1
|
El-Saadony MT, Desoky ESM, El-Tarabily KA, AbuQamar SF, Saad AM. Exploiting the role of plant growth promoting rhizobacteria in reducing heavy metal toxicity of pepper (Capsicum annuum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27465-27484. [PMID: 38512572 DOI: 10.1007/s11356-024-32874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Microorganisms are cost-effective and eco-friendly alternative methods for removing heavy metals (HM) from contaminated agricultural soils. Therefore, this study aims to identify and characterize HM-tolerant (HMT) plant growth-promoting rhizobacteria (PGPR) isolated from industry-contaminated soils to determine their impact as bioremediators on HM-stressed pepper plants. Four isolates [Pseudomonas azotoformans (Pa), Serratia rubidaea (Sr), Paenibacillus pabuli (Pp) and Bacillus velezensis (Bv)] were identified based on their remarkable levels of HM tolerance in vitro. Field studies were conducted to evaluate the growth promotion and tolerance to HM toxicity of pepper plants grown in HM-polluted soils. Plants exposed to HM stress showed improved growth, physio-biochemistry, and antioxidant defense system components when treated with any of the individual isolates, in contrast to the control group that did not receive PGPR. The combined treatment of the tested HMT PGPR was, however, relatively superior to other treatments. Compared to no or single PGPR treatment, the consortia (Pa+Sr+Pp+Bv) increased the photosynthetic pigment contents, relative water content, and membrane stability index but lowered the electrolyte leakage and contents of malondialdehyde and hydrogen peroxide by suppressing the (non) enzymatic antioxidants in plant tissues. In pepper, Cd, Cu, Pb, and Ni contents decreased by 88.0-88.5, 63.8-66.5, 66.2-67.0, and 90.2-90.9% in leaves, and 87.2-88.1, 69.4-70.0%, 80.0-81.3, and 92.3%% in fruits, respectively. Thus, these PGPR are highly effective at immobilizing HM and reducing translocation in planta. These findings indicate that the application of HMT PGPR could be a promising "bioremediation" strategy to enhance growth and productivity of crops cultivated in soils contaminated with HM for sustainable agricultural practices.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, 6150, W.A., Murdoch, Australia
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Field Studies on the Effect of Bioaugmentation with Bacillus amyloliquefaciens FZB42 on Plant Accumulation of Rare Earth Elements and Selected Trace Elements. MINERALS 2022. [DOI: 10.3390/min12040409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study is an investigation of the effect of soil bioaugmentation (inoculation) on a field scale with the commercially available product RhizoVital®42, containing Bacillus amyloliquefaciens FZB4, on element bioavailability, plant biomass production, as well as accumulation of rare earth elements (REEs), germanium, and selected trace elements. Zea mays and Helianthus annuus were selected as test plants. Post-harvest, results showed inoculation increased biomass production of Z. mays and H. annuus by 24% and 26%, albeit insignificant at p ≤ 0.05. Bioaugmentation enhanced Z. mays shoot content of P, Cd, and Ge by percentages between 73% and 80% (significant only for Ge) and decreased shoot content of REET, Pb, and Cu by 28%, 35%, and 59%, respectively. For H. annuus grown on bioaugmented soil, shoot content of Ca, Cu, Ge, REET, and Pb increased by over 40%, with a negligible decrease observed for Cd. Summarily, results suggest that bioaugmentation with Bacillus amyloliquefaciens FZB42 could enhance biomass production, increase soil element bioavailability enhance, and increase or reduce plant accumulation of target elements. Additionally, differences in P use efficiency could influence bioaugmentation effects on P accumulation.
Collapse
|
3
|
Adeniji AA, Babalola OO. Evaluation of Pseudomonas fulva PS9.1 and Bacillus velezensis NWUMFkBS10.5 as Candidate Plant Growth Promoters during Maize- Fusarium Interaction. PLANTS (BASEL, SWITZERLAND) 2022; 11:324. [PMID: 35161305 PMCID: PMC8839840 DOI: 10.3390/plants11030324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Based on in vitro assessments, molecular and chemical analysis, Pseudomonas fulva PS9.1 and Bacillus velezensis NWUMFkBS10.5 are candidate biocontrol agents for plant disease management including maize fusariosis, a disease caused by members of the Fusarium species. This in vivo study evaluated the bio-protective potential of the aforementioned rhizobacteria strains on maize against the proliferation of the pathogenic fungus Fusarium graminearum (Fg). The study results show that the bacterized plants were not susceptible to Fg aggression and the antagonists displayed the capability to proliferate in the presence of other likely competing microflora. The screen-house data also suggest that the presence of resident soil microbiota impacted the activity of antagonists (PS9.1 and NWUMFkBS10.5). This variation was recorded in the soil treatments (sterilized and unsterilized soil). In all the experimental periods, bacterized maize plants with or without Fg inoculation significantly (p = 0.05) grew better in unsterilized soil. Besides, during the experimental periods, all the consortia treatments with or without Fg infection regardless of the soil used demonstrated appreciable performance. The result of this study suggests that the microbial agents can actively colonize the surface of their maize plant host, improve plant growth, and suppress the growth of phytopathogens. Considering their overall performance in this screen-house evaluation, P. fulva PS9.1 and B. velezensis NWUMFkBS10.5 have potential for field applications. All safety issues regarding their use under field conditions and risks associated with their extended-release into the environmental will, however, be assessed prior to further bioformulation, field investigation, and scale-up.
Collapse
Affiliation(s)
- Adetomiwa A. Adeniji
- Human Metabolomics, Faculty of Natural and Agricultural Science, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola O. Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
4
|
Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res 2021; 250:126811. [PMID: 34242923 DOI: 10.1016/j.micres.2021.126811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Endophytic and rhizospheric microorganisms associated with six native plants adapted to heavy metal polluted soil from Punta Olímpica and Chahuapampa, located in Callejón de Huaylas mountains, were evaluated as potential candidates for technologies to clean polluted ecosystems. It was selected 14 bacteria and 9 fungi strains by their iron and/or aluminum siderophore production trait, where BEP17-Dm showed higher production. According to the 16S rDNA analysis, bacteria belong to Pseudomonas, Bacillus, and Achromobacter genera, whereas by ITS analysis fungi belong to Talaromyces, Hypoxylon, Tolypocladium, and Penicillium. All bacteria strains tolerated lead (2-8 mM) and eigth tolerated cadmium (1-6 mM); also all fungi tolerated lead (9-70 mM) and cadmium (3-10 mM). Two bacteria and six fungi solubilized cadmium carbonate, while eleven bacteria and two fungi solubilized tricalcium phosphate, where P. japonica BEP18-Dm and B. subtilis BRU16-Sr exhibited higher solubilization index. None strains solubilized lead carbonate. BEP18-Dm produced higher concentration of IAA (53.42 μgml-1); while six bacteria and all fungi strains produced a low concentration of auxins. Medicago sativa seedlings inoculated with BEP17-Dm, BEP18-Dm, or BRU16-Sr showed more surviving percentage under in vitro culture in presence of Cd, Pb (0.5-1.0 mM), or Al (2.5-5.0 mM). Finally, it is the first report of siderophore-producing microorganisms from polluted soil of Callejón de Huaylas highlands, interestedly they displayed metabolic properties useful to enhance phytoremediation and biotechnology application.
Collapse
Affiliation(s)
- Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Gabriela D Huamán
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Edson Palacios-Robles
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Alberto Castañeda-Barreto
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| |
Collapse
|
5
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
6
|
Tang Y, Kang H, Qin Z, Zhang K, Zhong Y, Li H, Mo L. Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in Myriophyllum verticillatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135867. [PMID: 31865081 DOI: 10.1016/j.scitotenv.2019.135867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Endophytic bacteria are generally helpful for plant growth and protection. Strain WSE01, which was identified as bacillus cereus, was isolated from the stem of Myriophyllum verticillatum and it displayed a high tolerance to Mn (1500 mg/L). The strain was found to be able to produce indole-3-acetic acid (IAA) and siderophores, fix the atmospheric nitrogen and dissolve potassium from insoluble K-bearing minerals. In hydroponic culture experiments, the inoculation of strain WSE01 significantly promoted the growth and increased the leaf enzyme activity in the inoculated plant M. verticillatum. Furthermore, the manganese content was increased by 36.4% in stems and by 54.7% in leaves of the inoculated plant under Mn stress at 400 mg/L, compared to the non-inoculated group. This study suggests that the strain WSE01 has the potential to be used as biocontrol and/or biofertilizing agents for application in macrophyte M. verticillatum and conduces to achieving more effective phytoremediation of metal-contaminated waters.
Collapse
Affiliation(s)
- Yankui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Houyao Kang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhiyi Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kaixuan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yaxuan Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huilan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Lihong Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Sun R, Wang L, Jiao Y, Zhang Y, Zhang X, Wu P, Chen Z, Feng C, Li Y, Li X, Yan L. Metabolic process of di-n-butyl phthalate (DBP) by Enterobacter sp. DNB-S2, isolated from Mollisol region in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113344. [PMID: 31668953 DOI: 10.1016/j.envpol.2019.113344] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The accumulation of phthalate acid esters (PAEs) in the environment has aroused a global concern. Microbial degradation is the most promising method for removing PAEs from polluted environment. Di-n-butyl phthalate (DBP) is one of the most widely used PAEs. In this study, a highly efficient DBP-degrading strain, Enterobacter sp. DNB-S2 was isolated from Mollisol in northeast China, and the degradation rate of 500 mg L-1 DBP reached 44.10% at 5 °C and 91.08% at 50 °C within 7 days. A new intermediate, n-butyl benzoate BP, was detected, implying a new degradation pathway. The complete genome of the strain DNB-S2 was successfully sequenced to comprehensively understand of the entire DBP catabolic process. Key genes were proposed to be involved in DBP degradation, such as esterases, 3,4-dihydroxybenzoate decarboxylase and catechol 2,3-dioxygenase genes. Intermediate-utilization tests and real-time quantitative polymerase chain reaction (RT-qPCR) validated the proposed DBP catabolic pathway. The aboriginal bacterium DNB-S2 is a promising germplasm for restoring PAE-contaminated Mollisol regions at low temperature. This study provides novel insight into the catabolic mechanisms and abundant gene resources of PAE biodegradation.
Collapse
Affiliation(s)
- Ruixue Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xing Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Pan Wu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, People's Republic of China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, People's Republic of China
| | - Chengcheng Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaoqian Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lilong Yan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
8
|
Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 2019; 9:5855. [PMID: 30971817 PMCID: PMC6458120 DOI: 10.1038/s41598-019-41899-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/18/2019] [Indexed: 01/25/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPRs) are very effective in immobilization of heavy metals and reducing their translocation in plants via precipitation, complex formation and adsorption. The present study was therefore designed to understand the role of Pseudomonas aeruginosa and Burkholderia gladioli in mitigation of Cd stress (0.4 mM) in 10-days old L. esculentum seedlings. The present work investigated growth characteristics, photosynthetic pigments, metal tolerance index, metal uptake and the contents of metal chelating compounds (protein bound and non-protein bound thiols, total thiols) in microbes inoculated Cd treated L. esculentum seedlings. The gene expression profiling of different metal transporters was conducted in order to investigate the quantitative analysis. Our results revealed Cd generated toxicity in seedlings in terms of reduced growth (root length, shoot length and fresh weight) and photosynthetic pigments (chlorophyll, carotenoid and xanthophyll) which enhanced upon inoculations of P. aeruginosa and B. gladioli. Further, the metal uptake along with levels of protein and non-protein bound thiols was also enhanced in Cd-treated seedlings. Gene expression studies suggested enhanced expression in the metal transporter genes which were further declined in the microbe supplemented seedlings. Therefore, micro-organisms possess growth promoting traits that enable them to reduce metal toxicity in plants.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
9
|
Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. CHEMOSPHERE 2019; 217:925-941. [PMID: 30586789 DOI: 10.1016/j.chemosphere.2018.11.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal contamination in the environment is a global threat which accelerated after the industrial revolution. Remediation of these noxious elements has been widely investigated and multifarious technologies have been practiced for many decades. Phytoremediation has attracted much attention from researchers. Under this technology, heavy metal hyperaccumulator plants have been extensively employed to extract extraordinary concentrations of heavy metals but slow growth, limited biomass and stresses caused by heavy metals imperil the efficiency of hyperaccumulators. Plant growth promoting rhizobacteria (PGPR) can help overcome/lessen heavy metal-induced adversities. PGPR produce several metabolites, including growth hormones, siderophores and organic acids, which aid in solubilization and provision of essential nutrients (e.g. Fe and Mg) to the plant. Hyperaccumulator plants may be employed to remediate metal contaminated sites. Use of PGPR to enhance growth of hyperaccumulator plant species may enhance their metal accumulating capacity by increasing metal availability and also by alleviating plant stress induced by the heavy metals. Combined use of hyperaccumulator plants and PGPR may prove to be a cost effective and environmentally friendly technology to clean heavy metal contaminated sites on a sustainable basis. This review discusses the current status of PGPR in improving the growth and development of hyperaccumulator plants growing in metal contaminated environments. The mechanisms used by these rhizosphere bacteria in increasing the availability of heavy metals to plants and coping with heavy metal stresses are also described.
Collapse
Affiliation(s)
- Saeed Ahmad Asad
- Centre for Climate Research and Development, COMSATS University, Park Road, Chak Shahzad Islamabad 45550, Pakistan.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Mansehra, Pakistan
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|