1
|
Fetsiukh A, Pall T, Timmusk S. Decrease due to pollution in the rhizosphere microbial diversity can be amended by supplementation from adapted plants of another species. Sci Rep 2024; 14:18806. [PMID: 39138231 PMCID: PMC11322436 DOI: 10.1038/s41598-024-68123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.
Collapse
Affiliation(s)
- Anastasiia Fetsiukh
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Taavi Pall
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Salme Timmusk
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
2
|
Sun RZ, Wang YY, Liu XQ, Yang ZL, Deng X. Structure and dynamics of microbial communities associated with the resurrection plant Boea hygrometrica in response to drought stress. PLANTA 2024; 260:24. [PMID: 38858226 DOI: 10.1007/s00425-024-04459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.
Collapse
Affiliation(s)
- Run-Ze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Yuan-Yuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao-Qiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhao-Lin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| |
Collapse
|
3
|
Meinzer M, Ahmad N, Nielsen BL. Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential. Microorganisms 2023; 11:2910. [PMID: 38138054 PMCID: PMC10745547 DOI: 10.3390/microorganisms11122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The salinization of soils is a growing agricultural concern worldwide. Irrigation practices, drought, and climate change are leading to elevated salinity levels in many regions, resulting in reduced crop yields. However, there is potential for a solution in the microbiome of halophytes, which are naturally salt-tolerant plants. These plants harbor a salt-tolerant microbiome in their rhizosphere (around roots) and endosphere (within plant tissue). These bacteria may play a significant role in conferring salt tolerance to the host plants. This leads to the possibility of transferring these beneficial bacteria, known as salt-tolerant plant-growth-promoting bacteria (ST-PGPB), to salt-sensitive plants, enabling them to grow in salt-affected areas to improve crop productivity. In this review, the background of salt-tolerant microbiomes is discussed and their potential use as ST-PGPB inocula is explored. We focus on two Gram-negative bacterial genera, Halomonas and Kushneria, which are commonly found in highly saline environments. These genera have been found to be associated with some halophytes, suggesting their potential for facilitating ST-PGPB activity. The study of salt-tolerant microbiomes and their use as PGPB holds promise for addressing the challenges posed by soil salinity in the context of efforts to improve crop growth in salt-affected areas.
Collapse
Affiliation(s)
- McKay Meinzer
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| | - Brent L. Nielsen
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| |
Collapse
|
4
|
Daraz U, Ahmad I, Li QS, Zhu B, Saeed MF, Li Y, Ma J, Wang XB. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115657. [PMID: 37924800 DOI: 10.1016/j.ecoenv.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Jianguo Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
6
|
Huang Y, Abdugheni R, Ma J, Wang R, Gao L, Liu Y, Li W, Cai M, Li L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch Microbiol 2023; 205:340. [PMID: 37750964 DOI: 10.1007/s00203-023-03670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
A Gram-stain-negative, strictly aerobic, motile, slightly curved rod-shaped bacterium with multiple flagella, designated strain EGI 63088T, was isolated from a bulk soil of Kalidium foliatum, collected from Wujiaqu in Xinjiang Uighur Autonomous Region, PR China. The optimal growth temperature, salinity, and pH for strain EGI 63088T growth were 30 °C, 3% (w/v) NaCl and 8, respectively. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain EGI 63088T showed the highest sequence similarities to Halomonas heilongjiangensis 9-2T (97.94%), H. lysinitropha 3(2)T (97.51%), and H. daqiaonensis CGMCC 1.9150T (97.08%). The average nucleotide identity and digital DNA-DNA hybridization values between the strain EGI 63088T and H. heilongjiangensis 9-2T were 89.03 and 41.10%, respectively. The DNA G + C content of the genome for strain EGI 63088T was 66.3 mol%. The most prevalent antibiotic resistance and virulence-related genes in Halomonas genomes were Streptomyces cinnamoneu EF-Tu mutant, pilT, and cheY, respectively. The predominant fatty acids of strain EGI 63088T were summed feature 8 (C18: 1 ω6c and/or C18: 1 ω7c), summed feature 3 (C16: 1 ω6c and/or C16: 1 ω7c), and C16: 0; its major respiratory quinone was ubiquinone-9 (Q-9), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. According to the above results, strain EGI 63088T is considered a novel species of the genus Halomonas, for which the name Halomonas flagellata sp. nov. is proposed. The type strain is EGI 63088T (= KCTC 92047T = CGMCC 1.19133T).
Collapse
Affiliation(s)
- Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Rui Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
7
|
Chi Y, Ma X, Wu J, Wang R, Zhang X, Chu S, Zhang D, Zhou P. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131866. [PMID: 37329596 DOI: 10.1016/j.jhazmat.2023.131866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Dutta B, Datta A, Dey A, Ghosh AK, Bandopadhyay R. Establishment of seed biopriming in salt stress mitigation of rice plants by mangrove derived Bacillus sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Sarker PK, Karmoker D, Shohan MUS, Saha AK, Rima FS, Begum RA, Islam MR, Seraj ZI. Effects of multiple halotolerant rhizobacteria on the tolerance, growth, and yield of rice plants under salt stress. Folia Microbiol (Praha) 2023; 68:55-72. [PMID: 35913659 DOI: 10.1007/s12223-022-00997-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Halotolerant bacteria get adapted to a saline environment through modified physiological/structural characteristics and may provide stress tolerance along with enhanced growth to the host plants by different direct and indirect mechanisms. This study reports on multiple halotolerant plant growth-promoting rhizobacteria isolated from the coastal soils in Bangladesh, in fields where the halophytic wild rice Oryza coarctata is endemic. The aim was to find halotolerant bacteria for potential use as biofertilizer under normal/salt-stressed conditions. In this study, eight different strains were selected from a total of 20 rhizobacterial isolates from the saline-prone regions of Debhata and Satkhira based on their higher salt tolerance. 16S rRNA gene sequencing results of the rhizobacterial strains revealed that they belonged to Halobacillus, Bacillus, Acinetobactor, and Enterobactor genera. A total of ten halotolerant rhizobacteria (the other 2 bacteria were previously isolated and already reported as beneficial for rice growth) were used as both single inoculants and in combinations and applied to rice growing in pots. To investigate their capability to improve rice growth, physiological parameters such as shoot and root length and weight, chlorophyll content at the seedling stage as well as survival and yield at the reproductive stage were measured in the absence or presence (in concentration 40 or 80 mmol/L) of NaCl and in the absence or presence of the rhizobacteria. At the reproductive stage, only 50% of the uninoculated plants survived without setting any grains in 80 mmol/L NaCl in contrast to 100% survival of the rice plants inoculated with a combination of the rhizobacteria. The combined halotolerant rhizobacterial inoculations showed significantly higher chlorophyll retention as well as yield under the maximum NaCl concentration applied compared to application of single species. Thus, the use of a combination of halotolerant rhizobacteria as bioinoculants for rice plants under moderate salinity can synergistically alleviate the effects of stress and promote rice growth and yield.
Collapse
Affiliation(s)
- Protup Kumer Sarker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Dola Karmoker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Umer Sharif Shohan
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anik Kumar Saha
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Fahmida Sultana Rima
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Rifat Ara Begum
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Rakibul Islam
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Zeba Islam Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
10
|
Cui W, Liu Y, Li W, Pei L, Xu S, Sun Y, Liu J, Wang F. Remediation Agents Drive Bacterial Community in a Cd-Contaminated Soil. TOXICS 2023; 11:toxics11010053. [PMID: 36668779 PMCID: PMC9861843 DOI: 10.3390/toxics11010053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 05/04/2023]
Abstract
Soil remediation agents (SRAs) such as biochar and hydroxyapatite (HAP) have shown a promising prospect in in situ soil remediation programs and safe crop production. However, the effects of SRAs on soil microbial communities still remain unclear, particularly under field conditions. Here, a field case study was conducted to compare the effects of biochar and HAP on soil bacterial communities in a slightly Cd-contaminated farmland grown with sweet sorghum of different planting densities. We found that both biochar and HAP decreased the diversity and richness of soil bacteria, but they differently altered bacterial community structure. Biochar decreased Chao1 (-7.3%), Observed_species (-8.6%), and Shannon indexes (-1.3%), and HAP caused Shannon (-2.0%) and Simpson indexes (-0.1%) to decline. The relative abundance (RA) of some specific taxa and marker species was differently changed by biochar and HAP. Overall, sweet sorghum cultivation did not significantly alter soil bacterial diversity and richness but caused changes in the RA of some taxa. Some significant correlations were observed between soil properties and bacterial abundance. In conclusion, soil remediation with biochar and HAP caused alterations in soil bacterial communities. Our findings help to understand the ecological impacts of SRAs in soil remediation programs.
Collapse
|
11
|
Li Y, Zhou M, Li C, Pan X, Lv N, Ye Z, Zhu G, Zhao Q, Cai G. Inoculating indoleacetic acid bacteria promotes the enrichment of halotolerant bacteria during secondary fermentation of composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116021. [PMID: 36067675 DOI: 10.1016/j.jenvman.2022.116021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The secondary fermentation stage is critical for stabilizing composting products and producing various secondary metabolites. However, the low metabolic rate of mesophilic bacteria is regarded as the rate-limiting stage in composting process. In present study, two indoleacetic acid (IAA)-producing bacteria (Bacillus safensis 33C and Corynebacterium stationis subsp. safensis 29B) were inoculated to strengthen the secondary fermentation stage to improve the plant-growth promoting potential of composting products. The results showed that the addition of IAA-producing bacteria promoted the assimilation of soluble salt, the condensation and aromatization of humus, and the accumulation of dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). The bioaugmentation strategy also enabled faster microbial community succession during the medium-late phase of secondary fermentation. However, the colonization of Bacillus and Corynebacterium could not explain the disproportionate increase of IAA yield, which reached up to 5.6 times compared to the control group. Deeper analysis combined with physicochemical properties and microbial community structure suggested that IAA-producing bacteria might induce the increase of salinity, which enriched halotolerant bacteria capable of producing IAA, such as Halomonas, Brachybacterium and Flavobacterium. In addition, the results also proved that it was necessary to shorten secondary fermentation time to avoid IAA degradation without affecting composting maturity. In summary, enhancing secondary fermentation of composting via adding proper IAA-producing bacteria is an efficient strategy for upgrading the quality of organic fertilizer.
Collapse
Affiliation(s)
- Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhilong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| | - Quanbao Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Guanjing Cai
- Biology Department and Institute of Marine Sciences, College of Science, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
12
|
Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23137036. [PMID: 35806037 PMCID: PMC9266936 DOI: 10.3390/ijms23137036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.
Collapse
|
13
|
Luo Y, Yuan H, Zhao J, Qi Y, Cao WW, Liu JM, Guo W, Bao ZH. Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112749. [PMID: 34488142 DOI: 10.1016/j.ecoenv.2021.112749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The effects of long-term rare earth element (REE) and heavy metal (HM) contamination on soil bacterial communities remains poorly understood. In this study, soil samples co-contaminated with REEs and HMs were collected from a rare-earth tailing dam. The bacterial community composition and diversity were analyzed through Illumina high-throughput sequencing with 16S rRNA gene amplicons. Bacterial community richness and diversity were lower in the co-contaminated soils than in the uncontaminated soils, with clearly different bacterial community compositions. The results showed that total organic carbon and available potassium were the most important factors affecting bacterial community richness and diversity, followed by the REE and HM contents. Although the canonical correspondence analysis results showed that an REE alone had no obvious effects on bacterial community structures, we found that the combined effects of soil physicochemical properties and REE and HM contents regulated bacterial community structure and composition. The effects of REEs and HMs on bacterial communities were similar, whereas their combined contributions were greater than the individual effects of REEs or HMs. Some bacterial taxa were worth noting. These specifically included the plant growth-promoting bacteria Exiguobacterium (sensitive to REEs and HMs) and oligotrophic microorganisms with metal tolerance (prevalent in contaminated soil); moreover, relative abundance of JTB255-Marine Benthic Group, Rhodobacteraceae, Erythrobacter, and Truepera may be correlated with REEs. This study was the first to investigate the responses of bacterial communities to REE and HM co-contamination. The current results have major implications for the ecological risk assessment of environments co-contaminated with REEs and HMs.
Collapse
Affiliation(s)
- Ying Luo
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Energy Investment Group CO., LID. Electric Power Engineering Technology Research Institute, Hohhot 010060, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Yu Qi
- Inner Mongolia Academy of Environmental Science, Hohhot 010011, China
| | - Wei-Wei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ju-Mei Liu
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Gao P, Song B, Xu R, Sun X, Lin H, Xu F, Li B, Sun W. Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58523-58535. [PMID: 34115291 DOI: 10.1007/s11356-021-14595-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Soil contamination due to mining activities is a great concern in China. Although the effects of mining pollution resulting in changes of soil characteristics and the microbiome have been documented, studies on the responses of plant root-associated microbial assemblages remain scarce. In this work, we collected bulk soil, rhizosphere soil, and root endosphere samples of Cyperus rotundus L (Cyp) plants from two Pb/Zn mines, of which, one was abandoned (SL) and the other was active (GD), to investigate the bacterial community responses across different site contamination levels and Cyp plant compartments. For comparison, one unpolluted site (SD) was included. Results revealed that soils from the SL and GD sites were seriously contaminated by metal(loid)s, including Pb, Zn, As, and Sb. Bacterial richness and diversity depended on the sampling site and plant compartment. All sample types from the SL site had the lowest bacterial diversities and their bacterial communities also exhibited distinct patterns compared to GD and SD samples. As for the specific sampling site, bacterial communities from the root endosphere exhibited different patterns from those in bulk and rhizosphere soil. Compared to the GD and SD sites, the root endosphere and the rhizosphere soil from the SL site shared core microbes, including Halomonas, Pelagibacterium, and Chelativorans, suggesting that they play key roles in Cyp plant survival in such harsh environments.
Collapse
Affiliation(s)
- Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
- School of Environment, Henan Normal University, Xinxiang, Henan, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
15
|
Potential of Halophilic/Halotolerant Bacteria in Enhancing Plant Growth Under Salt Stress. Curr Microbiol 2021; 78:3708-3719. [PMID: 34427735 DOI: 10.1007/s00284-021-02637-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/19/2021] [Indexed: 01/16/2023]
Abstract
In the current study, fourteen bacterial strains were obtained in salt contaminated soils. The identification and characterization of the bacterial strains were performed by conventional and molecular techniques. According to the results of 16S rRNA gene sequence analysis, five genera (Bacillus, Staphylococcus, Oceanobacillus, Exiguobacterium, and Halobacillus) were identified with a homology of equal to 99% or higher similarity. Afterward, these fourteen halotolerant/halophilic bacterial strains were investigated for their plant growth promoting (PGP) traits including production of indole-3-acetic acid (IAA) and siderophore, activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, fixation of nitrogen, and phosphate solubilization potential. Five of the bacterial strains possessing PGP traits were tested for their effects on the growth of a salt sensitive plant (wheat) in a hydroponic system under salt stress (200 mM). Inoculation of five bacterial strains under salt stress significantly enhanced plant weight (Triticum aestivum) ranged from 71.18 to 89.04%. Salt stress amelioration potential of Oceanobacillus picturae and Staphylococcus succinus on T. aestivum has been shown for the first time in this study. In non-saline soil, the promising effect of plant growth bacteria is clear; however, in saline soil, the use of PGP halophilic and halotolerant bacteria can increase the productivity of salt sensitive plants. Therefore, the novel halophilic and halotolerant bacteria that promote plant growth can be developed for agricultural uses in saline soils.
Collapse
|
16
|
Khan MA, Hamayun M, Asaf S, Khan M, Yun BW, Kang SM, Lee IJ. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:665590. [PMID: 34177981 PMCID: PMC8226221 DOI: 10.3389/fpls.2021.665590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Amini Hajiabadi A, Mosleh Arani A, Ghasemi S, Rad MH, Etesami H, Shabazi Manshadi S, Dolati A. Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:139-153. [PMID: 33845330 DOI: 10.1016/j.plaphy.2021.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of three halotolerant rhizobacterial isolates AL, HR, and SB, which are able to grow at a salinity level of 1600 mM NaCl, with multiple plant growth promoting (PGP) traits on some seed and forage quality attributes, and vegetative, reproductive, biochemical and physiological characteristics of wheat plant irrigated with saline water (0, 40, 80, and 160 mM NaCl) were investigated. The ability of halotolerant bacterial isolates to produce PGP traits was affected by salinity levels, depending upon the bacterial isolates. Salinity stress significantly affected the yield, quality, and growth of wheat by modifying the morpho-physiological and biochemical traits of the exposed plants. However, all three bacterial isolates, especially isolate AL, significantly improved the biochemical (an increase in K+/Na+ ratio by 55%, plant P content by 50%, and plant Ca content by 31%), morphological (an increase in stem dry weight by 52%, root dry weight by 44%, spike dry weight by 34%, and grain dry weight by 43%), and physiological (an increase in leaf proline content by 50% and total phenol in leaf by 42%) attributes of wheat and aided the plant to tolerate salinity stress in contrast to un-inoculated plant. Plants inoculated with bacterial isolates showed significantly improved seed amylose by 36%, leaf crude protein by 30%, leaf metabolic energy by 37%, and leaf water-soluble sugar content by 34%. Among the measured PGP and plant attributes, bacterial auxin and plant K content were of key importance in increasing reproductive performance of wheat. The bacterial isolates AL, HR, and SB were identified as Bacillus safensis, B. pumilus, and Zhihengliuella halotolerans, respectively, based on 16 S rDNA sequence. The study reveals that application of halotolerant plant growth-promoting rhizobacteria isolated from halophytic rangeland plants can be a cost effective and ecological sustainable method to improve wheat productivity, especially the attributes related to seed and forage quality, under salinity stress conditions.
Collapse
Affiliation(s)
| | - Asghar Mosleh Arani
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran.
| | - Somayeh Ghasemi
- Department of Soil Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Mohammad Hadi Rad
- Forest and Rangeland Division, Yazd Agricultural and Natural Resource Research and Education Center, Yazd, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran.
| | | | - Ali Dolati
- Faculty of Mathematics, Department of Statistics, Yazd University, Yazd, Iran
| |
Collapse
|
18
|
Morcillo RJL, Manzanera M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021; 11:337. [PMID: 34074032 PMCID: PMC8225083 DOI: 10.3390/metabo11060337] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.
Collapse
Affiliation(s)
- Rafael J L Morcillo
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| | - Maximino Manzanera
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| |
Collapse
|
19
|
Kumawat KC, Sharma P, Nagpal S, Gupta RK, Sirari A, Nair RM, Bindumadhava H, Singh S. Dual Microbial Inoculation, a Game Changer? - Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Front Microbiol 2021; 11:600576. [PMID: 33584566 PMCID: PMC7874087 DOI: 10.3389/fmicb.2020.600576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Soil microbes play a vital role in improving plant growth, soil health, ameliorate biotic/abiotic stress and enhance crop productivity. The present study was aimed to investigate a coordinated effect of compatible consortium [salt tolerating Rhizobium and rhizobacterium with 1-aminocyclopropane-1-carboxylate (ACC) deaminase] in enhancing plant growth promoting (PGP) traits, symbiotic efficiency, nutrient acquisition, anti-oxidative enzymes, grain yield and associated profitability in spring mungbean. We identified a non-pathogenic compatible Rhizobium sp. LSMR-32 (MH644039.1) and Enterococcus mundtii LSMRS-3 (MH644178.1) from salt affected areas of Punjab, India and the same were assessed to develop consortium biofertilizer based on salt tolerance, multifarious PGP traits, antagonistic defense activities and presence of nifH, acds, pqq, and ipdc genes. Indole Acetic acid (IAA), P-solubilization, biofilm formation, exo-polysaccharides, siderophore, salt tolerance, ACC deaminase activities were all found highly significant in dual inoculant (LSMR-32 + LSMRS-3) treatment compared to LSMR-32 alone. Under saline soil conditions, dual inoculant showed a higher seed germination, plant height, biomass, chlorophyll content and macro and micro-nutrient uptake, than un-inoculated control. However, symbiotic (nodulation, nodule biomass and leghaemoglobin content) and soil quality parameters (phosphatase and soil dehydrogenase enzymes) increased numerically with LSMR-32 + LSMRS-3 over Rhizobium sp. LSMR-32 alone. Dual bacterial inoculation (LSMR-32 + LSMRS-3) increased the proline content (2.05 fold), anti-oxidative enzymes viz., superoxide dismutase (1.50 fold), catalase (1.43 fold) and peroxidase (3.88 folds) in contrast to control treatment. Decreased Na+ accumulation and increased K+ uptake resulted in favorable K+/Na+ ratio through ion homeostasis. Co-inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 significantly improved the grain yield by 8.92% and led to superior B: C ratio over Rhizobium sp. alone under salt stress. To best of our knowledge this is perhaps the first field report from Indian soils that largely describes dual inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 and the same can be considered as a game-changer approach to simultaneously induce salt tolerance and improve productivity in spring mungbean under saline stress conditions.
Collapse
Affiliation(s)
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - R K Gupta
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Asmita Sirari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | | | - Sudeep Singh
- Regional Research Station, Punjab Agricultural University, Bathinda, India
| |
Collapse
|
20
|
Li M, Yang F, Wu X, Yan H, Liu Y. Effects of continuous cropping of sugar beet (Beta vulgaris L.) on its endophytic and soil bacterial community by high-throughput sequencing. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01583-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
As a major sugar crop, sugar beet (Beta vulgaris L.) plays an important role in both sugar industry and feed products. Soil, acts as the substrate for plant growth, provides not only nutrients to plants but also a habitat for soil microorganisms. High soil fertility and good micro-ecological environment are basic requirements for obtaining high-yield and high-sugar sugar beets. This study aimed at exploring the effects of continuous cropping of sugar beet on its endophytic, soil bacterial community structures, and diversity.
Methods
Using high-throughput sequencing technology which is based on Illumina Hiseq 2500 platform, the seeds of sugar beet (sample S), non-continuous cropping sugar beet (sample Bn) with its rhizosphere soil (sample Sr), and planting soil (sample Sn), continuous cropping sugar beet (sample Bc) with its planting soil (sample Sc), were collected as research materials.
Result
The results showed that the bacterial communities and diversity in each sample exhibited different OTU richness; 67.9% and 63.8% of total endophytic OTUs from samples Bc and Bn shared with their planting soil samples Sc and Sn, while sharing 36.4% and 31.8% of total OTUs with their seed sample S. Pseudarthrobacter and Bacillus as the two major groups coexisted among all samples, and other shared groups belonged to Achromobacter, Sphingomonas, Novosphingobium, Terribacillus, Planococcus, Paracoccus, Nesterenkonia, Halomonas, and Nocardioides. Genera, including Pantoea, Pseudomonas, Stenotrophomonas, Weissella, Leuconostoc, and Acinetobacter, were detected in each sugar beet sample but not in their corresponding soil sample. In this study, the bacterial community structures and soil compositions have significantly changed before and after continuous cropping; however, the effects of continuous cropping on endophytic bacteria of sugar beet were not statistically significant.
Conclusion
This study would provide a scientific basis and reference information for in-depth research on correlations between continuous cropping and micro-ecological environment of sugar beet plant.
Collapse
|
21
|
Ibrahim IM, Konnova SA, Sigida EN, Lyubun EV, Muratova AY, Fedonenko YP, Elbanna К. Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles 2019; 24:157-166. [DOI: 10.1007/s00792-019-01143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
|
22
|
Albdaiwi RN, Khyami-Horani H, Ayad JY, Alananbeh KM, Al-Sayaydeh R. Isolation and Characterization of Halotolerant Plant Growth Promoting Rhizobacteria From Durum Wheat ( Triticum turgidum subsp. durum) Cultivated in Saline Areas of the Dead Sea Region. Front Microbiol 2019; 10:1639. [PMID: 31396175 PMCID: PMC6664018 DOI: 10.3389/fmicb.2019.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 07/02/2019] [Indexed: 01/24/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms that can be utilized to improve plant responses against biotic and abiotic stresses. In this study, 74 halotolerant bacterial isolates were isolated from rhizosphere and endorhizosphere of durum wheat (Triticum turgidum subsp. durum) plants cultivated in saline environments in the Ghor region near the east of the Dead Sea. 16S rDNA partial sequences and phylogenetic analysis of 62 isolates showed clear clustering of the isolates into three phyla: Firmicutes (61.3%), Proteobacteria (29.0%), and Actinobacteria (9.7%). At the genus level, the majority of them were grouped within the Bacillus, Oceanobacillus, and Halomonas genera. The isolates, which possessed plant growth promoting traits including nitrogen fixation, ACC deaminase activity, auxin production, inorganic phosphate solubilization and siderophore production, were selected. The effect of the inoculation of selected PGPR strains on growth of salt sensitive and salt tolerant durum wheat genotypes under high salt stress conditions was evaluated. Six halotolerant PGPR strains were able to improve survival in inoculated plants under high salinity stress conditions as reflected in higher germination percentages and seedling root growth when compared with non-inoculated plants. Furthermore, three halotolerant PGPR strains were able to improve durum wheat tolerance to water deficit stress. In addition, antagonistic effect in four halotolerant PGPR strains against an aggressive pathogenic isolate of Fusarium culmorum that causes crown rot disease was observed in a dual culture assay. In conclusion, the halotolerant PGPR strains described in this study might have great potential to improve durum wheat productivity under different stress conditions.
Collapse
Affiliation(s)
- Randa N Albdaiwi
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Hala Khyami-Horani
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Jamal Y Ayad
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Kholoud M Alananbeh
- Department of Plant Protection, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
23
|
Mukherjee P, Mitra A, Roy M. Halomonas Rhizobacteria of Avicennia marina of Indian Sundarbans Promote Rice Growth Under Saline and Heavy Metal Stresses Through Exopolysaccharide Production. Front Microbiol 2019; 10:1207. [PMID: 31191507 PMCID: PMC6549542 DOI: 10.3389/fmicb.2019.01207] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
The Halomonas species isolated from the rhizosphere of the true mangrove Avicennia marina of Indian Sundarbans showed enhanced rice growth promotion under combined stress of salt and arsenic in pot assay. Interestingly, under abiotic stress conditions, Halomonas sp. Exo1 was observed as an efficient producer of exopolysaccharide. The study revealed that salt triggered exopolysaccharide production, which in turn, increased osmotic tolerance of the strain. Again, like salt, presence of arsenic also caused increased exopolysaccharide production that in turn sequestered arsenic showing a positive feedback mechanism. To understand the role of exopolysaccharide in salt and arsenic biosorption, purified exopolysaccharide mediated salt and arsenic sequestration were studied both under in vivo and in vitro conditions and the substrate binding properties were characterized through FT-IR and SEM-EDX analyses. Finally, observation of enhanced plant growth in pot assay in the presence of the strain and pure exopolysaccharide separately, confirmed direct role of exopolysaccharide in plant growth promotion.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Biotechnology, Techno India University, Kolkata, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, Kolkata, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, Kolkata, India
| |
Collapse
|
24
|
Bruna N, Collao B, Tello A, Caravantes P, Díaz-Silva N, Monrás JP, Órdenes-Aenishanslins N, Flores M, Espinoza-Gonzalez R, Bravo D, Pérez-Donoso JM. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci Rep 2019; 9:1953. [PMID: 30760793 PMCID: PMC6374371 DOI: 10.1038/s41598-018-38330-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Here we report the biological synthesis of CdS fluorescent nanoparticles (Quantum Dots, QDs) by polyextremophile halophilic bacteria isolated from Atacama Salt Flat (Chile), Uyuni Salt Flat (Bolivia) and the Dead Sea (Israel). In particular, a Halobacillus sp. DS2, a strain presenting high resistance to NaCl (3-22%), acidic pH (1-4) and cadmium (CdCl2 MIC: 1,375 mM) was used for QDs biosynthesis studies. Halobacillus sp. synthesize CdS QDs in presence of high NaCl concentrations in a process related with their capacity to generate S2- in these conditions. Biosynthesized QDs were purified, characterized and their stability at different NaCl concentrations determined. Hexagonal nanoparticles with highly defined structures (hexagonal phase), monodisperse size distribution (2-5 nm) and composed by CdS, NaCl and cysteine were determined by TEM, EDX, HRXPS and FTIR. In addition, QDs biosynthesized by Halobacillus sp. DS2 displayed increased tolerance to NaCl when compared to QDs produced chemically or biosynthesized by non-halophilic bacteria. This is the first report of biological synthesis of salt-stable QDs and confirms the potential of using extremophile microorganisms to produce novel nanoparticles. Obtained results constitute a new alternative to improve QDs properties, and as consequence, to increase their industrial and biomedical applications.
Collapse
Affiliation(s)
- N Bruna
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - B Collao
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - A Tello
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
- Laboratorio de Nanotecnología, Recursos Naturales y Sistemas Complejos, Facultad de Ciencias Naturales, Departamento de Química y Biología, Universidad de Atacama, Copiapó, Chile
| | - P Caravantes
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - N Díaz-Silva
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - J P Monrás
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - N Órdenes-Aenishanslins
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - M Flores
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - R Espinoza-Gonzalez
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - D Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
25
|
Treves DS, Francis J, Kirchner G. Draft genome sequence of the moderately halophilic bacterium Halobacillus sp. BBL2006. Data Brief 2018; 21:2410-2413. [PMID: 30547067 PMCID: PMC6282633 DOI: 10.1016/j.dib.2018.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022] Open
Abstract
We present the draft genome sequence of Halobacillus sp. BBL2006, a moderately halophilic, gram positive bacterium isolated from a sulfidic salt spring in Big Bone Lick State Park, Boone County, Kentucky. The genome of Halobacillus sp. BBL2006 was 3,988,138 bp in length with a GC content of 41.6%. Genome analysis identified 4331 open reading frames including genes for antibiotic resistance and tolerance to heavy metals. The draft genome was deposited at DDBJ/EMBL/GenBank (DNA Databank of Japan/European Molecular Biology Laboratory/Genbank) (JRNX00000000).
Collapse
Affiliation(s)
| | | | - Gretchen Kirchner
- Department of Biology, Indiana University Southeast, New Albany, IN, USA
| |
Collapse
|
26
|
Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. CHEMOSPHERE 2018; 211:407-419. [PMID: 30077937 DOI: 10.1016/j.chemosphere.2018.07.148] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The biological agents have been utilized as an affordable alternative to conventional costly metal remediation technologies for last few years. The present investigation introduces arsenic (As) resistant plant growth promoting rhizobacteria (PGPR) isolated from the As-contaminated agricultural field of West Bengal, India that alleviates arsenic-induced toxicity and exhibited many plant growth promoting traits (PGP). The isolated strain designated as AS6 has identified as Bacillus aryabhattai based on phenotypic characteristics, physio-biochemical tests, MALDI-TOFMS bio-typing, FAME analysis and 16S rDNA sequence homology. The strain found to exhibit five times more resistance to arsenate than arsenite with minimum inhibitory concentrations (MIC) being 100 mM and 20 mM respectively. The result showed that accumulation of As was evidenced by SEM- EDAX, TEM-EDAX studies. The intracellular accumulation of arsenic was also confirmed as in bacterial biomass by AAS, FTIR, XRD and XRF analyses. The increased rate of As (V) reduction by this strain found to be exploited for the remediation of arsenic in the contaminated agricultural field. The strain also found to exhibit important PGP traits viz., ACC deaminase activity (2022 nmol α-ketobutyrate/mg protein/h), IAA production (166 μg/ml), N2 fixation (0.32 μgN fixed/h/mg proteins) and siderophore production (72%) etc. Positive influenced of AS6 strain on rice seedlings growth promotion under As stress was observed considering the several morphological, biochemical parameters including antioxidants activities as compared with an uninoculated set. Thus this strain might be exploited for stress amelioration and plant growth enhancement of rice cultivar under arsenic spiked agricultural soil.
Collapse
Affiliation(s)
- Pallab Kumar Ghosh
- Department of Marine Science, Ballygunge Science College Campus, Calcutta University, 35, B.C.Road, Kolkata, 700019, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, Pin. 713104, WB, India
| | - Krishnendu Pramanik
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, Pin. 713104, WB, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, Pin. 713104, WB, India
| | - Soumik Mitra
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, Pin. 713104, WB, India
| | - Tarun Kumar De
- Department of Marine Science, Ballygunge Science College Campus, Calcutta University, 35, B.C.Road, Kolkata, 700019, India
| |
Collapse
|
27
|
Draft Genome Sequence of Bacillus subtilis 2C-9B, a Strain with Biocontrol Potential against Chili Pepper Root Pathogens and Tolerance to Pb and Zn. GENOME ANNOUNCEMENTS 2018; 6:6/3/e01502-17. [PMID: 29348357 PMCID: PMC5773742 DOI: 10.1128/genomea.01502-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus subtilis 2C-9B, obtained from the rhizosphere of wild grass, exhibits inhibition against root rot causal pathogens in Capsicum annuum, Pb and Zn tolerance, and plant growth promotion in medium supplemented with Pb. The genome of B. subtilis 2C-9B was sequenced and the draft genome assembled, with a length of 4,215,855 bp and 4,723 coding genes.
Collapse
|
28
|
Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1239-1250. [PMID: 28851144 DOI: 10.1016/j.scitotenv.2017.07.234] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) uptake by plants is largely influenced by the presence of microbial consortia and their interactions with As. In the coastal region of Bengal deltaic plain of Eastern India, the As-contaminated groundwater is frequently used for irrigation purposes resulting in an elevated level of soil As in agricultural lands. The health hazards associated with As necessitates development of cost-effective remediation strategies to reclaim contaminated agricultural lands. Among the available technologies developed in recent times, bioremediation using bacteria has been found to be the most propitious. In this study, two As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus vietnamensis AB403 were isolated, identified and characterized from mangrove rhizosphere of Sundarban. The isolates, AB402 and AB403, could tolerate 35mM and 20mM of arsenite, respectively. The effect of As on the exopolysaccharide (EPS) synthesis, biofilm formation, and root association was evaluated for both the bacterial strains. Arsenic adsorption on the cell surfaces and intracellular accumulation in both the bacterial strains were promising under culture conditions. Moreover, both the strains when used as inoculum, not only promoted the growth of rice seedlings but also decreased As uptake and accumulation in plants.
Collapse
Affiliation(s)
- Ivy Mallick
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Dhritiman Dey
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | | | | | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
29
|
Radhakrishnan R, Baek KH. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:116-126. [PMID: 28554145 DOI: 10.1016/j.plaphy.2017.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/01/2023]
Abstract
Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress.
Collapse
Affiliation(s)
| | - Kwang Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
30
|
Heavy metal resistance in halophilicBacteriaandArchaea. FEMS Microbiol Lett 2016; 363:fnw146. [DOI: 10.1093/femsle/fnw146] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/25/2022] Open
|
31
|
Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 2016; 47:621-7. [PMID: 27133557 PMCID: PMC4927673 DOI: 10.1016/j.bjm.2016.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/20/2016] [Indexed: 11/27/2022] Open
Abstract
In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat.
Collapse
Affiliation(s)
- Furkan Orhan
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, AĞRI, Turkey; Vocational School Agri Ibrahim Cecen University, AĞRI, Turkey.
| |
Collapse
|
32
|
Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Syst Appl Microbiol 2015; 38:406-16. [DOI: 10.1016/j.syapm.2015.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
|
33
|
Bharti N, Barnawal D, Maji D, Kalra A. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. MICROBIAL ECOLOGY 2015; 70:196-208. [PMID: 25542205 DOI: 10.1007/s00248-014-0557-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 12/09/2014] [Indexed: 05/27/2023]
Abstract
The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions. Additive main effect and multiplicative interaction ordination analysis revealed that plant growth promoting rhizobacteria (PGPR) inoculations as well as salinity are major drivers of microbial community shift in maize rhizosphere. Salinity negatively impacts microbial community as analysed through diversity indices; among the PGPR-inoculated plants, STR2-inoculated plants recorded higher values of diversity indices. As observed in the terminal-restriction fragment length polymorphism analysis, the inoculation of halotolerant rhizobacteria prevents major shift of the microbial community structure, thus enhancing the resilience capacity of the microbial communities.
Collapse
Affiliation(s)
- Nidhi Bharti
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | | | | | | |
Collapse
|