1
|
Obayashi M, Kimura M, Haraguchi A, Gotanda M, Kitagawa T, Matsuno M, Sakao K, Hamanaka D, Kusakisako K, Kameda T, Ibrahim HR, Ikadai H, Miyata T. Bovine lactoferrin inhibits Plasmodium berghei growth by binding to heme. Sci Rep 2024; 14:20344. [PMID: 39223194 PMCID: PMC11369202 DOI: 10.1038/s41598-024-70840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Bovine lactoferrin (bLF) is a 77 kDa glycoprotein that is abundant in bovine breast milk and exerts various bioactive functions, including antibacterial and antiviral functions. Few studies have explored bLF activity against parasites. We found that bLF affects hemozoin synthesis by binding to heme, inhibiting heme iron polymerization necessary for Plasmodium berghei ANKA survival in infected erythrocytes, and also binds to hemozoin, causing it to disassemble. In a challenge test, bLF administration inhibited the growth of murine malaria parasites compared to untreated group growth. To determine whether the iron content of bLF affects the inhibition of malaria growth, we tested bLFs containing different amounts of iron (apo-bLF, native-bLF, and holo-bLF), but found no significant difference in their effects. This indicated that the active sites were located within the bLFs themselves. Further studies showed that the C-lobe domain of bLF can inhibit hemozoin formation and the growth of P. berghei ANKA. Evaluation of pepsin degradation products of the C-lobe identified a 47-amino-acid section, C-1, as the smallest effective region that could inhibit hemozoin formation. This study highlights bLF's potential as a novel therapeutic agent against malaria, underscoring the importance of its non-iron-dependent bioactive sites in combating parasite growth.
Collapse
Affiliation(s)
- Momoka Obayashi
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Momoko Kimura
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori, 034-8628, Japan
| | - Mari Gotanda
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Taiki Kitagawa
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Misato Matsuno
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daisuke Hamanaka
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori, 034-8628, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Hisham R Ibrahim
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori, 034-8628, Japan.
| | - Takeshi Miyata
- Division of Molecular Functions of Food, Department of Biochemistry and Biotechnology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
2
|
Sulyman AO, Aje OO, Ajani EO, Abdulsalam RA, Balogun FO, Sabiu S. Bioprospection of Selected Plant Secondary Metabolites as Modulators of the Proteolytic Activity of Plasmodium falciparum Plasmepsin V. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6229503. [PMID: 37388365 PMCID: PMC10307063 DOI: 10.1155/2023/6229503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Malaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria. The pepsin-like aspartic protease anchored in the endoplasmic reticulum is responsible for the trafficking of parasite-derived proteins to the erythrocytic surface of the host cells. In this study, a small library of compounds was preliminarily screened in vitro to identify novel modulators of Plasmodium falciparum plasmepsin V (PfPMV). The results obtained revealed kaempferol, quercetin, and shikonin as possible PfPMV inhibitors, and these compounds were subsequently probed for their inhibitory potentials using in vitro and in silico methods. Kaempferol and shikonin noncompetitively and competitively inhibited the specific activity of PfPMV in vitro with IC50 values of 22.4 and 43.34 μM, respectively, relative to 62.6 μM obtained for pepstatin, a known aspartic protease inhibitor. Further insight into the structure-activity relationship of the compounds through a 100 ns molecular dynamic (MD) simulation showed that all the test compounds had a significant affinity for PfPMV, with quercetin (-36.56 kcal/mol) being the most prominent metabolite displaying comparable activity to pepstatin (-35.72 kcal/mol). This observation was further supported by the compactness and flexibility of the resulting complexes where the compounds do not compromise the structural integrity of PfPMV but rather stabilized and interacted with the active site amino acid residues critical to PfPMV modulation. Considering the findings in this study, quercetin, kaempferol, and shikonin could be proposed as novel aspartic protease inhibitors worthy of further investigation in the treatment of malaria.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Oluwapelumi Oluwaseun Aje
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Abstract
Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.
Collapse
|
4
|
Schipper S, Wu H, Furdui CM, Poole LB, Delahunty CM, Park R, Yates JR, Becker K, Przyborski JM. Identification of sulfenylation patterns in trophozoite stage Plasmodium falciparum using a non-dimedone based probe. Mol Biochem Parasitol 2021; 242:111362. [PMID: 33513391 DOI: 10.1016/j.molbiopara.2021.111362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Plasmodium falciparum causes the deadliest form of malaria. Adequate redox control is crucial for this protozoan parasite to overcome oxidative and nitrosative challenges, thus enabling its survival. Sulfenylation is an oxidative post-translational modification, which acts as a molecular on/off switch, regulating protein activity. To obtain a better understanding of which proteins are redox regulated in malaria parasites, we established an optimized affinity capture protocol coupled with mass spectrometry analysis for identification of in vivo sulfenylated proteins. The non-dimedone based probe BCN-Bio1 shows reaction rates over 100-times that of commonly used dimedone-based probes, allowing for a rapid trapping of sulfenylated proteins. Mass spectrometry analysis of BCN-Bio1 labeled proteins revealed the first insight into the Plasmodium falciparum trophozoite sulfenylome, identifying 102 proteins containing 152 sulfenylation sites. Comparison with Plasmodium proteins modified by S-glutathionylation and S-nitrosation showed a high overlap, suggesting a common core of proteins undergoing redox regulation by multiple mechanisms. Furthermore, parasite proteins which were identified as targets for sulfenylation were also identified as being sulfenylated in other organisms, especially proteins of the glycolytic cycle. This study suggests that a number of Plasmodium proteins are subject to redox regulation and it provides a basis for further investigations into the exact structural and biochemical basis of regulation, and a deeper understanding of cross-talk between post-translational modifications.
Collapse
Affiliation(s)
- Susanne Schipper
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Claire M Delahunty
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katja Becker
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Antimalarial Activity of Kaempferol and Its Combination with Chloroquine in Plasmodium berghei Infection in Mice. J Pathog 2018; 2018:3912090. [PMID: 30631601 PMCID: PMC6304481 DOI: 10.1155/2018/3912090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022] Open
Abstract
The search for new antimalarial drugs has become an urgent requirement due to resistance to the available drugs and the lack of an effective vaccine. In this respect, the present study aimed to evaluate the antimalarial activity of kaempferol against Plasmodium berghei infection in mice as an in vivo model. Chronic toxicity and antimalarial activities of kaempferol alone and in combination with chloroquine were investigated in P. berghei ANKA infected ICR mice using standard procedures. The results showed that chronic administration of 2,000 mg/kg of kaempferol resulted in no overt signs of toxicity as well as no hepatotoxicity, nephrotoxicity, or hematotoxicity. Interestingly, kaempferol exerted significant (P < 0.05) chemosuppressive, chemoprophylactic, and curative activities in a dose-dependent manner. The highest antimalarial activity was found at a dose of 20 mg/kg which resulted in a significantly (P < 0.05) prolonged survival of infected mice. Moreover, combination treatment of chloroquine and kaempferol also presented significant (P < 0.05) antimalarial effects, although the effects were not significantly different from the chloroquine treated group. From the results of the present study, it can be concluded that kaempferol possesses acceptable antimalarial activities. However, further investigation should be undertaken on the mechanism responsible for the observed antimalarial activity.
Collapse
|
6
|
Al-Hosary AAT, Ellah MRA, Ahmed LSED. Evaluation of Oxidative Stress in Sheep Infested with Ticks and Concurrent Diagnosis of Theileriosis. ASIAN JOURNAL OF ANIMAL AND VETERINARY ADVANCES 2018; 13:263-268. [DOI: 10.3923/ajava.2018.263.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Nworu CS, Ejikeme TI, Ezike AC, Ndu O, Akunne TC, Onyeto CA, Okpalanduka P, Akah PA. Anti-plasmodial and anti-inflammatory activities of cyclotide-rich extract and fraction of Oldenlandia affinis (R. & S.) D.C. ( Rubiaceae). Afr Health Sci 2017; 17:827-843. [PMID: 29085411 PMCID: PMC5656185 DOI: 10.4314/ahs.v17i3.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Oldenlandia affinis, commonly called 'kalata-kalata', a versatile plant used locally to treat malaria fever in some parts of sub-Saharan Africa was investigated for anti-plasmodial and anti-inflammatory activities. OBJECTIVE The study was designed to evaluate the antiplasmodial as well as anti-inflammatory activities of whole extract and cyclotide-rich fraction of Oldenlandia affinis. METHOD The dichloromethane-methanol extract (ODE) of the plant, O. affinis was investigated for suppressive and curative antiplasmodial activities against Plasmodium berghei in mice. ODE and the cyclotide-rich fraction (CRF) was investigated for chronic and acute anti-inflammatory activities in rat models of inflammation. Inhibition of pro-inflammatory mediators was studied in RAW264.7 macrophages. RESULTS ODE exhibited significant (p<0.05) reduction in mean parasitaemia in both the suppressive and curative models of Plasmodium berghei infection in mice.Administration of ODE(100, 200, or 400 mg/kg) and CRF (100, 200, or 400 mg/kg) produced significant inhibition of rodent models of acute and chronic inflammation . This observation is supported by the significant (P<0.05) inhibition of pro-inflammatory mediators, inducible nitric oxide (iNO) and tumour necrosis factor-alpha (TNF-α), and the reactive radical scavenging activities in RAW264.7 macrophages. CONCLUSION These findings could explain, at least in part, the successes reported in the use of the herb, Oldenlandia affinis in the traditional treatment of malaria fever.
Collapse
Affiliation(s)
- Chukwuemeka Sylvester Nworu
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Tochukwu Ifenyinwa Ejikeme
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Adaobi Chioma Ezike
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Okechukwu Ndu
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Theophine Chinwuba Akunne
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Collins Azubuike Onyeto
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Paul Okpalanduka
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Peter Achunike Akah
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
9
|
Wang DQ, Gao YL, Liu JX, Zheng CH, Kong XZ. Identifying drug-pathway association pairs based on L1L2,1-integrative penalized matrix decomposition. Oncotarget 2017; 8:48075-48085. [PMID: 28624800 PMCID: PMC5564627 DOI: 10.18632/oncotarget.18254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/01/2017] [Indexed: 01/27/2023] Open
Abstract
The traditional methods of drug discovery follow the "one drug-one target" approach, which ignores the cellular and physiological environment of the action mechanism of drugs. However, pathway-based drug discovery methods can overcome this limitation. This kind of method, such as the Integrative Penalized Matrix Decomposition (iPaD) method, identifies the drug-pathway associations by taking the lasso-type penalty on the regularization term. Moreover, instead of imposing the L1-norm regularization, the L2,1-Integrative Penalized Matrix Decomposition (L2,1-iPaD) method imposes the L2,1-norm penalty on the regularization term. In this paper, based on the iPaD and L2,1-iPaD methods, we propose a novel method named L1L2,1-iPaD (L1L2,1-Integrative Penalized Matrix Decomposition), which takes the sum of the L1-norm and L2,1-norm penalties on the regularization term. Besides, we perform permutation test to assess the significance of the identified drug-pathway association pairs and compute the P-values. Compared with the existing methods, our method can identify more drug-pathway association pairs which have been validated in the CancerResource database. In order to identify drug-pathway associations which are not validated in the CancerResource database, we retrieve published papers to prove these associations. The results on two real datasets prove that our method can achieve better enrichment for identified association pairs than the iPaD and L2,1-iPaD methods.
Collapse
Affiliation(s)
- Dong-Qin Wang
- 1 School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Ying-Lian Gao
- 2 Library of Qufu Normal University, Qufu Normal University, Rizhao, China
| | - Jin-Xing Liu
- 1 School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Chun-Hou Zheng
- 1 School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Xiang-Zhen Kong
- 1 School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| |
Collapse
|