1
|
Skutlaberg DH, Wiker HG, Mylvaganam H, Norrby-Teglund A, Skrede S. Consistent Biofilm Formation by Streptococcus pyogenes emm 1 Isolated From Patients With Necrotizing Soft Tissue Infections. Front Microbiol 2022; 13:822243. [PMID: 35250938 PMCID: PMC8895234 DOI: 10.3389/fmicb.2022.822243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesBiofilm formation has been demonstrated in muscle and soft tissue samples from patients with necrotizing soft tissue infection (NSTI) caused by Streptococcus pyogenes, but the clinical importance of this observation is not clear. Although M-protein has been shown to be important for in vitro biofilm formation in S. pyogenes, the evidence for an association between emm type and biofilm forming capacity is conflicting. Here we characterize the biofilm forming capacity in a collection of S. pyogenes isolates causing NSTI, and relate this to emm type of the isolates and clinical characteristics of the patients.MethodsBacterial isolates and clinical data were obtained from NSTI patients enrolled in a multicenter prospective observational study. Biofilm forming capacity was determined using a microtiter plate assay.ResultsAmong 57 cases, the three most frequently encountered emm types were emm1 (n = 22), emm3 (n = 13), and emm28 (n = 7). The distribution of biofilm forming capacity in emm1 was qualitatively (narrow-ranged normal distribution) and quantitatively (21/22 isolates in the intermediate range) different from other emm types (wide ranged, multimodal distribution with 5/35 isolates in the same range as emm1). There were no significant associations between biofilm forming capacity and clinical characteristics of the patients.ConclusionsThe biofilm forming capacity of emm1 isolates was uniform and differed significantly from other emm types. The impact of biofilm formation in NSTI caused by S. pyogenes on clinical outcomes remains uncertain.
Collapse
Affiliation(s)
- Dag Harald Skutlaberg
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Dag Harald Skutlaberg,
| | - Harald G. Wiker
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
3
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
4
|
Vyas HKN, Proctor EJ, McArthur J, Gorman J, Sanderson-Smith M. Current Understanding of Group A Streptococcal Biofilms. Curr Drug Targets 2020; 20:982-993. [PMID: 30947646 PMCID: PMC6700754 DOI: 10.2174/1389450120666190405095712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
Background: It has been proposed that GAS may form biofilms. Biofilms are microbial communities that aggregate on a surface, and exist within a self-produced matrix of extracellular polymeric substances. Biofilms offer bacteria an increased survival advantage, in which bacteria persist, and resist host immunity and antimicrobial treatment. The biofilm phenotype has long been recognized as a virulence mechanism for many Gram-positive and Gram-negative bacteria, however very little is known about the role of biofilms in GAS pathogenesis. Objective: This review provides an overview of the current knowledge of biofilms in GAS pathogenesis. This review assesses the evidence of GAS biofilm formation, the role of GAS virulence factors in GAS biofilm formation, modelling GAS biofilms, and discusses the polymicrobial nature of biofilms in the oropharynx in relation to GAS. Conclusion: Further study is needed to improve the current understanding of GAS as both a mono-species biofilm, and as a member of a polymicrobial biofilm. Improved modelling of GAS biofilm formation in settings closely mimicking in vivo conditions will ensure that biofilms generated in the lab closely reflect those occurring during clinical infection.
Collapse
Affiliation(s)
- Heema K N Vyas
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Emma-Jayne Proctor
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jason McArthur
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
5
|
Streptococcus pyogenes Capsule Promotes Microcolony-Independent Biofilm Formation. J Bacteriol 2019; 201:JB.00052-19. [PMID: 31085695 PMCID: PMC6707922 DOI: 10.1128/jb.00052-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilms play an important role in the pathogenesis of group A streptococcus (GAS), a Gram-positive pathogen responsible for a wide range of infections and with a significant public health impact. Although most GAS serotypes are able to form biofilms, there is a large amount of heterogeneity between individual strains in biofilm formation, as measured by standard crystal violet assays. It is generally accepted that biofilm formation includes the initial adhesion of bacterial cells to a surface followed by microcolony formation, biofilm maturation, and extensive production of extracellular matrix that links together proliferating cells and provides a scaffold for the three-dimensional (3D) biofilm structure. However, our studies show that for GAS strain JS95, microcolony formation is not an essential step in static biofilm formation, and instead, biofilm can be effectively formed from slow-growing or nonreplicating late-exponential- or early-stationary-phase planktonic cells via sedimentation and fixation of GAS chains. In addition, we show that the GAS capsule specifically contributes to the alternative sedimentation-initiated biofilms. Microcolony-independent sedimentation biofilms are similar in morphology and 3D structure to biofilms initiated by actively dividing planktonic bacteria. We conclude that GAS can form biofilms by an alternate noncanonical mechanism that does not require transition from microcolony formation to biofilm maturation and which may be obscured by biofilm phenotypes that arise via the classical biofilm maturation processes.IMPORTANCE The static biofilm assay is a common tool for easy biomass quantification of biofilm-forming bacteria. However, Streptococcus pyogenes biofilm formation as measured by the static assay is strain dependent and yields heterogeneous results for different strains of the same serotype. In this study, we show that two independent mechanisms, for which the protective capsule contributes opposing functions, may contribute to static biofilm formation. We propose that separation of these mechanisms for biofilm formation might uncover previously unappreciated biofilm phenotypes that may otherwise be masked in the classic static assay.
Collapse
|
6
|
Vajjala A, Biswas D, Tay WH, Hanski E, Kline KA. Streptolysin-induced endoplasmic reticulum stress promotes group A Streptococcal host-associated biofilm formation and necrotising fasciitis. Cell Microbiol 2018; 21:e12956. [PMID: 30239106 DOI: 10.1111/cmi.12956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host-pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft-tissue with an ER stressor restores the ability of the mutant to form wild-type-like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.
Collapse
Affiliation(s)
- Anuradha Vajjala
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Debabrata Biswas
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Emanuel Hanski
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore.,Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
Vijayakumar K, Ramanathan T. Antiquorum sensing and biofilm potential of 5- Hydroxymethylfurfural against Gram positive pathogens. Microb Pathog 2018; 125:48-50. [PMID: 30195643 DOI: 10.1016/j.micpath.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
The present investigates the antiquorum sensing and biofilm inhibitory potential of 5 - hydroxymethylfurfural against Chromobacterium violaceum, Streptococcus pyogenes, Streptococcus mutans, Staphylococcus aureus and Staphylococcus epidermidis. 5HMF inhibits the quorum sensing mediated violacein pigment production by 87% at 100 μg/ml concentration. A 100 μg/ml concentration of the compound inhibits S. mutans and S. epidermidis biofilm formation by 86% and 79% whereas for S. pyogenes and S. aureus 125 μg/ml concentration inhibits biofilm formation by 83% and 82%. The Confocal images clearly indicate that 5HMF as a promising antibiofilm agent.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Thiruganasambandam Ramanathan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| |
Collapse
|
8
|
Nandu TG, Subramenium GA, Shiburaj S, Viszwapriya D, Iyer PM, Balamurugan K, Rameshkumar KB, Karutha Pandian S. Fukugiside, a biflavonoid from Garcinia travancorica inhibits biofilm formation of Streptococcus pyogenes and its associated virulence factors. J Med Microbiol 2018; 67:1391-1401. [PMID: 30052177 DOI: 10.1099/jmm.0.000799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Streptococcus pyogenes, a notorious human pathogen thatis responsible for various invasive and non-invasive diseases, possesses multiple virulence armaments, including biofilm formation. The current study demonstrates the anti-biofilm and anti-virulence potential of fukugiside, a biflavonoid isolated from Garciniatravancorica, against S. pyogenes. METHODOLOGY The anti-biofilm activity of fukugiside was assessed and established using microdilution and microscopic analysis. Biochemical assays were performed to assess the effects of fukugiside on important virulence factors, which were further validated using quantitative real-time PCR and in vivo analysis in Caenorhabditis elegans. RESULTS Fukugiside exhibited concentration-dependent biofilm inhibition (79 to 96 %) against multiple M serotypes of S. pyogenes (M1, M56, M65, M74, M100 and st38) with a minimum biofilm inhibitory concentration of 80 µg ml-1. Electron microscopy and biochemical assay revealed a significant reduction in extracellular polymeric substance production. The results for the microbial adhesion to hydrocarbon assay, extracellular protease quantification and differential regulation of the dltA, speB, srv and ropB genes suggested that fukugiside probably inhibits biofilm formation by lowering cell surface hydrophobicity and destabilizing the biofilm matrix. The enhanced susceptibility to phagocytosis evidenced in the blood survival assay goes in unison with the downregulation of mga. The downregulation of important virulence factor-encoding genes such as hasA, slo and col370 suggested impaired virulence. In vivo analysis in C. elegans evinced the non-toxic nature of fukugiside and its anti-virulence potential against S. pyogenes. CONCLUSION Fukugiside exhibits potent anti-biofilm and anti-virulence activity against different M serotypes of S. pyogenes. It is also non-toxic, which augurs well for its clinical application.
Collapse
Affiliation(s)
- Thrithamarassery Gangadharan Nandu
- 1Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram-695562, Kerala, India
| | | | - Sugathan Shiburaj
- 1Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram-695562, Kerala, India
| | - Dharmaprakash Viszwapriya
- 2Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Prasanth Mani Iyer
- 2Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Krishnaswamy Balamurugan
- 2Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Koranappallil Bahuleyan Rameshkumar
- 3Division of Phytochemistry and Phytopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram-695562, Kerala, India
| | - Shunmugiah Karutha Pandian
- 2Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
9
|
Danilova TA, Smirnova TA, Danilina GA, Adzhieva AA, Andreevskaya SG, Shevlyagina NV, Zhukhovitsky VG. Optical and Electron Microscopic Study of the Morphology and Ultrastructure of Biofilms Formed by Streptococcus pyogenes. Bull Exp Biol Med 2018; 165:110-114. [PMID: 29797119 DOI: 10.1007/s10517-018-4110-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/27/2022]
Abstract
Our study confirmed the capacity of S. pyogenes strains to form biofilms on abiotic surfaces. Chains of streptococci surrounded by bluish film were seen under a microscope after alcian blue staining of the preparations grown on slides. On ultrathin sections in transmission electron microscope, the extracellular matrix (indicator of biofilm maturity) became visible after staining with alcian blue. Microscopy of the sections shows structures characteristic of a biofilm in spaces between the cells. Scanning electron microscopy also demonstrates the presence of a biomembrane. Importantly that type 1M strain forming in fact no membranes when cultured on plastic plates (Costar) formed biofilms on the glass. It seems that the conditions for the biofilm formation on the plastic and on the glass differ, due to which the exopolymeric matrices formed on different surfaces vary by biochemical composition.
Collapse
Affiliation(s)
- T A Danilova
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, Russia.
| | - T A Smirnova
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, Russia
| | - G A Danilina
- I. M. Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Adzhieva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, Russia
| | - S G Andreevskaya
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, Russia
| | - N V Shevlyagina
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V G Zhukhovitsky
- I. M. Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Viszwapriya D, Prithika U, Deebika S, Balamurugan K, Pandian SK. In vitro and in vivo antibiofilm potential of 2,4-Di- tert -butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol Res 2016; 191:19-31. [DOI: 10.1016/j.micres.2016.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
|
11
|
Viszwapriya D, Subramenium GA, Prithika U, Balamurugan K, Pandian SK. Betulin inhibits virulence and biofilm ofStreptococcus pyogenesby suppressingropBcore regulon,sagAanddltA. Pathog Dis 2016; 74:ftw088. [DOI: 10.1093/femspd/ftw088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
|
12
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
13
|
Morphological and proteomic analyses of the biofilms generated by Streptococcus mutans isolated from caries-active and caries-free adults. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
14
|
Ashwinkumar Subramenium G, Viszwapriya D, Iyer PM, Balamurugan K, Karutha Pandian S. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus. PLoS One 2015; 10:e0127210. [PMID: 25978065 PMCID: PMC4433207 DOI: 10.1371/journal.pone.0127210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. PRINCIPAL FINDINGS The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. SIGNIFICANCE Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds prior to their clinical trials.
Collapse
Affiliation(s)
| | | | - Prasanth Mani Iyer
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
15
|
Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie van Leeuwenhoek 2014; 107:263-72. [PMID: 25367342 DOI: 10.1007/s10482-014-0324-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Group A Streptococci (GAS) are involved in a number of life threatening diseases and biofilm formation by these pathogens are considered as an important virulence determinant as it mediates antibiotic resistance among them. In the present study, we have explored the ability of (+)-usnic acid, a lichen secondary metabolite, as an antibiofilm agent against four serotypes of Streptococcus pyogenes causing pharyngitis. Usnic acid inhibited the biofilms of M serotypes M56, st38, M89 efficiently and the biofilm of M74 to a lesser extent. Confocal imaging of the treated samples showed that usnic acid reduced the biomass of the biofilms when compared to that of the control. Fourier Transfer Infrared (FT-IR) spectroscopy indicated that usnic acid reduced the cellular components (proteins and fatty acids) of the biofilms. Interestingly, the FT-IR spectrum further revealed that usnic acid probably acted upon the fatty acids of the biofilms as evident from the disappearance of a peak at 2,455-2,100 cm(-1) when compared to the control only in serotypes M56, st38 and M89 but not in M74. The present study shows, for the first time, that usnic acid can act as an effective antibiofilm agent against GAS.
Collapse
|
16
|
Beema Shafreen RM, Selvaraj C, Singh SK, Karutha Pandian S. In silico and in vitro studies of cinnamaldehyde and their derivatives against LuxS in Streptococcus pyogenes: effects on biofilm and virulence genes. J Mol Recognit 2014; 27:106-16. [PMID: 24436128 DOI: 10.1002/jmr.2339] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 01/23/2023]
Abstract
The LuxS-based signalling pathway has an important role in physiological and pathogenic functions that are capable of causing different infections. In the present study, cinnamaldehyde (CN) and their derivatives were evaluated for their inhibitory efficiency against LuxS by molecular modelling, docking, dynamics and free-energy calculations. Sequence and structure-similarity analysis of LuxS protein, five different amino acids were found to be highly conserved, of which GLY128 was identified as the key residue involved in the effective binding of the ligands. Quantum-polarized ligand docking protocol showed that 2nitro and 4nitro CN has a higher binding efficiency than CN, which very well corroborates with the in vitro studies. COMSTAT analysis for the microscopic images of the S. pyogenes biofilm showed that the ligands have antibiofilm potential. In addition, the results of quantitative polymerase chain reaction (qPCR) analysis revealed that the transcripts treated with the compounds showed decrease in luxS expression, which directly reflects with the reduction in expression of speB. No substantial effect was observed on the virulence regulator (srv) transcript. These results confirm that speB is controlled by the regulation of luxS. The decreased rate of S. pyogenes survival in the presence of these ligands envisaged the fact that the compounds could readily enhance opsonophagocytosis with the reduction of virulence factor secretion. Thus, the overall data supports the use of CN derivatives against quorum sensing-mediated infections caused by S. pyogenes.
Collapse
|
17
|
Balaji K, Thenmozhi R, Prajna L, Dhananjeyan G, Pandian SK. Comparative analysis of emm types, superantigen gene profiles and antibiotic resistance genes among Streptococcus pyogenes isolates from ocular infections, pharyngitis and asymptomatic children in south India. INFECTION GENETICS AND EVOLUTION 2013; 19:105-12. [PMID: 23851012 DOI: 10.1016/j.meegid.2013.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes) is responsible for a wide array of infections and incidence is high in developing countries like India. Although distribution of emm types of S. pyogenes in India has been described, its association with the virulence genes and ocular isolates is less concentrated. In the present study emm type surveillance as well as its association with toxin gene profile was analyzed. Ocular infected cases such as lacrimal abscess, corneal ulcers, mucocoele showed the presence of 20 S. pyogenes isolates. For noninvasive isolates, we screened 370 pharyngitis cases and 400 asymptomatic school children and recovered 33 pharyngitis and 14 carrier isolates respectively. 14 Emm type distributions were observed in ocular isolates, 11 emm types each in pharyngitis and asymptomatic carrier isolates. The two dominant emm types, emm49 and emm63 were accounted for 33% of the total S. pyogenes isolates. Among ocular isolates, slo, smeZ, speB and speG were found in >50% of isolates, in pharyngitis smeZ (48%), speB (45%) and speG (42%) genes were found to be prevalent. Alarmingly, carrier isolates showed more prevalence to virulence genes than the ocular and pharyngitis isolates with speF (79%), speB, speG (64%), slo and sil (64%). Among the three groups, pharyngitis isolates harbored more prtF1 (33%) and prtF2 (94%) than the asymptomatic carriers (28% and 71%) and the ocular isolates (45% and 40%). 450bp Size band in prtF1 and 350bp size band in prtF2 showed dominance. Among the three groups tested, the distribution of ermB and mefA was high in pharyngitis isolates (30%) where 10 isolates showed the presence of both genes. None of the isolates showed the presence of ermA and tetO genes. Dendrogram generated based on the virulence and antibiotic resistance gene profiles revealed that except one cluster, all other clusters showed some correlation with ocular, pharyngitis and asymptomatic carrier isolates, irrespective of their emm types.
Collapse
Affiliation(s)
- Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
18
|
Balaji K, Okonjo PA, Thenmozhi R, Karutha Pandian S. Virulence and Multidrug Resistance Patterns ofVibrio choleraeO1 Isolates from Diarrheal Outbreaks of South India During 2006–2009. Microb Drug Resist 2013; 19:198-203. [DOI: 10.1089/mdr.2012.0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | | | | | | |
Collapse
|
19
|
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. MICROBIOLOGY-SGM 2012; 158:781-790. [PMID: 22294681 DOI: 10.1099/mic.0.053959-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is always of clinical significance in wounds where it can initiate infection, destroy skin grafts and persist as a biofilm. Manuka honey has broad spectrum antimicrobial activity and its use in the clinical setting is beginning to gain acceptance with the continuing emergence of antibiotic resistance and the inadequacy of established systemic therapies; novel inhibitors may affect clinical practice. In this study, the effect of manuka honey on S. pyogenes (M28) was investigated in vitro with planktonic and biofilm cultures using MIC, MBC, microscopy and aggregation efficiency. Bactericidal effects were found in both planktonic cultures and biofilms, although higher concentrations of manuka honey were needed to inhibit biofilms. Abrogation of adherence and intercellular aggregation was observed. Manuka honey permeated 24 h established biofilms of S. pyogenes, resulting in significant cell death and dissociation of cells from the biofilm. Sublethal concentrations of manuka honey effectively prevented the binding of S. pyogenes to the human tissue protein fibronectin, but did not inhibit binding to fibrinogen. The observed inhibition of fibronectin binding was confirmed by a reduction in the expression of genes encoding two major fibronectin-binding streptococcal surface proteins, Sof and SfbI. These findings indicate that manuka honey has potential in the topical treatment of wounds containing S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | | - Rose A Cooper
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
20
|
Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 2011; 7:e1002190. [PMID: 21829369 PMCID: PMC3150281 DOI: 10.1371/journal.ppat.1002190] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum.
Collapse
|