagnostische Relevanz. AUGENHEILKUNDE UP2DATE 2022. [DOI: 10.1055/a-1810-1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungDie Nahinfrarot-Autofluoreszenz (NIA) ist ein nicht-invasives Verfahren zur Untersuchung des retinalen Pigmentepithels (RPE) basierend auf der Darstellung des antioxidativen Schutzfaktors
Melanin in den RPE-Zellen. Die NIA verbessert die Früherkennung chorioretinaler Erkrankungen, da bei vielen dieser Erkrankungen mit der NIA Strukturveränderungen des RPE nachweisbar sind,
bevor sich in anderen Untersuchungen Krankheitszeichen erkennen lassen.
Collapse
|
18
|
Kellner S, Weinitz S, Farmand G, Kellner U. [Near-infrared Fundus Autofluorescence: Clinical Application and Diagnostic Relevance]. Klin Monbl Augenheilkd 2022; 239:1059-1076. [PMID: 35609811 DOI: 10.1055/a-1857-1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique for examination of the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within the RPE cells, in one of them it serves as a protective antioxidative factor within the RPE cells and is involved in the phagocytosis of photoreceptor outer segments. Disorders that affect the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. Therefore, NIA allows to detect early alterations in inherited and acquired chorioretinal disorders, frequently prior to ophthalmoscopical visualisation and often prior to alterations in lipofuscin associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, findings between both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders (e.g., age-related macular degeneration, retinitis pigmentosa, ABCA4-gene associated Stargardt disease and cone-rod dystrophy, light damage), indicating that NIA detects earlier alterations compared to FAF. In addition, due to the absence of blue-light filtering which limits foveal visualisation in FAF, foveal alterations can be much better detected using NIA. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant BEST1-associated disease, when FAF and OCT are still normal. In other disorders, a normal subfoveal NIA intensity is associated with good visual acuity. This review summarizes the present knowledge on NIA and demonstrates biomarkers for various chorioretinal disorders.
Collapse
|
19
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, Villegas-Pérez MP, Valiente-Soriano FJ, Vidal-Sanz M. Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations. Life (Basel) 2021; 11:life11111137. [PMID: 34833013 PMCID: PMC8617611 DOI: 10.3390/life11111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.
Collapse
Affiliation(s)
- Juan A. Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
20
|
Abdolrahimzadeh S, Ciancimino C, Grassi F, Sordi E, Fragiotta S, Scuderi G. Near-Infrared Reflectance Imaging in Retinal Diseases Affecting Young Patients. J Ophthalmol 2021; 2021:5581851. [PMID: 34373789 PMCID: PMC8349282 DOI: 10.1155/2021/5581851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Near-infrared reflectance (NIR) is a noninvasive, contactless, and rapid in vivo imaging technique for visualizing subretinal alterations in the photoreceptor layer, retinal pigment epithelium, and choroid. The present report describes the application of this imaging method in retinal and choroidal pathologies affecting young patients where scarce cooperation, poor fixation, and intense glare sensation can result in a challenging clinical examination. A literature search of the MEDLINE database was performed using the terms "near-infrared reflectance" and "spectral-domain optical coherence tomography." Articles were selected if they described the diagnostic use of NIR in children or young adults. Of 700 publications, 42 manuscripts published between 2005 and 2020 were inherent to children or young adults and were considered in this narrative literature review. The first disease category is the phakomatoses where NIR is essential in visualizing choroidal alterations recognized as cardinal biomarkers in neurofibromatosis type 1, microvascular retinal alterations, and retinal astrocytic hamartomas. Another diagnostic application is the accurate visualization of crystals of various nature, including the glistening crystals that characterize Bietti crystalline dystrophy. Acute macular neuropathy and paracentral acute middle maculopathy represent a further disease category with young adulthood onset where NIR is not only diagnostic but also essential to monitor disease progression. A further interesting clinical application is to facilitate the detection of laser-induced maculopathy where funduscopic examination can be normal or subnormal. In conclusion, NIR imaging has a noninterchangeable role in diagnosing certain retinal diseases, especially in children and young adults where there is scarce collaboration and a lack of evident clinical findings. Moreover, this technique can reveal unique retinal and choroidal biomarkers highly specific to rare conditions.
Collapse
Affiliation(s)
- Solmaz Abdolrahimzadeh
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Chiara Ciancimino
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Flaminia Grassi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Edoardo Sordi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Serena Fragiotta
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Gianluca Scuderi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| |
Collapse
|
21
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Dhooge PPA, Runhart EH, Lambertus S, Bax NM, Groenewoud JMM, Klevering BJ, Hoyng CB. Correlation of Morphology and Function of Flecks Using Short-Wave Fundus Autofluorescence and Microperimetry in Patients With Stargardt Disease. Transl Vis Sci Technol 2021; 10:18. [PMID: 34003952 PMCID: PMC7991959 DOI: 10.1167/tvst.10.3.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the functional relevance of longitudinal changes in hyperautofluorescent areas and flecks in Stargardt disease (STGD1) using short-wavelength autofluorescence (SW-AF) imaging. Methods In this prospective, longitudinal study, 31 patients with STGD1 (56 eyes) underwent microperimetry (MP) and SW-AF imaging twice in 3 to 5 years. A total of 760 MP test points were included in the statistical analysis based on stable fixation and accurate alignment of SW-AF and MP. Autofluorescence intensity was qualitatively assessed in all MP test points. Small circumscriptive hyperautofluorescent lesions were defined as flecks. Longitudinal imaging characteristics observed on SW-AF were classified into the following categories: appearing, disappearing, and stable flecks, stable hyperautofluorescent, and stable background autofluorescence. The relationship between SW-AF intensity changes and MP changes was analyzed using a linear mixed model corrected for baseline sensitivity. Results Retinal sensitivity declined most in locations without change in SW-AF intensity. Functional decline per year was significantly larger in flecks that disappeared (−0.72 ± 1.30 dB) compared to flecks that appeared (−0.34 ± 0.65 dB), if baseline sensitivity was high (≥10 dB; P < 0.01). The correlation between the change observed on SW-AF and the sensitivity change significantly depended on the sensitivity at baseline (P = 0.000). Conclusions Qualitative longitudinal assessment of SW-AF poorly reflected the retinal sensitivity loss observed over the course of 3 to 5 years. Translational Relevance When aiming to assess treatment effect on lesion level, a multimodal end point including MP focused on hyperautofluorescent lesions appears essential but needs further studies on optimizing MP grids, eye-tracking systems, and alignment software.
Collapse
Affiliation(s)
- Patty P A Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esmee H Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes M M Groenewoud
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Sparrow JR, Parmann R, Tsang SH, Allikmets R, Chang S, Jauregui R. Shared Features in Retinal Disorders With Involvement of Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34115091 PMCID: PMC8196415 DOI: 10.1167/iovs.62.7.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
When using spectral domain optical coherence tomography (SD-OCT) to inform the status of outer retina, we have noted discrete hyperreflective lesions extending through photoreceptor-attributable bands that have a similar presentation in multiple retinal diseases. These lesions present as either corrugated thickenings of interdigitation zone and ellipsoid zone bands or in later stages as rectangular or pyramidal shaped foci that extend radially through photoreceptor cell-attributable bands. In ABCA4-related and peripherin-2/RDS-disease (PRPH2/RDS), monogenic forms of retinopathy caused by mutations in proteins expressed in photoreceptor cells, these punctate lesions colocalize with fundus flecks in en face images. In fundus albipunctatus and retinitis punctata albescens, diseases caused by mutations in genes (retinol dehydrogenase 5, RDH5; and retinaldehyde-binding protein 1, RLBP1) encoding proteins of the visual cycle, these lesions manifest as white dot-like puncta. Similar aberrations in photoreceptor cell-attributable SD-OCT reflectivity layers manifest as reticular pseudodrusen (RPD) in short-wavelength fundus autofluorescence and near-infrared fundus autofluorescence fundus images and are linked to age-related macular degeneration a complex disease. Despite differences in the etiologies of retinal diseases presenting as fundus flecks, dots and RPD, underlying degenerative processes in photoreceptor cells are signified in SD-OCT scans by the loss of structural features that would otherwise define healthy photoreceptor cells at these foci.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rait Parmann
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Stanley Chang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| | - Ruben Jauregui
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| |
Collapse
|
24
|
Oh JK, Lima de Carvalho JR, Nuzbrokh Y, Ryu J, Chemudupati T, Mahajan VB, Sparrow JR, Tsang SH. Retinal Manifestations of Mitochondrial Oxidative Phosphorylation Disorders. Invest Ophthalmol Vis Sci 2021; 61:12. [PMID: 33049060 PMCID: PMC7571321 DOI: 10.1167/iovs.61.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this paper was to discuss manifestations of primary mitochondrial dysfunctions and whether the retinal pigment epithelium or the photoreceptors are preferentially affected. Methods A retrospective analysis was performed of patients with clinically and laboratory confirmed diagnoses of maternally inherited diabetes and deafness (MIDD) or Kearns–Sayre syndrome (KSS). Patients underwent full ophthalmic examination, full-field electroretinogram, and multimodal imaging studies, including short-wavelength autofluorescence, spectral domain-optical coherence tomography, and color fundus photography. Results A total of five patients with MIDD and four patients with KSS were evaluated at two tertiary referral centers. Mean age at initial evaluation was 50.3 years old. Nascent outer retinal tubulations corresponding with faint foci of autofluorescence were observed in two patients with MIDD. Characteristic features of this cohort included a foveal sparing phenotype observed in 13 of 18 eyes (72%), global absence of intraretinal pigment migration, and preserved retinal function on full-field electroretinogram testing in 12 of 16 eyes (75%). One patient diagnosed with MIDD presented with an unusual pattern of atrophy surrounding the parapapillary region and one patient with KSS presented with an atypical choroideremia-like phenotype. Conclusions MIDD and KSS are phenotypically heterogeneous disorders. Several features of disease suggest that primary mitochondrial dysfunction may first affect the retinal pigment epithelium followed by secondary photoreceptor loss. Similarities between primary mitochondrial degenerations and retinal disorders, such as age-related macular degeneration may suggest a primary role of mitochondria in the pathogenesis of these oligogenic disorders.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,State University of New York at Downstate Medical Center, Brooklyn, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Yan Nuzbrokh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Joseph Ryu
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States
| | - Teja Chemudupati
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Janet R Sparrow
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
25
|
Deitch I, Ferenchak K, Miller JB. Quantitative autofluorescence: Review of Current Technical Aspects and Applications in Chorioretinal Disease. Semin Ophthalmol 2021; 36:346-350. [PMID: 33818290 DOI: 10.1080/08820538.2021.1908570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: In this review we discuss the broad clinical application of qAF and provide a descriptive summary of the phenotypic findings of different chorioretinal pathologies.Background: Quantitative Fundus autofluorescence (qAF) is a novel developing technology that can aid in diagnosis and longitudinal disease monitoring by measuring and comparing autofluorescence intensities. Fundus autofluorescence (FAF) is a noninvasive imaging method that creates a density map of the fluorophores of the ocular fundus and provides both functional and topographic anatomic information about retinal cells. Fluorophores are molecules that have the ability to temporarily absorb irradiated light, and emit a small amount of light of a different wavelength. Different endogenous fluorophores can be found in the ocular fundus. Changes in accumulation of retinal fluorophores usually indicate retinal pathology and create characteristic patterns of hyper-autofluorescence and hypo-autofluorescence that help establish a diagnosis.Conclusion: qAF allows a safe non-invasive visualization of the retina, enables a standard for AF intensities comparison and aids to the understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Iris Deitch
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - Kevin Ferenchak
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Jauregui R, Nuzbrokh Y, Su PY, Zernant J, Allikmets R, Tsang SH, Sparrow JR. Retinal Pigment Epithelium Atrophy in Recessive Stargardt Disease as Measured by Short-Wavelength and Near-Infrared Autofluorescence. Transl Vis Sci Technol 2021; 10:3. [PMID: 33505770 PMCID: PMC7794276 DOI: 10.1167/tvst.10.1.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose To compare the detection of retinal pigment epithelium (RPE) atrophy in short-wavelength (SW-AF) and near-infrared autofluorescence (NIR-AF) images in Stargardt disease (STGD1) patients. Methods SW-AF and NIR-AF images (115 eyes from 115 patients) were analyzed by two independent graders. Hypoautofluorescent (hypoAF) areas, indicative of RPE atrophy, were measured, and the two modalities were compared. Results Patients were segregated into four groups: nascent (6 [5%]), widespread (21 [18%]), discrete (55 [48%]), and chorioretinal atrophy (33 [29%]). The areas of hypoAF were larger in NIR-AF compared to SW-AF images in discrete (3.9 vs. 2.2 mm2, P < 0.001) and chorioretinal atrophy (12.7 vs. 11.4 mm2, P = 0.015). Similar findings were observed qualitatively in nascent and widespread atrophy patients. Using the area linear model (ALM), lesion area increased at similar rates in SW-AF and NIR-AF images of discrete atrophy (0.20 vs. 0.32 mm2/y, P = 0.275) and chorioretinal atrophy (1.30 vs. 1.74 mm2/y, P = 0.671). Using the radius linear model (RLM), the lesion effective radius also increased similarly in SW-AF and NIR-AF images in discrete (0.03 vs. 0.05 mm2/y, P = 0.221) and chorioretinal atrophy (0.08 vs. 0.10 mm2/y, P = 0.754) patients. Conclusions NIR-AF reveals a larger area of RPE atrophy in STGD1 patients compared to SW-AF images, but rates of lesion enlargement in the two modalities are similar. Translational Relevance Measurements of RPE atrophy by AF imaging are crucial for monitoring STGD1 disease progression and given our findings we advocate greater use of NIR-AF for patients.
Collapse
Affiliation(s)
- Ruben Jauregui
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA
| | - Yan Nuzbrokh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA
| | - Pei-Yin Su
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - Jana Zernant
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Al-Khuzaei S, Shah M, Foster CR, Yu J, Broadgate S, Halford S, Downes SM. The role of multimodal imaging and vision function testing in ABCA4-related retinopathies and their relevance to future therapeutic interventions. Ther Adv Ophthalmol 2021; 13:25158414211056384. [PMID: 34988368 PMCID: PMC8721514 DOI: 10.1177/25158414211056384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review article is to describe the specific features of Stargardt disease and ABCA4 retinopathies (ABCA4R) using multimodal imaging and functional testing and to highlight their relevance to potential therapeutic interventions. Standardised measures of tissue loss, tissue function and rate of change over time using formal structured deep phenotyping in Stargardt disease and ABCA4R are key in diagnosis, and prognosis as well as when selecting cohorts for therapeutic intervention. In addition, a meticulous documentation of natural history will be invaluable in the future to compare treated with untreated retinas. Despite the familiarity with the term Stargardt disease, this eponymous classification alone is unhelpful when evaluating ABCA4R, as the ABCA4 gene is associated with a number of phenotypes, and a range of severity. Multimodal imaging, psychophysical and electrophysiologic measurements are necessary in diagnosing and characterising these differing retinopathies. A wide range of retinal dystrophy phenotypes are seen in association with ABCA4 mutations. In this article, these will be referred to as ABCA4R. These different phenotypes and the existence of phenocopies present a significant challenge to the clinician. Careful phenotypic characterisation coupled with the genotype enables the clinician to provide an accurate diagnosis, associated inheritance pattern and information regarding prognosis and management. This is particularly relevant now for recruiting to therapeutic trials, and in the future when therapies become available. The importance of accurate genotype-phenotype correlation studies cannot be overemphasised. This approach together with segregation studies can be vital in the identification of causal mutations when variants in more than one gene are being considered as possible. In this article, we give an overview of the current imaging, psychophysical and electrophysiological investigations, as well as current therapeutic research trials for retinopathies associated with the ABCA4 gene.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
28
|
Charng J, Xiao D, Mehdizadeh M, Attia MS, Arunachalam S, Lamey TM, Thompson JA, McLaren TL, De Roach JN, Mackey DA, Frost S, Chen FK. Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease. Sci Rep 2020; 10:16491. [PMID: 33020556 PMCID: PMC7536408 DOI: 10.1038/s41598-020-73339-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Stargardt disease is one of the most common forms of inherited retinal disease and leads to permanent vision loss. A diagnostic feature of the disease is retinal flecks, which appear hyperautofluorescent in fundus autofluorescence (FAF) imaging. The size and number of these flecks increase with disease progression. Manual segmentation of flecks allows monitoring of disease, but is time-consuming. Herein, we have developed and validated a deep learning approach for segmenting these Stargardt flecks (1750 training and 100 validation FAF patches from 37 eyes with Stargardt disease). Testing was done in 10 separate Stargardt FAF images and we observed a good overall agreement between manual and deep learning in both fleck count and fleck area. Longitudinal data were available in both eyes from 6 patients (average total follow-up time 4.2 years), with both manual and deep learning segmentation performed on all (n = 82) images. Both methods detected a similar upward trend in fleck number and area over time. In conclusion, we demonstrated the feasibility of utilizing deep learning to segment and quantify FAF lesions, laying the foundation for future studies using fleck parameters as a trial endpoint.
Collapse
Affiliation(s)
- Jason Charng
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Di Xiao
- The Australian E-Health Research Centre, Health and Biosecurity, CSIRO, Brisbane, QLD, Australia
| | - Maryam Mehdizadeh
- The Australian E-Health Research Centre, Health and Biosecurity, CSIRO, Brisbane, QLD, Australia
| | - Mary S Attia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Sukanya Arunachalam
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Department of Ophthalmology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Perth, WA, Australia
| | - Shaun Frost
- The Australian E-Health Research Centre, Health and Biosecurity, CSIRO, Brisbane, QLD, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, 2 Verdun Street, Nedlands, WA, Australia. .,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia. .,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia. .,Department of Ophthalmology, Perth Children's Hospital, Perth, WA, Australia.
| |
Collapse
|
29
|
Huang D, Thompson JA, Charng J, Chelva E, McLenachan S, Chen S, Zhang D, McLaren TL, Lamey TM, Constable IJ, De Roach JN, Aung‐Htut MT, Adams A, Fletcher S, Wilton SD, Chen FK. Phenotype-genotype correlations in a pseudodominant Stargardt disease pedigree due to a novel ABCA4 deletion-insertion variant causing a splicing defect. Mol Genet Genomic Med 2020; 8:e1259. [PMID: 32627976 PMCID: PMC7336727 DOI: 10.1002/mgg3.1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Deletion-insertion (delins) variants in the retina-specific ATP-binding cassette transporter gene, subfamily A, member 4 (ABCA4) accounts for <1% in Stargardt disease. The consequences of these delins variants on splicing cannot be predicted with certainty without supporting in vitro data. METHODS Candidate ABCA4 variants were revealed by genetic and segregation analysis of a family with pseudodominant Stargardt disease using a commercial panel and Sanger sequencing. RNA extracted from patient-derived fibroblasts was analyzed by RT-PCR to evaluate splicing behavior of the ABCA4 variants. RESULTS Affected members carrying the novel c.6031_6044delinsAGTATTTAACCAATATTT variant in exon 44 presented with contrasting phenotypes; from early-onset cone-rod dystrophy to late-onset macular dystrophy. This variant resulted in a 56-nucleotide deletion in the mutant allele by activation of a cryptic splice acceptor site which disrupts the reading frame and results in a premature termination codon (p.Ile2003LeufsTer41). If translated, the crucial functional domains near the C-terminus would be truncated from the ABCA4 protein. CONCLUSION This work demonstrates the intrafamilial phenotypic variability in a pseudodominant Stargardt disease pedigree and the use of patient-derived fibroblasts to evaluate the effect of a novel ABCA4 delins variant on splicing to complement in silico pathogenicity assessment.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWestern AustraliaAustralia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Centre for Neuromuscular and Neurological DisordersThe University of Western Australia and Perron Institute for Neurological and Translational ScienceNedlandsWestern AustraliaAustralia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Jason Charng
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Enid Chelva
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Shang‐Chih Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Tina M. Lamey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Ian J. Constable
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of OphthalmologySir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - John N. De Roach
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - May Thandar Aung‐Htut
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWestern AustraliaAustralia
- Centre for Neuromuscular and Neurological DisordersThe University of Western Australia and Perron Institute for Neurological and Translational ScienceNedlandsWestern AustraliaAustralia
| | - Abbie Adams
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWestern AustraliaAustralia
- Centre for Neuromuscular and Neurological DisordersThe University of Western Australia and Perron Institute for Neurological and Translational ScienceNedlandsWestern AustraliaAustralia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWestern AustraliaAustralia
- Centre for Neuromuscular and Neurological DisordersThe University of Western Australia and Perron Institute for Neurological and Translational ScienceNedlandsWestern AustraliaAustralia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Australian Inherited Retinal Disease Registry and DNA BankDepartment of Medical Technology and PhysicsSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
- Department of OphthalmologyRoyal Perth HospitalPerthWestern AustraliaAustralia
- Department of OphthalmologyPerth Children's HospitalNedlandsWestern AustraliaAustralia
| |
Collapse
|
30
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
31
|
|
32
|
Müller PL, Birtel J, Herrmann P, Holz FG, Charbel Issa P, Gliem M. Functional Relevance and Structural Correlates of Near Infrared and Short Wavelength Fundus Autofluorescence Imaging in ABCA4-Related Retinopathy. Transl Vis Sci Technol 2019; 8:46. [PMID: 31879568 PMCID: PMC6927733 DOI: 10.1167/tvst.8.6.46] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose To evaluate the functional relevance and structural correlates of autofluorescence (AF) alterations under short-wavelength (SW) and near-infrared (NIR) excitation light in ABCA4-related retinopathy. Methods In this prospective, cross-sectional case series, 88 eyes of 44 patients with ABCA4-related retinopathy (mean age, 37.6 years; range, 9-77 years) underwent SW-AF and NIR-AF imaging. The AF images were graded for disease characteristic patterns by two independent readers and correlated with alterations in optical coherence tomography (OCT) and impairment of retinal sensitivity along a foveo-papillary line assessed by fundus-controlled microperimetry. Results A centrifugal sequence of AF patterns from atrophic lesions to homogeneous background was found for both AF modalities. The eccentricity of each AF pattern in NIR-AF was larger compared to those in SW-AF (P < 0.001). Increasing eccentricity of each pattern correlated with increasing retinal sensitivity. The distant border of the zone of hyperfluorescent flecks in SW-AF and hypoautofluorescent flecks in NIR-AF correlated with the margins of the ellipsoid zone loss in OCT (r = 0.979 and r = 0.971, P < 0.001). The expansion of hypofluorescent flecks in SW-AF was associated with the boundaries of external limiting membrane loss (r = 0.933, P < 0.001). Conclusions SW-AF and NIR-AF revealed a characteristic sequence of AF patterns that correlated with functional and structural alterations, suggesting different stages in disease progression. Translational Relevance Alterations in NIR-AF exceeded those in SW-AF images, substantiating the hypothesis of different AF origins and suggesting NIR-AF as surrogate marker for early disease-related changes.
Collapse
Affiliation(s)
- Philipp L Müller
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Johannes Birtel
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Philipp Herrmann
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Frank G Holz
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,University of Oxford, Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford, UK
| | - Martin Gliem
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,University of Oxford, Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford, UK
| |
Collapse
|
33
|
Taubitz T, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence. EBioMedicine 2019; 48:592-604. [PMID: 31648994 PMCID: PMC6838394 DOI: 10.1016/j.ebiom.2019.09.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background Fundus autofluorescence is a non-invasive imaging technique in ophthalmology. Conventionally, short-wavelength autofluorescence (SW-AF) is used for detection of lipofuscin, a byproduct of the visual cycle which accumulates with age or disease in the retinal pigment epithelium (RPE). Furthermore, near-infrared autofluorescence (NIR-AF) is used as a marker for RPE and choroidal melanin, but contribution of lipofuscin to the NIR-AF signal is unclear. Methods We employed fluorescence microscopy to investigate NIR-AF properties of melanosomes, lipofuscin and melanolipofuscin granules in histologic sections of wildtype and Abca4−/− mouse eyes, the latter having increased lipofuscin, as well as aged human donor eyes. Differentiation between these pigments was verified by analytical electron microscopy. To investigate the influence of oxidative and photic stress we used an in vitro model with isolated ocular melanosomes and an in vivo phototoxicity mouse model. Findings We show that NIR-AF is not an intrinsic property of melanin, but rather increases with age and after photic or oxidative stress in mice and isolated melanosomes. Furthermore, when lipofuscin levels are high, lipofuscin granules also show NIR-AF, as confirmed by correlative fluorescence and electron microscopy in human tissue. However, lipofuscin in albino Abca4−/− mice lacks NIR-AF signals. Interpretation We suggest that NIR-AF is derived from melanin degradation products that accumulate with time in lipofuscin granules. These findings can help to improve the interpretation of patient fundus autofluorescence data. Funding This work was supported by Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft and Chinese Scholarship Council. Major instrumentation used in this work was supported by Deutsche Forschungsgemeinschaft, the European Fund for Regional Development and the state of Baden-Württemberg.
Collapse
Affiliation(s)
- Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany.
| | - Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany; STZ OcuTox Preclinical Drug Assessment, Hechingen, Germany
| |
Collapse
|
34
|
Mucciolo DP, Murro V, Giorgio D, Sodi A, Passerini I, Virgili G, Rizzo S. Near-infrared autofluorescence in young choroideremia patients. Ophthalmic Genet 2019; 40:421-427. [PMID: 31544579 DOI: 10.1080/13816810.2019.1666881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To study near-infrared autofluorescence (NIR-AF) and short- wave autofluorescence (SW-AF) imaging modalities in young patients affected with choroideremia (CHM).Methods: NIR-AF and SW-AF images, Optical coherence tomography (OCT) and color fundus images were acquired from 3 young CHM patients (6 eyes) enrolled at the Regional Reference Center for Hereditary Retinal Degenerations of the Eye Clinic in Florence.Results: We studied 3 young CHM patients (6 eyes). The mean age of the patients was 17,3 years. Using NIR-AF, patient P1 was characterized by speckled hypo-autofluorescent areas at the posterior pole with a preserved central hyper-autofluorescence while patient P2 and P3 were characterized by a preserved NIR-AF signal only at the fovea. Using SW-AF, patient P1 was characterized by a normal macular autofluorescence and by a speckled FAF pattern involved the vascular arcades while patient P2 and P3 showed well-demarcated hypo-autofluorescence areas involving the posterior pole with a preserved macular autofluorescence. The differences between NIR-AF and SW-AF were more pronounced in advanced stages. In correspondence of preserved NIR-AF, the OCT examination showed regular and continuous outer retinal hyperreflective bands. We observed abnormal RPE/Bruch's membrane complex and EZ band externally to the NIR-AF signal area.Conclusions: NIR-AF imaging confirms an early RPE involvement allowing us to identify and to quantify the RPE pigment loss in choroideremia. For this reason, NIR-AF imaging can be useful for monitoring the progression of the disease and to study the effect of future treatments.
Collapse
Affiliation(s)
- Dario Pasquale Mucciolo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Stanislao Rizzo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
36
|
Chen L, Lee W, de Carvalho JRL, Chang S, Tsang SH, Allikmets R, Sparrow JR. Multi-platform imaging in ABCA4-Associated Disease. Sci Rep 2019; 9:6436. [PMID: 31015497 PMCID: PMC6478712 DOI: 10.1038/s41598-019-42772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Fundus autofluorescence (FAF) imaging is crucial to the diagnosis and monitoring of recessive Stargardt disease (STGD1). In a retrospective cohort study of 34 patients, we compared FAF imaging platforms varying in field size (30° and 55°: blue/SW-AF and NIR-AF; 200°: ultrawide-field, UWF-AF), excitation wavelength (488 nm, blue/SW-AF; 532 nm, UWF-AF and 787 nm, NIR-AF) and image processing. Due to reduced absorption of 532 nm and 787 nm light by macular pigment, foveal sparing was more readily demonstrable by green/UWF-AF and NIR-AF imaging. Prominent in green/UWF-AF images is a central zone of relatively elevated AF that is continuous inferonasal with a demarcation line bordering lower AF nasally and higher AF temporally. This zone and border are more visible in STGD1 than in healthy eyes and more visible with green/UWF-AF. With the development of AF flecks, inferonasal retina is initially spared. Central atrophic areas were larger in NIR-AF images than in blue/SW-AF and green/UWF-AF images and the presence of a contiguous hyperAF ring varied with imaging modality. Flecks visible as hyperAF foci in blue/SW-AF images were also visible in green/UWF-AF but were often hypoAF in NIR-AF. Since disease in STGD1 often extends beyond the 30° and 55° fields, green/UWF-AF has advantages including for pediatric patients. The imaging platforms examined provided complementary information.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Ophthalmology, People's hospital of Putuo District, Shanghai, China
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Departament of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Stanley Chang
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, United States. .,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States.
| |
Collapse
|
37
|
Abalem MF, Omari AA, Schlegel D, Khan NW, Jayasundera T. Macular hyperpigmentary changes in ABCA4-Stargardt disease. Int J Retina Vitreous 2019; 5:9. [PMID: 30984415 PMCID: PMC6442436 DOI: 10.1186/s40942-019-0160-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background Stargardt disease (STGD) and age-related macular degeneration (AMD) share clinical and pathophysiological features. In AMD, macular hyperpigmentary changes are associated to a worse prognosis. The purpose of this study was to characterize macular hyperpigmentary changes in patients with STGD and associate them with the severity of phenotype. Materials and methods This retrospective cross-sectional study included 141 patients with STGD. Hyperpigmentary changes were evaluated on color fundus photography and spectral-domain optical coherence tomography. Severity of phenotype was assessed by full-field electroretinogram (ffERG) and fundus autofluorescence (FAF) patterns, and visual acuity (VA). Results Thirty patients (21.7%) showed macular hyperpigmentary changes in four distinct patterns. Out of seventeen patients who had follow-up images, eleven patients demonstrated increases of the hyperpigmented lesions, and progression of the underlying RPE atrophy overtime. VA remained stable. Of 28 patients who had ffERG, 17 patients presented with reduction of photopic and scotopic responses, while 8 presented with reduction of photopic responses only, and 3 presented with preserved photopic and scotopic responses. Of 25 patients who had FAF available, 12 presented with widespread disease extending anteriorly to the vascular arcades, while eight presented with widespread disease, extending beyond the vascular arcades, and 5 presented with disease confined to the foveal area. Conclusion In this study, we demonstrated that patients with STGD with macular hyperpigmented lesions had a severe phenotype. Overtime, hyperpigmented lesions increased in size, spread across the retina, and migrated to different retinal layers. Macular hyperpigmentation may be a marker of advanced stage of the disease.
Collapse
Affiliation(s)
- Maria Fernanda Abalem
- 1Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150 USA.,2Department of Ophthalmology and Otolaryngology, University of Sao Paulo Medical School, Sao Paulo, São Paulo, Brazil
| | - Amro A Omari
- 1Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150 USA
| | - Dana Schlegel
- 1Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150 USA
| | - Naheed W Khan
- 1Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150 USA
| | - Thiran Jayasundera
- 1Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150 USA
| |
Collapse
|
38
|
Dysli C, Müller PL, Birtel J, Holz FG, Herrmann P. Spectrally Resolved Fundus Autofluorescence in ABCA4-Related Retinopathy. ACTA ACUST UNITED AC 2019; 60:274-281. [DOI: 10.1167/iovs.18-25755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Hussain RM, Ciulla TA, Berrocal AM, Gregori NZ, Flynn HW, Lam BL. Stargardt macular dystrophy and evolving therapies. Expert Opin Biol Ther 2018; 18:1049-1059. [PMID: 30129371 DOI: 10.1080/14712598.2018.1513486] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stargardt macular dystrophy (STGD1) is a hereditary retinal degeneration that lacks effective treatment options. Gene therapy, stem cell therapy, and pharmacotherapy with visual cycle modulators (VCMs) and complement inhibitors are discussed as potential treatments. AREAS COVERED Investigational therapies for STGD1 aim to reduce toxic bisretinoids and lipofuscin in the retina and retinal pigment epithelium (RPE). These agents include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Avacincaptad pegol is a C5 complement inhibitor that may reduce inflammation-related RPE damage. Animal models of STGD1 show promising data for these treatments, though proof of efficacy in humans is lacking. Fenretinide and emixustat are VCMs for dry AMD and STGD1 that failed to halt geographic atrophy progression or improve vision in trials for AMD. A1120 prevents retinol transport into RPE and may spare side effects typically seen with VCMs (nyctalopia and chromatopsia). Stem cell transplantation suggests potential biologic plausibility in a phase I/II trial. Gene therapy aims to augment the mutated ABCA4 gene, though results of a phase I/II trial are pending. EXPERT OPINION Stem cell transplantation, ABCA4 gene therapy, VCMs, and complement inhibitors offer biologically plausible treatment mechanisms for treatment of STGD1. Further trials are warranted to assess efficacy and safety in humans.
Collapse
Affiliation(s)
- Rehan M Hussain
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Thomas A Ciulla
- b Retina Service , Midwest Eye Institute and Department of Ophthalmology, Indiana University School of Medicine , Indianapolis , IN , USA
| | - Audina M Berrocal
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Ninel Z Gregori
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Harry W Flynn
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Byron L Lam
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|