1
|
Griffith O, Bai X, Walter AE, Gay M, Kelly J, Sebastianelli W, Papa L, Slobounov S. Association of player position and functional connectivity alterations in collegiate American football players: an fMRI study. Front Neurol 2025; 15:1511915. [PMID: 39882371 PMCID: PMC11776490 DOI: 10.3389/fneur.2024.1511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Resting state-fMRI, provides a sensitive method for detecting changes in brain functional integrity, both with respect to regional oxygenated blood flow and whole network connectivity. The primary goal of this report was to examine alterations in functional connectivity in collegiate American football players after a season of repetitive head impact exposure. Methods Collegiate football players completed a rs-fMRI at pre-season and 1 week into post-season. A seed-based functional connectivity method, isolating the posterior cingulate cortex (PCC), was utilized to create individual functional connectivity maps. During group analysis, first, voxel-wise paired sample t-tests identified significant changes in connectivity from pre- to post-season, by player, and previous concussion history. Second, 10 DMN ROIs were constructed by overlaying an anatomical map over regions of positive correlation from one-sample t-tests of pre-season and post-season. These ROIs, plus the LpCun, were included in linear mix-effect modeling, with position or concussion history as covariates. Results 66 players were included (mean age 20.6 years; 100% male; 34 (51.5%) non-speed position players). The 10 DMN ROIs showed no alterations from pre-season to post-season. By concussion history, the right temporal ROI demonstrated a significant effect on baseline functional connectivity (p = 0.03). Speed players, but not non-speed players, demonstrated a significant decrease in functional connectivity in the precuneus from pre- to post-season (p < 0.001). Discussion There are region-specific differences functional connectivity related to both position and concussion history in American collegiate football players. Player position affected functional connectivity across a season of football. Position-specific differences in head impact exposure rate and magnitude plays a crucial role in functional connectivity alterations.
Collapse
Affiliation(s)
- Owen Griffith
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA, United States
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Social Science Research Institute, Penn State University, 120F Chandlee Laboratory, University Park, University Park, PA, United States
| | - Alexa E. Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Gay
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA, United States
| | - Jon Kelly
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA, United States
| | - Wayne Sebastianelli
- Penn State Sports Medicine and Physical Therapy, State College, PA, United States
| | - Linda Papa
- Orlando Health, Orlando, FL, United States
| | - Semyon Slobounov
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA, United States
| |
Collapse
|
2
|
Zheng C, Cao Y, Li Y, Ye Z, Jia X, Li M, Yu Y, Liu W. Long-term table tennis training alters dynamic functional connectivity and white matter microstructure in large scale brain regions. Brain Res 2024; 1838:148889. [PMID: 38552934 DOI: 10.1016/j.brainres.2024.148889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
Table tennis training has been employed as an exercise treatment to enhance cognitive brain functioning in patients with mental illnesses. However, research on its underlying mechanisms remains limited. In this study, we investigated functional and structural changes in large-scale brain regions between 20 table tennis players (TTPs) and 21 healthy controls (HCs) using 7-Tesla magnetic resonance imaging (MRI) techniques. Compared with those of HCs, TTPs exhibited significantly greater fractional anisotropy (FA) and axial diffusivity (AD) values in multiple fiber tracts. We used the locations with the most significant structural changes in white matter as the seed areas and then compared static and dynamic functional connectivity (sFC and dFC). Brodmann 11, located in the orbitofrontal cortex, showed altered dFC values to large-scale brain regions, such as the occipital lobe, thalamus, and cerebellar hemispheres, in TTPs. Brodmann 48, located in the temporal lobe, showed altered dFC to the parietal lobe, frontal lobe, cerebellum, and occipital lobe. Furthermore, the AD values of the forceps minor (Fmi) and right anterior thalamic radiations (ATRs) were negatively correlated with useful field of view (UFOV) test scores in TTPs. Our results suggest that table tennis players exhibit a unique pattern of dynamic neural activity, this provides evidence for potential mechanisms through which table tennis interventions can enhance attention and other cognitive functions.
Collapse
Affiliation(s)
- Chanying Zheng
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuting Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuyang Li
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
| | - Yang Yu
- Psychiatry Department, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
| | - Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Chen TX, Casey HL, Lin CYR, Boyle TA, Schmahmann JD, L'Italien GJ, Kuo SH, Gomez CM. Early-Life Social Determinants of SCA6 Age at Onset, Severity, and Progression. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1449-1456. [PMID: 38217689 PMCID: PMC11269368 DOI: 10.1007/s12311-023-01655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
SCA6 patients with the same size CAG repeat allele can vary significantly in age at onset (AAO) and clinical progression. The specific external factors affecting SCA6 have yet to be investigated. We assessed the effect of early life events on AAO, severity, and progression in SCA6 patients using a social determinant of health approach. We performed a survey of biological and social factors in SCA6 patients enrolled in the SCA6 Network at the University of Chicago. AAO of ataxia symptoms and patient-reported outcome measure (PROM) of ataxia were used as primary outcome measures. Least absolute shrinkage and selection operation (LASSO) regressions were used to identify which early life factors are predictive of SCA6 AAO, severity, and progression. Multiple linear regression models were then used to assess the degree to which these determinants influence SCA6 health outcomes. A total of 105 participants with genetically confirmed SCA6 completed the assessments. SCA6 participants with maternal difficulty during pregnancy, active participation in school sports, and/or longer CAG repeats were determined to have earlier AAO. We found a 13.44-year earlier AAO for those with maternal difficulty in pregnancy than those without (p = 0.008) and a 12.31-year earlier AAO for those active in school sports than those who were not (p < 0.001). Higher education attainment was associated with decreased SCA6 severity and slower progression. Early life biological and social factors can have a strong influence on the SCA6 disease course, indicating that non-genetic factors can contribute significantly to SCA6 health outcomes.
Collapse
Affiliation(s)
- Tiffany X Chen
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah L Casey
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Chi-Ying R Lin
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Theresa A Boyle
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gilbert J L'Italien
- Global Health Outcomes and Epidemiology, Biohaven Pharmaceuticals, New Haven, CT, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
4
|
Jain D, Porfido T, de Souza NL, Brown AM, Caccese JB, Czykier A, Dennis EL, Tosto-Mancuso J, Wilde EA, Esopenko C. Neural Mechanisms Associated With Postural Control in Collegiate Soccer and Non-Soccer Athletes. J Neurol Phys Ther 2024; 48:151-158. [PMID: 38709008 DOI: 10.1097/npt.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND PURPOSE Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. METHODS Collegiate soccer ( N = 33) and non-soccer athletes ( N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. RESULTS Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. DISCUSSION AND CONCLUSIONS Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472 ).
Collapse
Affiliation(s)
- Divya Jain
- Divya Jain and Tara Porfido are considering as co-first authors. Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York (D.J., N.L.D., A.C., C.E.); Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey (T.P., A.M.B.); School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio (J.B.C.); Department of Neurology, University of Utah (E.L.D., E.A.W.); George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah (E.L.D., E.A.W.); and Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York (J.T.-M.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Glendon K, Pain MTG, Hogervorst E, Belli A, Blenkinsop G. Musculoskeletal injury or Sports-Related Concussion (SRC) in a season of rugby union does not affect performance on concussion battery testing in university-aged student-athletes. Phys Ther Sport 2024; 65:137-144. [PMID: 38181564 DOI: 10.1016/j.ptsp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sub-concussive and concussive impacts sustained during contact sports such as rugby may affect neurocognitive performance, vestibular-ocular-motor function, symptom burden and academic ability. METHOD Student-athletes (n = 146) participating in rugby union British Universities or domestic competitions were assessed on the Immediate Post-Concussion and Cognitive Test, Post-Concussion Symptom Scale, vestibular-oculo-motor screening tool and revised perceived academic impact tool. Individual change from pre-season (July-September 2021) to 2-weeks following last exposure to contact (April-July 2022) was analysed. RESULTS Symptom burden significantly worsened (p=0.016) over the season. Significant improvements on verbal memory (p=0.016), visual memory (p=0.008) and motor processing speed (p=0.001) suggest a possible learning effect. Surprisingly, the number of days lost to concussion significantly and positively affected performance on verbal memory (p = 0.018) and reaction time (p = 0.027). Previous concussive events significantly predicted a worsening in symptom burden (p < 0.028), as did in-season concussive events, predicting improved verbal memory (p = 0.033) and symptom burden change (p = 0.047). Baseline performance significantly affected change on several neurocognitive tests, with low-scorers showing more improvement over the season. CONCLUSION Participation in rugby union was not associated with deleterious effects on brain function. Previous concussive events and in-season factors, possibly related to learning effects, may explain improvement in cognitive function across the season.
Collapse
Affiliation(s)
- K Glendon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - M T G Pain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - E Hogervorst
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A Belli
- Institute of Inflammation and Ageing, University of Birmingham, UK
| | - G Blenkinsop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
6
|
Jain D, Huber CM, Patton DA, McDonald CC, Wang L, Ayaz H, Master CL, Arbogast KB. Use of functional near-infrared spectroscopy to quantify neurophysiological deficits after repetitive head impacts in adolescent athletes. Sports Biomech 2023:1-15. [PMID: 37430440 PMCID: PMC10776807 DOI: 10.1080/14763141.2023.2229790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
There is concern that repetitive head impact exposure (RHIE) may lead to neurophysiological deficits in adolescents. Twelve high school varsity soccer players (5 female) completed the King-Devick (K-D) and complex tandem gait (CTG) assessments pre- and post-season while wearing a functional near-infrared spectroscopy (fNIRS) sensor. The average head impact load (AHIL) for each athlete-season was determined via a standardised protocol of video-verification of headband-based head impact sensor data. Linear mixed effect models were used to determine the effects of AHIL and task condition (3 K-D cards or 4 CTG conditions) on the change in mean prefrontal cortical activation measured by fNIRS, and performance on K-D and CTG, from pre- to post-season. Although there was no difference in the pre- to post-season change in K-D or CTG performance, greater AHIL was associated with greater cortical activation at post-season in comparison to pre-season during the most challenging conditions of K-D (p = 0.003) and CTG (p = 0.02), suggesting that greater RHIE necessitates increased cortical activation to complete the more challenging aspects of these assessments at the same level of performance. These results describe the effect of RHIE on neurofunction and suggest the need for further study of the time course of these effects.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioengineering, University of Pennsylvania, PA, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colin M. Huber
- Department of Bioengineering, University of Pennsylvania, PA, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine C. McDonald
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Wang
- College of Computing and Informatics, Drexel University, Philadelphia, PA, USA
- Data Science and Biostatistics Unit, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hasan Ayaz
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Data Science and Biostatistics Unit, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA
| | - Christina L. Master
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Huibregtse ME, Sweeney SH, Stephens MR, Cheng H, Chen Z, Block HJ, Newman SD, Kawata K. Association Between Serum Neurofilament Light and Glial Fibrillary Acidic Protein Levels and Head Impact Burden in Women's Collegiate Water Polo. J Neurotrauma 2023; 40:1130-1143. [PMID: 36259456 PMCID: PMC10266555 DOI: 10.1089/neu.2022.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent investigations have identified water polo athletes as at risk for concussions and repetitive subconcussive head impacts. Head impact exposure in collegiate varsity women's water polo, however, has not yet been longitudinally quantified. We aimed to determine the relationship between cumulative and acute head impact exposure across pre-season training and changes in serum biomarkers of brain injury. Twenty-two Division I collegiate women's water polo players were included in this prospective observational study. They wore sensor-installed mouthguards during all practices and scrimmages during eight weeks of pre-season training. Serum samples were collected at six time points (at baseline, before and after scrimmages during weeks 4 and 7, and after the eight-week pre-season training period) and assayed for neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) using Simoa® Human Neurology 2-Plex B assay kits. Serum GFAP increased over time (e.g., an increase of 0.6559 pg/mL per week; p = 0.0087). Neither longitudinal nor acute pre-post scrimmage changes in GFAP, however, were associated with head impact exposure. Contrarily, an increase in serum NfL across the study period was associated with cumulative head impact magnitude (sum of peak linear acceleration: B = 0.015, SE = 0.006, p = 0.016; sum of peak rotational acceleration: B = 0.148, SE = 0.048, p = 0.006). Acute changes in serum NfL were not associated with head impacts recorded during the two selected scrimmages. Hormonal contraceptive use was associated with lower serum NfL and GFAP levels over time, and elevated salivary levels of progesterone were also associated with lower serum NfL levels. These results suggest that detecting increases in serum NfL may be a useful way to monitor cumulative head impact burden in women's contact sports and that female-specific factors, such as hormonal contraceptive use and circulating progesterone levels, may be neuroprotective, warranting further investigations.
Collapse
Affiliation(s)
- Megan E. Huibregtse
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Sage H. Sweeney
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Mikayla R. Stephens
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Hu Cheng
- Department of Department of Psychological and Brain Sciences and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Zhongxue Chen
- Department of Mathematics and Statistics, College of Arts, Sciences and Education, Florida International University, Miami, Florida, USA
- Department of Epidemiology and Biostatistics, School of Public Health, and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Hannah J. Block
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
- Department of Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Sharlene D. Newman
- Alabama Life Research Institute, College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Electrical and Computer Engineering, College of Engineering, and College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Psychology, College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Keisuke Kawata
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
- Department of Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
DiFabio MS, Smith DR, Breedlove KM, Pohlig RT, Buckley TA, Johnson CL. Altered Brain Functional Connectivity in the Frontoparietal Network following an Ice Hockey Season. Eur J Sport Sci 2022; 23:684-692. [PMID: 35466861 DOI: 10.1080/17461391.2022.2069512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSustaining sports-related head impacts has been reported to result in neurological changes that potentially lead to later-life neurological disease. Advanced neuroimaging techniques have been used to detect subtle neurological effects resulting from head impacts, even after a single competitive season. The current study used resting-state functional magnetic resonance imaging to assess changes in functional connectivity of the frontoparietal network, a brain network responsible for executive functioning, in collegiate club ice hockey players over one season. Each player was scanned before and after the season and wore accelerometers to measure head impacts at practices and home games throughout the season. We examined pre- to post-season differences in connectivity within the frontoparietal and default mode networks, as well as the relationship between the total number of head impacts sustained and changes in connectivity. We found a significant interaction between network region of interest and time point (p = 0.016), in which connectivity between the left and right posterior parietal cortex seed regions increased over the season (p < 0.01). Number of impacts had a significant effect on frontoparietal network connectivity, such that more impacts were related to greater connectivity differences over the season (p = 0.042). Overall, functional connectivity increased in ice hockey athletes over a season between regions involved in executive functioning, and sensory integration, in particular. Furthermore, those who sustained more impacts had the greatest changes in connectivity. Consistent with prior findings in resting-state sports-related head impact literature, these findings have been suggested to represent brain injury.
Collapse
Affiliation(s)
- Melissa S DiFabio
- Department of Biomedical Engineering, University of Delaware, Newark, DE.,Department of Child and Adolescent Psychiatry, Psychomatics, and Psychotherapy, Ludwig-Maximilans-Universität München - University of Munich, Munich, Germany
| | - Daniel R Smith
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA.,Department of Radiology, Harvard Medical School, Boston, MA
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, DE
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| |
Collapse
|