1
|
Durand M, Mathieu L, Venant J, Masquelet AC, Collombet JM. Engineering the bone reconstruction surgery: the case of the masquelet-induced membrane technique. Eur J Trauma Emerg Surg 2025; 51:138. [PMID: 40102268 PMCID: PMC11919993 DOI: 10.1007/s00068-025-02815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
The reconstruction of large bone defects remains challenging for orthopedic surgeons. Autologous bone grafts (ABGs) are the gold standard treatment for limited size defects, but larger bone defects (> 5 cm) require the use of more sophisticated techniques, such as the Masquelet technique. Over the last three decades, the Masquelet or induced membrane technique (IMT) has become increasingly popular as it does not require high-precision microsurgery skills and the time taken to achieve bone consolidation is independent of the length of the defect. IMT is a two-stage procedure. In the first stage, a polymethylmethacrylate (PMMA) cement spacer is implanted into the bone lesion and a physiological immune reaction initiates the formation of a fibrotic induced membrane (IM) with both angiogenic and osteogenic properties. The second stage, performed several weeks later, involves removal of the spacer followed by the implantation of a standard ABG in the preserved IM cavity for subsequent bone repair. In this extensive review, we explain how the success of this surgical procedure can be attributed to the synergy of four key components: the inducer (the PMMA cement), the recipient (the IM), the effector (the bone graft) and the modulator (the mechanical environment). Conversely, we then explain how each key component can contribute to the failure of such treatment. Finally, we discuss existing or emerging innovative and biotechnology-oriented strategies for optimizing surgical outcome with respect to the four components of IMT described above.
Collapse
Affiliation(s)
- Marjorie Durand
- Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute (IRBA), 1 Place du Général Valérie André, BP 40073, Brétigny sur Orge Cedex, 91222, France.
| | - Laurent Mathieu
- Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute (IRBA), 1 Place du Général Valérie André, BP 40073, Brétigny sur Orge Cedex, 91222, France
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 Avenue Henri Barbusse, Clamart, 92140, France
- Department of Hand and Upper Extremity Surgery, Edouard Herriot Hospital, 5 Place d'Arsonval, Lyon, 69003, France
- Department of Surgery, French Military Health Service Academy, 1 Place Alphonse Laveran, Paris, 75005, France
| | - Julien Venant
- Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute (IRBA), 1 Place du Général Valérie André, BP 40073, Brétigny sur Orge Cedex, 91222, France
| | | | - Jean-Marc Collombet
- Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute (IRBA), 1 Place du Général Valérie André, BP 40073, Brétigny sur Orge Cedex, 91222, France
| |
Collapse
|
2
|
Marcotulli M, Barbetta A, Scarpa E, Bini F, Marinozzi F, Ruocco G, Casciola CM, Scognamiglio C, Carugo D, Cidonio G. Jingle Cell Rock: Steering Cellular Activity With Low-Intensity Pulsed Ultrasound (LIPUS) to Engineer Functional Tissues in Regenerative Medicine. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1973-1986. [PMID: 39289118 DOI: 10.1016/j.ultrasmedbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Martina Marcotulli
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Edoardo Scarpa
- Infection Dynamics Laboratory, Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Gentics (INGM), Milan, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Chiara Scognamiglio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Gianluca Cidonio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK; Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Wu S, Zhou H, Ling H, Sun Y, Luo Z, Ngo T, Fu Y, Wang W, Kong Y. LIPUS regulates the progression of knee osteoarthritis in mice through primary cilia-mediated TRPV4 channels. Apoptosis 2024; 29:785-798. [PMID: 38517601 PMCID: PMC11055729 DOI: 10.1007/s10495-024-01950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Osteoarthritis (OA) is a common disease in middle-aged and elderly people. An imbalance in calcium ion homeostasis will contribute to chondrocyte apoptosis and ultimately lead to the progression of OA. Transient receptor potential channel 4 (TRPV4) is involved in the regulation of intracellular calcium homeostasis. TRPV4 is expressed in primary cilia, which can sense mechanical stimuli from outside the cell, and its abnormal expression is closely related to the development of OA. Low-intensity pulsed ultrasound (LIPUS) can alleviate chondrocyte apoptosis while the exact mechanism is unclear. In this project, with the aim of revealing the mechanism of action of LIPUS, we proposed to use OA chondrocytes and animal models, LIPUS intervention, inhibition of primary cilia, use TRPV4 inhibitors or TRPV4 agonist, and use Immunofluorescence (IF), Immunohistochemistry (IHC), Western Blot (WB), Quantitative Real-time PCR (QP) to detect the expression of cartilage synthetic matrix and endoplasmic reticulum stress markers. The results revealed that LIPUS altered primary cilia expression, promoted synthetic matrix metabolism in articular chondrocytes and was associated with primary cilia. In addition, LIPUS exerted a active effect on OA by activating TRPV4, inducing calcium inward flow, and facilitating the entry of NF-κB into the nucleus to regulate synthetic matrix gene transcription. Inhibition of TRPV4 altered primary cilia expression in response to LIPUS stimulation, and knockdown of primary cilia similarly inhibited TRPV4 function. These results suggest that LIPUS mediates TRPV4 channels through primary cilia to regulate the process of knee osteoarthritis in mice.
Collapse
Affiliation(s)
- Sha Wu
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haiqi Zhou
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huixian Ling
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyan Sun
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziyu Luo
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - ThaiNamanh Ngo
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuanyuan Fu
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Wang
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Kong
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Zhou J, Ning E, Lu L, Zhang H, Yang X, Hao Y. Effectiveness of low-intensity pulsed ultrasound on osteoarthritis: molecular mechanism and tissue engineering. Front Med (Lausanne) 2024; 11:1292473. [PMID: 38695024 PMCID: PMC11061361 DOI: 10.3389/fmed.2024.1292473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues. The efficacy and specific mechanism of LIPUS is currently under investigation. This review provides an overview of LIPUS's potential role in the treatment of OA, considering various perspectives such as the synovial membrane, cartilage, subchondral bone, and tissue engineering. It aims to facilitate interdisciplinary scientific research and further exploration of LIPUS as a complementary technique to existing methods or surgery. Ongoing research is focused on determining the optimal dosage, frequency, timing, and treatment strategy of LIPUS for OA. Additional research is required to clarify the precise mechanism of action and potential impacts on cellular, animal, and human systems prior to its integration into therapeutic applications.
Collapse
Affiliation(s)
- Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Eryu Ning
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Huili Zhang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Santos MM, Santos AM, Carvalho Nascimento JA, Santana CC, Oliveira AMS, Cezar SVS, Santos AB, Frank LA, Serafini MR. Devices for osteoarthritis symptoms treatment: a patent review. Expert Rev Med Devices 2024; 21:91-107. [PMID: 38189146 DOI: 10.1080/17434440.2023.2298729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Osteoarthritis is a musculoskeletal disease that can lead to the loss and inability of those affected to perform normal daily functions, which leads to a decrease in quality of life. The main symptoms of osteoarthritis are tenderness, joint pain, stiffness, crepitus, limited movement, and local inflammation. AREAS COVERED The selected patents were deposited from 2010 to April 2022 involving 57 documents that were in line with the study objective in the final selection. The patents were classified in years, country, and applicants. Also, the therapeutic fields that presented the most documents were electrical stimulation, phototherapy, and ultrasound, followed by magnetic, electromagnetic, and thermotherapy. Therefore, the most current therapies used in the documents are already on the market. EXPERT OPINION Although the OA is cureless, non-surgical treatments are classified as the primary management approach for this disease. The pharmacological and non-pharmacological therapies are employed to reduce its prevalence and ensure the effectiveness of treatments. A strategy for relieving OA symptoms is non-pharmacological treatment, which can be based on exercise and patient education, combined with other alternative therapies. These therapies are used as supplements to the main OA treatments, enhancing the effectiveness of treatment outcomes.
Collapse
Affiliation(s)
- Mariana Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Cláudio Carvalho Santana
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Alcimary Bispo Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
7
|
Lee W, Georgas E, Komatsu DE, Qin YX. Daily low-intensity pulsed ultrasound stimulation mitigates joint degradation and pain in a post-traumatic osteoarthritis rat model. J Orthop Translat 2024; 44:9-18. [PMID: 38161708 PMCID: PMC10753057 DOI: 10.1016/j.jot.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives The aim of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) in a post-traumatic osteoarthritis (OA) rat model and in vitro. Methods Thirty-eight male, four-month-old Sprague Dawley rats were randomly assigned to Sham, Sham + US, OA, and OA + US. Sham surgery was performed to serve as a negative control, and anterior cruciate ligament transection was used to induce OA. Three days after the surgical procedures, Sham + US and OA + US animals received daily LIPUS treatment, while the rest of the groups received sham ultrasound (US) signals. Behavioral pain tests were performed at baseline and every week thereafter. After 31 days, the tissues were collected, and histological analyses were performed on knees and innervated dorsal root ganglia (DRG) neurons traced by retrograde labeling. Furthermore, to assess the activation of osteoclasts by LIPUS treatment, RAW264.7 cells were differentiated into osteoclasts and treated with LIPUS. Results Joint degradation in cartilage and bone microarchitecture were mitigated in OA + US compared to OA. OA + US showed improvements in behavioral pain tests. A significant increase of large soma-sized DRG neurons was located in OA compared to Sham. In addition, a greater percentage of large soma-sized innervated neurons were calcitonin gene-related peptide-positive. Daily LIPUS treatment suppressed osteoclastogenesis in vitro, which was confirmed via histological analyses and mRNA expression. Finally, lower expression of netrin-1, a sensory innervation-related protein, was found in the LIPUS treated cells. Conclusion Our findings demonstrate that early intervention using LIPUS treatment has protective effects from the progression of knee OA, including reduced tissue degradation, mitigated pain characteristics, improved subchondral bone microarchitecture, and less sensory innervation. Furthermore, daily LIPUS treatment has a suppressive effect on osteoclastogenesis, which may be linked to the suppression of sensory innervation in OA. The translational potential of this article This study presents a new potential for early intervention in treating OA symptoms through the use of LIPUS, which involves the suppression of osteoclastogenesis and the alteration of DRG profiles. This intervention aims to delay joint degradation and reduce pain.
Collapse
Affiliation(s)
- Wonsae Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Elias Georgas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Kojima Y, Watanabe T. Low-intensity pulsed ultrasound irradiation attenuates collagen degradation of articular cartilage in early osteoarthritis-like model mice. J Exp Orthop 2023; 10:106. [PMID: 37870591 PMCID: PMC10593698 DOI: 10.1186/s40634-023-00672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
PURPOSE Osteoarthritis (OA) is a combination of degeneration and destruction of articular cartilage due to mechanical stress, secondary synovitis, and bone remodelling. In recent years, early knee OA, a preliminary stage of structural failure in OA, has attracted attention as a potential target for therapy to prevent the onset of OA. Intra-articular administration of monoiodoacetic acid (MIA) induces OA-like symptoms, and low doses of MIA induce early OA like symptoms. In this experiment, a low-dose of MIA was induced to early OA model mice, which were then irradiated with low-intensity pulsed ultrasound (LIPUS) to examine whether LIPUS improves symptoms of early OA. METHODS After 4 weeks of LIPUS irradiation, articular cartilage was observed at 1 and 4 weeks. The Osteoarthritis Research Society International (OARSI) scores were calculated using Safranin-O staining results. Cartilage degeneration was detected using Denatured Collagen Detection Reagent (DCDR). RESULTS We observed a significant decrease in OARSI scores in the LIPUS irradiated group at week 4. The non-LIPUS group showed widespread areas of double positivity for Type II collagen and DCDR, whereas the LIPUS group showed only a small number of DCDR-positive areas. In addition, macrophage numbers counted in the articular capsule at week 1 showed a significant decrease in the LIPUS irradiated group. Lubricin detection showed that lubricin positive cell number was significantly increased by LIPUS irradiation at week 4. CONCLUSIONS These results suggest that LIPUS attenuates cartilage degeneration in early OA by relieving inflammation and enhancing the inhibitory effect of lubricin on cartilage degeneration.
Collapse
Affiliation(s)
- Yoshitsugu Kojima
- Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, 601 Matanocho Totsukaku, Yokohama, Kanagawa, 245-0066, Japan.
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., 7th Floor, 1-24-1 Nishi-shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Takayuki Watanabe
- Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, 601 Matanocho Totsukaku, Yokohama, Kanagawa, 245-0066, Japan
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., 7th Floor, 1-24-1 Nishi-shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
9
|
Vinikoor T, Dzidotor GK, Le TT, Liu Y, Kan HM, Barui S, Chorsi MT, Curry EJ, Reinhardt E, Wang H, Singh P, Merriman MA, D'Orio E, Park J, Xiao S, Chapman JH, Lin F, Truong CS, Prasadh S, Chuba L, Killoh S, Lee SW, Wu Q, Chidambaram RM, Lo KWH, Laurencin CT, Nguyen TD. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:6257. [PMID: 37802985 PMCID: PMC10558537 DOI: 10.1038/s41467-023-41594-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
Osteoarthritis affects millions of people worldwide but current treatments using analgesics or anti-inflammatory drugs only alleviate symptoms of this disease. Here, we present an injectable, biodegradable piezoelectric hydrogel, made of short electrospun poly-L-lactic acid nanofibers embedded inside a collagen matrix, which can be injected into the joints and self-produce localized electrical cues under ultrasound activation to drive cartilage healing. In vitro, data shows that the piezoelectric hydrogel with ultrasound can enhance cell migration and induce stem cells to secrete TGF-β1, which promotes chondrogenesis. In vivo, the rabbits with osteochondral critical-size defects receiving the ultrasound-activated piezoelectric hydrogel show increased subchondral bone formation, improved hyaline-cartilage structure, and good mechanical properties, close to healthy native cartilage. This piezoelectric hydrogel is not only useful for cartilage healing but also potentially applicable to other tissue regeneration, offering a significant impact on the field of regenerative tissue engineering.
Collapse
Affiliation(s)
- Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Godwin K Dzidotor
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Yang Liu
- Center of Digital Dentistry/Department of Prosthodontics/Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Srimanta Barui
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Eli J Curry
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Reinhardt
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, USA
| | - Hanzhang Wang
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Marc A Merriman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ethan D'Orio
- Department of Advanced Manufacturing for Energy Systems Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Shuyang Xiao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
| | - James H Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cao-Sang Truong
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lisa Chuba
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaelyn Killoh
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ramaswamy M Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kevin W H Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Cato T Laurencin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery University of Connecticut Health, Farmington, CT, 06030, USA
| | - Thanh D Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
10
|
Effects and mechanotransduction pathways of therapeutic ultrasound on healthy and osteoarthritic chondrocytes: a systematic review of in vitro studies. Osteoarthritis Cartilage 2023; 31:317-339. [PMID: 36481451 DOI: 10.1016/j.joca.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects and mechanotransduction pathways of therapeutic ultrasound on chondrocytes. METHOD PubMed, EMBASE and Web of Science databases were searched up to 19th September 2021 to identify in vitro studies exploring ultrasound to stimulate chondrocytes for osteoarthritis (OA) treatment. Study characteristics, ultrasound parameters, in vitro setup, and mechanotransduction pathways were collected. Risk of bias was judged using the Risk of Bias Assessment for Non-randomized Studies (RoBANS) tool. RESULTS Thirty-one studies were included comprising healthy and OA chondrocytes and explants. Most studies had high risk of performance, detection and pseudoreplication bias due to lack of temperature control, setup calibration, inadequate semi-quantitatively analyzes and independent experiments. Ultrasound was applied to the culture plate via acoustic gel, water bath or culture media. Regardless of the setup used, ultrasound stimulated the cartilage production and suppressed its degradation, although the effect size was nonsignificant. Ultrasound inhibited p38, c-Jun N-terminal kinases (JNK) and factor nuclear kappa B (NFκB) pathways in OA chondrocytes to reduce apoptosis, inflammation and matrix degradation, while triggered phosphoinositide-3-kinase/akt (PI3K/Akt), extracellular signal-regulated kinase (ERK), p38 and JNK pathways in healthy chondrocytes to promote matrix synthesis. CONCLUSION The included studies suggest that ultrasound application induces therapeutic effects on chondrocytes. However, these results should be interpreted with caution because high risk of performance, detection and pseudoreplication bias were identified. Future studies should explore the application of ultrasound on human OA chondrocytes cultures to potentiate the applicability of ultrasound towards cartilage regeneration of knee with OA.
Collapse
|
11
|
Lee IC, Lin YC, Liu HL, Liu NC. Dual-frequency ultrasound enhances functional neuron differentiation from neural stem cells by modulating Ca 2+ dynamics and the ERK1/2 signaling pathway. J Cell Physiol 2023; 238:137-150. [PMID: 36350183 DOI: 10.1002/jcp.30911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Lin
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Nien-Che Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
14
|
Chen H, Wang Z, Zhang X, Sun M. Effects of low-intensity pulsed ultrasound on knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2022; 36:1153-1169. [PMID: 35535403 PMCID: PMC9354068 DOI: 10.1177/02692155221097035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To systemically review the effects of low-intensity pulsed ultrasound (LIPUS) on pain relief and functional recovery in patients with knee osteoarthritis (KOA). DATA SOURCES PubMed, Web of Science, Cochrane Library, Physiotherapy Evidence Database (PEDro), and China National Knowledge Infrastructure (CNKI) were used from inception to 18 March 2022. REVIEW METHODS Meta-analysis was performed to evaluate pain and function recovery between control and LIPUS groups. Standardized mean difference (SMD) or mean difference (MD) and 95% confidence interval (CI) were calculated, and data were combined using the fixed or random-effect model. RESULTS Thirteen studies involving 807 patients with KOA were included. Patients' outcomes treated by LIPUS were improved significantly, including Visual analog scale (VAS) score (MD = -0.95, 95% CI: -1.43 to -0.48,P < 0.001), Western Ontario and McMaster Universities Osteoarthritis index (WOMAC) score (MD = -4.35, 95% CI: -8.30 to -0.40, P = 0.0309), Lysholm score (SMD = 1.59, 95% CI: 1.29 to 1.90, P < 0.001), Lequesne index (MD = -1.33, 95% CI: -1.69 to -0.96, P < 0.001), Range of motion (ROM) (MD = 2.43, 95% CI: 0.39 to 4.46, P = 0.0197) and 50 meter walking time (SMD = 1.48, 95% CI: 0.46 to 2.49, P = 0.0044). Subgroup analyses showed monotherapy of LIPUS produced a better effect on reducing VAS score (P = 0.0213), and the shorter therapeutic period (≤4 weeks) produced a more significant effect on raising the WOMAC score (P = 0.0083). CONCLUSION LIPUS was beneficial for pain relief and functional knee recovery and maybe as an alternative therapy in KOA rehabilitation.
Collapse
Affiliation(s)
- Haoqian Chen
- Graduate Students' Affairs Department, Shenyang Sport University, Shen-yang, China
- Sports Training College, Shenyang Sport University, Shen-yang, China
| | - Zheng Wang
- College of Kinesiology, Shenyang Sport University, Shen-yang, China
| | - Xinan Zhang
- College of Kinesiology, Shenyang Sport University, Shen-yang, China
| | - Mingli Sun
- College of Kinesiology, Shenyang Sport University, Shen-yang, China
| |
Collapse
|
15
|
Babaei M, Jamshidi N, Amiri F, Rafienia M. Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study. J Tissue Eng Regen Med 2022; 16:812-824. [PMID: 35689535 DOI: 10.1002/term.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Menisci are fibrocartilaginous structures in the knee joint with an inadequate regenerative capacity, which causes low healing potential and further leads to osteoarthritis. Recently, three-dimensional (3D) printing techniques and ultrasound treatment have gained plenty of attention for meniscus tissue engineering. The present study investigates the effectiveness of low-intensity pulsed ultrasound stimulations (LIPUS) on the proliferation, viability, morphology, and gene expression of the chondrocytes seeded on 3D printed polyurethane scaffolds dip-coated with gellan gum, hyaluronic acid, and glucosamine. LIPUS stimulation was performed at 100, 200, and 300 mW/cm2 intensities for 20 min/day. A faster gap closure (78.08 ± 2.56%) in the migration scratch assay was observed in the 200 mW/cm2 group after 24 h. Also, inverted microscopic and scanning electron microscopic images showed no cell morphology changes during LIPUS exposure at different intensities. The 3D cultured chondrocytes under LIPUS treatment revealed a promotion in cell proliferation rate and viability as the intensity doses increased. Additionally, LIPUS could stimulate chondrocytes to overexpress the aggrecan and collagen II genes and improve their chondrogenic phenotype. This study recommends that the combination of LIPUS treatment and 3D hybrid scaffolds can be considered as a valuable treatment for meniscus regeneration based on our in vitro data.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| |
Collapse
|
16
|
Tavakoli J, Torkaman G, Ravanbod R, Abroun S. Regenerative Effect of Low-Intensity Pulsed Ultrasound and Platelet-Rich Plasma on the Joint Friction and Biomechanical Properties of Cartilage: A Non-traumatic Osteoarthritis Model in the Guinea Pig. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:862-871. [PMID: 35184911 DOI: 10.1016/j.ultrasmedbio.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
This study was aimed at investigating the effects of platelet-rich plasma (PRP) and low-intensity pulsed ultrasound (LIPUS) on the joint friction parameters and biomechanical properties of articular cartilage in a non-traumatic knee osteoarthritis (OA) model. Fifty adult male Dunkin Hartley guinea pigs were randomly divided into five groups: control, OA60, OA + US, OA + PRP and OA + US + PRP). Non-traumatic knee OA was induced with a single dose of 3 mg of mono-iodoacetate (MIA) by intra-articular injection. Intra-articular PRP was injected twice in the OA + PRP and OA + US + PRP groups. LIPUS was delivered in 10 sessions in the OA + US and OA + US + PRP groups. By use of the pendulum free oscillation test, joint friction (coefficient of friction) was measured. In addition, the instantaneous elastic modulus and aggregate modulus were measured using the stress-relaxation test. MIA injection decreased cartilage thickness, instantaneous elastic modulus and aggregate modulus, and increased joint friction. The friction coefficients in the OA + US and OA + US + PRP groups reached near-normal values, and there was no significant difference compared with the control group (p = 0.232 and p = 0.459, respectively). The instantaneous elastic modulus and aggregate modulus in the OA + US group increased significantly compared with the OA + PRP group (p < 0.05). It seems that both LIPUS and PRP injection effectively improved joint lubrication, but LIPUS was superior to PRP in improving the mechanical properties of the articular cartilage.
Collapse
Affiliation(s)
- Jalal Tavakoli
- Department of Physical Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Department of Physical Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Roya Ravanbod
- Department of Physical Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to assess the effects of therapeutic ultrasound (US) on oxidative stress (OS)-induced changes in cultured human chondrocytes (HCH). For this, monolayer HCH were randomized in three groups: a control group (CG), a group exposed to OS (OS group), and a group exposed to US and OS (US-OS group). US exposure of the chondrocytes was performed prior to OS induction by hydrogen peroxide. Transmission electron microscopy (TEM) was used to assess the chondrocytes ultrastructure. OS and inflammatory markers were recorded. Malondialdehyde (MDA) and tumor necrosis factor (TNF)-α were significantly higher (p < 0.05) in the OS group than in CG. In the US-OS group MDA and TNF-α were significantly lower (p < 0.05) than in the OS group. Finally, in the US-OS group MDA and TNF-α were lower than in CG, but without statistical significance. TEM showed normal chondrocytes in CG. In the OS group TEM showed necrotic chondrocytes and chondrocytes with a high degree of vacuolation and cell organelles damages. In the US-OS group the chondrocytes ultrastructure was well preserved, and autophagosomes were generated. In conclusion, US could protect chondrocytes from biochemical (lipid peroxidation, inflammatory markers synthesis) and ultrastructural changes induced by OS and could stimulate autophagosomes development.
Collapse
|
18
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
19
|
Li S, Xu Z, Wang Z, Xiang J, Zhang T, Lu H. Acceleration of Bone-Tendon Interface Healing by Low-Intensity Pulsed Ultrasound Is Mediated by Macrophages. Phys Ther 2021; 101:6131760. [PMID: 33561257 DOI: 10.1093/ptj/pzab055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound (LIPUS) has been proven to facilitate bone-tendon interface (BTI) healing and regulate some inflammatory cytokines. However, the role of macrophages, a key type of inflammatory cell, during treatment remains unknown. This study aimed to investigate the role of macrophages in the treatment of BTI injury with LIPUS in a rotator cuff tear animal model. METHODS In this experimental and comparative study, a total of 160 C57BL/6 mature male mice that underwent supraspinatus tendon detachment and repair were randomly assigned to 4 groups: daily ultrasonic treatment and liposomal clodronate (LIPUS+LC), daily ultrasonic treatment and liposomes (LIPUS), daily mock sonication and liposomal clodronate (LC), and daily mock sonication and liposomes (control [CTL]). LIPUS treatment was initiated immediately postoperatively and continued daily until the end of the experimental period. RESULTS The failure load and stiffness of the supraspinatus tendon-humerus junction were significantly higher in the LIPUS group than in the other groups at postoperative weeks 2 and 4, whereas those in the LIPUS+LC and LC groups were lower than those in the CTL group at postoperative week 4. The LIPUS, LIPUS+LC, and LC groups exhibited significantly more fibrocartilage than the CTL group at 2 weeks. Only the LIPUS group had more fibrocartilage than the CTL group at 4 weeks. Micro-computed tomography results indicated that LIPUS treatment could improve the bone quality of the attachment site after both 2 and 4 weeks. When macrophages were depleted by LC, the bone quality-promoting effect of LIPUS treatment was significantly reduced. CONCLUSION The enhancement of BTI healing by LIPUS might be mediated by macrophages. IMPACT In our study, LIPUS treatment appeared to accelerate BTI healing, which was associated with macrophages based on our murine rotator cuff repair model. The expressions of macrophage under LIPUS treatment may offer a potential mechanism to explain BTI healing and the effects of LIPUS on BTI healing.
Collapse
Affiliation(s)
- Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Zihan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Jie Xiang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| |
Collapse
|
20
|
Liao Q, Li BJ, Li Y, Xiao Y, Zeng H, Liu JM, Yuan LX, Liu G. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF-κB signaling pathway. Int Immunopharmacol 2021; 97:107824. [PMID: 34102487 DOI: 10.1016/j.intimp.2021.107824] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is the most common disabling joint disease throughout the world, and the effect of therapy on its course is still unsatisfactory in clinical practice. Recent studies have shown that mesenchymal stem cell (MSC)-derived exosomes can promote cartilage repair and regeneration in osteoarthritis, indicating that these exosomes could be a novel and promising strategy for treating osteoarthritis. This study investigated whether low-intensity pulsed ultrasound (LIPUS) enhances the effects of bone marrow MSC (BMSC)-derived exosomes on cartilage regeneration in osteoarthritis and examined the underlying mechanism. Our results revealed that BMSC-derived exosomes display the typical morphological features of exosomes. LIPUS-mediated BMSC-derived exosomes promoted cartilage regeneration, increased chondrocyte proliferation and extracellular matrix synthesis, suppressed inflammation, and inhibited the interleukin (IL)-1β-induced activation of the nuclear factor kappa B (NF-κB) pathway. In brief, LIPUS enhances the promoting effects of BMSC-derived exosomes on osteoarthritic cartilage regeneration, mainly by strengthening the inhibition of inflammation and further enhancing chondrocyte proliferation and cartilage matrix synthesis. The underlying mechanism could be related to the inhibition of the IL-1β-induced activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Qing Liao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China; Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Bao Jian Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yu Xiao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Hui Zeng
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Jie Mei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Li Xia Yuan
- Southern Medical University, Guangzhou 510000, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China; Department of Rehabilitation Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
21
|
Huang Y, Fan H, Gong X, Yang L, Wang F. Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs. Am J Sports Med 2021; 49:1883-1891. [PMID: 33961510 DOI: 10.1177/03635465211007139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long-term outcomes of current clinical interventions for osteochondral defect are less than satisfactory. One possible reason is an ignorance of the interface structure between cartilage and subchondral bone, the calcified cartilage zone (CCZ). However, the importance of natural CCZ in osteochondral defects has not been directly described. PURPOSE To explore the feasibility of fabricating trilayer scaffold containing natural CCZ for osteochondral defects and the role of CCZ in the repair process. STUDY DESIGN Controlled laboratory study. METHODS The scaffold was prepared by cross-linking lyophilized type II collagen sponge and acellular normal pig subchondral bone with or without natural CCZ. Autologous bone marrow stem cells (BMSCs) of minipig were mixed with type II collagen gel and injected into the cartilage layer of the scaffold before operation. Thirty minipigs were randomly divided into CCZ (n = 10), non-CCZ (n = 10), and blank control (n = 10) groups. An 8 mm-diameter full-thickness osteochondral defect was created on the trochlear surface, and scaffold containing BMSCs was transplanted into the defect according to grouping requirements. At 12 and 24 weeks postoperatively, specimens were assessed by macroscopic observation, magnetic resonance imaging examination, and histological observations (hematoxylin and eosin, Safranin O-fast green, type II collagen immunohistochemical, and Sirius red staining). Semiquantitative cartilage repair scoring was conducted using the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) system and the O'Driscoll repaired cartilage value system. RESULTS The defects in the blank control and non-CCZ groups were filled with fibrous tissue, while the cartilage layer of the CCZ group was mainly repaired by hyaline cartilage at 24 weeks postoperatively. The superior repair outcome of the CCZ group was confirmed by MOCART and O'Driscoll score. CONCLUSION The trilayer scaffold containing natural CCZ obtained the best repair effect compared with the non-CCZ scaffold and the blank control, indicating the importance of the CCZ in osteochondral tissue engineering. CLINICAL RELEVANCE This study demonstrates the necessity to reconstruct CCZ in clinical osteochondral defect repair and provides a possible strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huaquan Fan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Ungur RA, Ciortea VM, Irsay L, Ciubean AD, Năsui BA, Codea RA, Singurean VE, Groza OB, Căinap S, Martiș (Petruț) GS, Borda C, Borda IM. Can Ultrasound Therapy Be an Environmental-Friendly Alternative to Non-Steroidal Anti-Inflammatory Drugs in Knee Osteoarthritis Treatment? MATERIALS (BASEL, SWITZERLAND) 2021; 14:2715. [PMID: 34064094 PMCID: PMC8196736 DOI: 10.3390/ma14112715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
The non-steroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in knee OA (osteoarthritis) treatment. Despite their efficiency in pain and inflammation alleviation, NSAIDs accumulate in the environment as chemical pollutants and have numerous genetic, morphologic, and functional negative effects on plants and animals. Ultrasound (US) therapy can improve pain, inflammation, and function in knee OA, without impact on environment, and with supplementary metabolic beneficial effects on cartilage compared to NSAIDs. These features recommend US therapy as alternative for NSAIDs use in knee OA treatment.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Alina Deniza Ciubean
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (R.A.C.); (C.B.)
| | - Victoria Emilia Singurean
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Oana Bianca Groza
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | | | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (R.A.C.); (C.B.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| |
Collapse
|
23
|
Besler BA, Schadow JE, Durongbhan P, Steiner TH, Choo RJ, Zulliger MA, Wilke M, Atal K, Firminger C, Quintin A, Koller B, Müller R, Nesic D, Stok KS. Quantitative measures of bone shape, cartilage morphometry and joint alignment are associated with disease in an ACLT and MMx rat model of osteoarthritis. Bone 2021; 146:115903. [PMID: 33652170 DOI: 10.1016/j.bone.2021.115903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Multi-scale, subject-specific quantitative methods to characterize and monitor osteoarthritis in animal models and therapeutic treatments could help reveal causal relationships in disease development and distinguish treatment strategies. In this work, we demonstrate a reproducible and sensitive quantitative image analysis to characterize bone, cartilage and joint measures describing a rat model of post-traumatic osteoarthritis. Eleven 3-month-old male Wistar rats underwent medial anterior cruciate ligament (ACL) transection and medial meniscectomy on the right knee to destabilise the right tibiofemoral joint. They were sacrificed 6 weeks post-surgery and a silicon-based micro-bead contrast agent was injected in the joint space, before scanning with micro-computed tomography (microCT). Subsequently, 3D quantitative morphometric analysis (QMA), previously developed for rabbit joints, was performed. This included cartilage, subchondral cortical and epiphyseal bone measures, as well as novel tibiofemoral joint metrics. Semi-quantitative evaluation was performed on matching two-dimensional (2D) histology and microCT images. Reproducibility of the QMA was tested on eleven age-matched additional joints. The results indicate the QMA method is accurate and reproducible and that microCT-derived cartilage measurements are valid for the analysis of rat joints. The pathologic changes caused by transection of the ACL and medial meniscectomy were reflected in measurements of bone shape, cartilage morphology, and joint alignment. Furthermore, we were able to identify model-specific predictive parameters based on morphometric parameters measured with the QMA.
Collapse
Affiliation(s)
- Bryce A Besler
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; University of Calgary, Calgary, Canada.
| | - Jemima E Schadow
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Pholpat Durongbhan
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | | | - Ryan J Choo
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | | | | | - Kailash Atal
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Colin Firminger
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Aurelie Quintin
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Dobrila Nesic
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Kathryn S Stok
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; SCANCO Medical AG, Brüttisellen, Switzerland; Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
24
|
Feltham T, Paudel S, Lobao M, Schon L, Zhang Z. Low-Intensity Pulsed Ultrasound Suppresses Synovial Macrophage Infiltration and Inflammation in Injured Knees in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1045-1053. [PMID: 33423862 DOI: 10.1016/j.ultrasmedbio.2020.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to investigate how low-intensity pulsed ultrasound (LIPUS) suppresses traumatic joint inflammation and thereafter affects the progression of posttraumatic osteoarthritis. Intra-articular fracture (IAF) was created in the right knee of rats. LIPUS was applied to the knees with IAFs for 20 min/d for 2 wk-LIPUS(+) group. The study controls included rats that underwent sham surgery but no LIPUS treatment (control group) or underwent IAF surgery without LIPUS treatment-LIPUS(-) group. By histology, at 4 wk, leukocyte infiltration in the synovium was reduced in the LIPUS(+) group. Furthermore, LIPUS treatment reduced CD68+ macrophages in the synovium and limited their distribution mostly in the subintimal synovium. Measured with enzyme-linked immunosorbent assay, interleukin-1β (IL-1β) in the joint fluid of the LIPUS(+) group was reduced to about one-third that in the LIPUS(-) group. By reducing synovial macrophages and lowering IL-1β in the joint fluid, LIPUS is potentially therapeutic for posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Tyler Feltham
- Philadelphia College of Osteopathic Medicine-Georgia, Suwanee, Georgia, USA
| | - Sharada Paudel
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mario Lobao
- Columbia Medical Center, Columbia University, New York, New York, USA
| | - Lew Schon
- Institute for Foot & Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
| | - Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Vahedi P, Hosainzadegan H, Brazvan B, Roshangar L, Shafaei H, Salimnejad R. Treatment of cartilage defects by Low-intensity pulsed ultrasound in a sheep model. Cell Tissue Bank 2020; 22:369-378. [DOI: 10.1007/s10561-020-09880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
|
27
|
Aibara Y, Nakashima A, Kawano KI, Yusoff FM, Mizuki F, Kishimoto S, Kajikawa M, Maruhashi T, Higashi Y. Daily Low-intensity Pulsed Ultrasound Ameliorates Renal Fibrosis and Inflammation in Experimental Hypertensive and Diabetic Nephropathy. Hypertension 2020; 76:1906-1914. [PMID: 33131306 DOI: 10.1161/hypertensionaha.120.15237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The estimated morbidity rate of chronic kidney disease is 8% to 16% worldwide, and many patients with chronic kidney disease eventually develop renal failure. Thus, the development of new therapeutic strategies for preventing renal failure is crucial. In this study, we assessed the effects of daily low-intensity pulsed ultrasound (LIPUS) therapy on experimental hypertensive nephropathy and diabetic nephropathy. Unilateral nephrectomy and subcutaneous infusion of angiotensin II via osmotic mini-pumps were used to induce hypertensive nephropathy in mice. Immunohistochemistry revealed that daily LIPUS treatment ameliorated renal fibrosis and infiltration of inflammatory cells induced by angiotensin II. A similar therapeutic effect was also observed in mice with angiotensin II-induced hypertensive nephropathy in which splenectomy was performed. In addition, LIPUS treatment significantly decreased systolic blood pressure after 21 days. Subsequently, db/db mice with unilateral nephrectomy developed proteinuria; daily LIPUS treatment significantly reduced proteinuria after 42 days. In addition, immunohistochemistry revealed that renal fibrosis was significantly ameliorated by LIPUS treatment. Finally, LIPUS stimulation suppressed TGF-β1 (transforming growth factor-β1)-induced phosphorylation of Smad2 and Smad3 in HK-2 (human proximal tubular cell line) cells. LIPUS treatment may be a useful therapy for preventing the progression of renal fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yoshiki Aibara
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Ayumu Nakashima
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences (A.N.), Hiroshima University
| | - Ki-Ichiro Kawano
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Farina Mohamad Yusoff
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Fumitaka Mizuki
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Shinji Kishimoto
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital (M.K., Y.H.)
| | - Tatsuya Maruhashi
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Yukihito Higashi
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital (M.K., Y.H.)
| |
Collapse
|
28
|
Uddin SMZ, Komatsu DE. Therapeutic Potential Low-Intensity Pulsed Ultrasound for Osteoarthritis: Pre-clinical and Clinical Perspectives. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:909-920. [PMID: 31959508 DOI: 10.1016/j.ultrasmedbio.2019.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA), degeneration of cartilage associated with aging, lifestyle, and trauma, is one of the most common diseases that leads to lower quality of life and socioeconomic burden in the United States. Clinically, OA is initially managed by non-steroidal anti-inflammatory drugs, but eventually requires surgical intervention to reduce pain and increase function. Cartilage is a mechanotransductive tissue and requires a mechanical stimulus to sustain its mechanical and physiologic properties. Low-intensity pulsed ultrasound (LIPUS) is a cyclic acoustic wave that can provide essential mechanical stimuli to activate molecular and cellular pathways leading to chondrocyte proliferation, differentiation and activity, as well as to inhibit inflammatory pathways associated with OA. The activation of chondrocyte proliferation and inhibition of anti-inflammatory cytokines make LIPUS a potential therapy for mild to moderate OA. Although a few review articles have described the effects of ultrasound on chondrocytes and cartilage, there remains a need for a comprehensive analysis of our current understanding of the basic science and clinical status of the effects of low-intensity ultrasound on chondrocytes and cartilage and the implications of these studies on LIPUS as a therapeutic option for OA. This review analyzes recent literature describing the results of LIPUS using in vitro and in vivo pre-clinical models and clinical studies, as well as future directions for research.
Collapse
Affiliation(s)
- Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, New York, USA.
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
29
|
Kim KH, Im HW, Karmacharya MB, Kim S, Min BH, Park SR, Choi BH. Low-intensity ultrasound attenuates paw edema formation and decreases vascular permeability induced by carrageenan injection in rats. JOURNAL OF INFLAMMATION-LONDON 2020; 17:7. [PMID: 32082083 PMCID: PMC7020343 DOI: 10.1186/s12950-020-0235-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
Background Therapeutic potential of low-intensity ultrasound (LIUS) has become evident in various musculoskeletal diseases. We have previously shown that LIUS has an inhibitory effect on local edema in various diseases including the arthritis and brain injury. In this study, we examined whether LIUS can attenuate paw edema formation vis-à-vis vascular permeability and inflammation in rats induced by carrageenan. LIUS with a frequency of 1 MHz and the intensities of 50, 100, or 200 mW/cm2 were exposed on rat paws for 10 min immediately after carrageenan injection. Results Carrageenan injection induced paw edema which was peaked at 6 h and gradually decreased nearly to the initial baseline value after 72 h. LIUS showed a significant reduction of paw edema formation at 2 and 6 h at all intensities tested. The highest reduction was observed at the intensity of 50 mW/cm2. Histological analyses confirmed that LIUS clearly decreased the carrageenan-induced swelling of interstitial space under the paw skin and infiltration of polymorphonuclear leukocytes. Moreover, Evans Blue extravasation analyses exhibited a significant decreases of vascular permeability by LIUS. Finally, immunohistochemical staining showed that expression of pro-inflammatory proteins, namely, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) induced by carrageenan injection was reduced back to the normal level after LIUS stimulation. Conclusions These results provide a new supporting evidence for LIUS as a therapeutic alternative for the treatment of edema in inflammatory diseases such as cellulitis.
Collapse
Affiliation(s)
- Kil Hwan Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hyeon-Woo Im
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Mrigendra Bir Karmacharya
- 3Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sejong Kim
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byoung-Hyun Min
- 5Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - So Ra Park
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byung Hyune Choi
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| |
Collapse
|
30
|
Guan M, Zhu Y, Liao B, Tan Q, Qi H, Zhang B, Huang J, Du X, Bai D. Low-intensity pulsed ultrasound inhibits VEGFA expression in chondrocytes and protects against cartilage degeneration in experimental osteoarthritis. FEBS Open Bio 2020; 10:434-443. [PMID: 31975545 PMCID: PMC7050266 DOI: 10.1002/2211-5463.12801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, was recently demonstrated to be an effective treatment for osteoarthritis (OA). Vascular endothelium growth factor A (VEGFA) has been found to be upregulated in the articular cartilage, synovium and subchondral bone of OA patients, leading to cartilage degeneration, synovitis and osteophyte formation. However, the functions and mechanisms of LIPUS in regulating chondrocyte-derived VEGFA expression are still unclear. In this study, we investigated whether LIPUS attenuated OA progression by (a) decreasing the percentage of VEGFA-positive cells in mouse articular cartilage destabilised through medial meniscus surgery and (b) relieving interleukin-1β-induced VEGFA expression in mouse primary chondrocytes. However, this function was negated by a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor. In addition, we found that LIPUS ameliorated VEGFA-mediated disorders in cartilage extracellular matrix metabolism and chondrocyte hypertrophy during OA development. In conclusion, our data indicate a novel effect of LIPUS in regulating the expression of osteoarthritic chondrocyte-derived VEGFA through the suppression of p38 MAPK activity.
Collapse
Affiliation(s)
- Mengtong Guan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Bo Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Zhang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
31
|
Liu CX, Gao G, Qin XQ, Deng CQ, Shen XJ. Correlation Analysis of C-terminal telopeptide of collagen type II and Interleukin-1β for Early Diagnosis of Knee Osteoarthritis. Orthop Surg 2019; 12:286-294. [PMID: 31840428 PMCID: PMC7031551 DOI: 10.1111/os.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Objective To analyze the correlation between the Kellgren–Lawrence (K‐L) score of knee osteoarthritis (KOA) patients with different degrees and their urine concentration of C‐terminal telopeptide of collagen type II (CTX‐II) and interleukin‐1β (IL‐1β), and to further evaluate the diagnostic value of CTX‐II and IL‐1β during the pathological process by producing an experimental osteoarthritis (OA) model in rabbits. Methods From 1 January 2017 to 31 December 2018, a total of 34 subjects (7 mild, 9 moderate, 9 severe arthritis patients, and 9 healthy individuals) comprising 16 men and 18 women were included in this study. Patients were diagnosed according to the American College of Rheumatology (ACR) criteria. The urine of all subjects was collected to detect the concentration of CTX‐II and IL‐1β. The rabbits in the KOA group were subjected to protease (control group with saline) injection into the articular cavity of their right knees and immobilization with gypsum. We used radiological and histological examination to identify the KOA model. ELISA was applied to investigate the concentrations of CTX‐II and IL‐1β in urine and serum, and Spearman's rank correlation analysis was used to analyze the correlation. Results There was no significant difference in the mean ages and body mass index (BMI) between groups. The mean ages of mild, moderate, and severe arthritis patients and healthy individuals were 54.29 ± 5.76, 58.44 ± 6.44, 59.89 ± 6.75, and 56.67 ± 4.18 years, respectively. The mean BMI of mild, moderate, and severe arthritis patients and healthy individuals were 23.59 ± 1.56, 23.57 ± 2.06, 24.46 ± 1.64, and 23.42 ± 1.35 kg/m2, respectively. The Kellgren–Lawrence (K‐L) score was higher with the aggravation of KOA. The K‐L scores of mild, moderate, and severe KOA patients were 1.14 ± 0.38, 2.56 ± 0.53, and 3.63 ± 0.52, respectively. The KOA symptoms of patients became more severe, with not only increased K‐L scores but also elevated concentrations of CTX‐II and IL‐1β. Moreover, there was a positive correlation between CTX‐II and IL‐1β of all subjects (r = 0.974, P < 0.001), between K‐L score and urine concentration of CTX‐II (r = 0.900, P < 0.001), and between K‐L score and IL‐1β (r = 0.813, P < 0.001) of all subjects. Both were significantly increased in KOA group rabbits at all time points after surgery. The serum concentration of CTX‐II and IL‐1β was elevated as early as in the 2nd week (3.69 and 4.25 times) and reached a peak (5.41 and 7.23 times) in the 4th week after surgery. Then, until 12 weeks after surgery, the CTX‐II and IL‐1β concentrations in the KOA group were slightly reduced and remained around 4.5 and 6.3 times that in the control group. Moreover, there was a positive correlation between the serum concentration of IL‐1β and CTX‐II (r = 0.967, P < 0.001). Conclusion CTX‐II and IL‐1β, which were significantly increased during the process of KOA, can be used as biomolecular markers to provide guidelines for early diagnosis and treatment of KOA.
Collapse
Affiliation(s)
- Cai-Xia Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Ge Gao
- Faculty of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang-Qing Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiong-Jie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| |
Collapse
|
32
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Crossman J, Alzaheri N, Abdallah MN, Tamimi F, Flood P, Alhadainy H, El-Bialy T. Low intensity pulsed ultrasound increases mandibular height and Col-II and VEGF expression in arthritic mice. Arch Oral Biol 2019; 104:112-118. [PMID: 31177013 DOI: 10.1016/j.archoralbio.2019.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disease involving persistent inflammation resulting in cartilage and bone damage. RA can affect the temporomandibular joint (TMJ), and damage to the TMJ condyle can lead to craniofacial developmental disturbances, causing micrognathia, malocclusion, retrognathia, and increased overjet. Current treatments of TMJ arthritis are unsatisfactory. This pilot study aimed to investigate the effect of low intensity pulsed ultrasound (LIPUS) on the mandible and TMJ condyles in an RA mouse model using micro-computed tomography (Micro-CT), histologic, and immunohistochemical analyses. METHODS MRL-lpr/lpr mice received LIPUS application to their TMJs for 20 min/day for 2 and 4 weeks. Micro-CT analysis measured condylar length and width, posterior mandibular height (P.M.H), mandibular ramus length (M.R.L), effective mandibular length (Ef.M.L), angular process length (A.P.L), mandibular plane (M.P), mandibular axis (M.Ax), and lower incisor height (L.I.H). Condylar cartilage thickness was histologically measured, and type II collagen (Col-II), vascular endothelial growth factor (VEGF), nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) expression was analyzed using immunohistochemistry. RESULTS Comparing the LIPUS-treated group with the control, P.M.H, M.R.L, and M.P were significantly greater in the LIPUS-treated group. Immunostaining for Col-II and VEGF was stronger in the LIPUS-treated group after 4 weeks. OPG showed slightly more expression in the LIPUS group. CONCLUSIONS LIPUS may enhance mandibular and TMJ condylar bone formation in this RA mouse model by preventing any growth disturbances involved in inflammation. Further studies are recommended to analyze the effect of LIPUS on TMJ of RA in other animal models.
Collapse
Affiliation(s)
| | - Nadia Alzaheri
- King Saudi Medical City, Ministry of Health, Riyadh, Saudi Arabia.
| | | | | | - Patrick Flood
- School of Dentistry, University of Alberta, AB, Canada.
| | | | | |
Collapse
|
34
|
Plasma C-terminal cross-linking telopeptide of type II collagen as a biomarker in advanced stages of femoral head osteonecrosis. Biomed Pharmacother 2019; 111:1213-1220. [DOI: 10.1016/j.biopha.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/18/2022] Open
|
35
|
Li X, Sun Y, Zhou Z, Zhang D, Jiao J, Hu M, Hassan CR, Qin YX. Mitigation of Articular Cartilage Degeneration and Subchondral Bone Sclerosis in Osteoarthritis Progression Using Low-Intensity Ultrasound Stimulation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:148-159. [PMID: 30322672 PMCID: PMC6289639 DOI: 10.1016/j.ultrasmedbio.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to evaluate the effect of low-intensity ultrasound on articular cartilage and subchondral bone alterations in joints under normal and functional disuse conditions during osteoarthritis (OA) progression. Total of thirty 5-mo-old female Sprague-Dawley rats were randomly assigned to six groups (n = 5/group): age-matched group, OA group, OA + ultrasound (US) group, hindlimb suspension (HLS) group, HLS + OA group and HLS + OA + US group. The surgical anterior cruciate ligament was used to induce OA in the right knee joints. After 2 wk of OA induction, low-intensity ultrasound generated with a 3-MHz transducer with 20% pulse duty cycle and 30 mW/cm2 acoustic intensity was delivered to the right knee joints for 20 min a day, 5 d a week for a total of 6 wk. Then, the right tibias were harvested for micro-computed tomography, histologic and mechanical analysis. Micro-computed tomography results indicated that the thickness and sulfated glycosaminoglycan content of cartilage decreased, but the thickness of the subchondral cortical bone plate and the formation of subchondral trabecular bone increased in the OA group under the normal joint use condition. Furthermore, histologic results revealed that chondrocyte density and arrangement in cartilage corrupted and the underlying subchondral bone increased during OA progression. These changes were accompanied by reductions in mechanical parameters in OA cartilage. However, fewer OA symptoms were observed in the HLS + OA group under the joint disuse condition. The cartilage degeneration and subchondral bone sclerosis were alleviated in the US treatment group, especially under normal joint use condition. In conclusion, low-intensity ultrasound could improve cartilage degeneration and subchondral sclerosis during OA progression. Also, it could provide a promising strategy for future clinical treatment for OA patients.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yueli Sun
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Zhilun Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Dongye Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Jian Jiao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Chaudhry Raza Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
36
|
Hsieh YL, Chen HY, Yang CC. Early Intervention with Therapeutic Low-Intensity Pulsed Ultrasound in Halting the Progression of Post-traumatic Osteoarthritis in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2637-2645. [PMID: 30262135 DOI: 10.1016/j.ultrasmedbio.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Anterior cruciate ligament (ACL) and meniscus injuries are highly correlated with post-traumatic knee osteoarthritis (PTOA). The aim of this study was to examine whether early intervention with low-intensity pulsed ultrasound (LIPUS) at an intensity of 0.1 W/cm2 helps delay PTOA progression. A PTOA model was established by ACL transection and meniscectomy in male Sprague-Dawley rats. LIPUS intervention (1.0 MHz, 0.1 W/cm2) started on the third day after surgery and continued for 4 consecutive wk. Histopathological analyses and immunoassays of collagen type II and matrix metallopeptidase 13 in joints were conducted. Results indicated that compared with the sham treatment, LIPUS significantly reduced Mankin scores, inflammatory cells and matrix metallopeptidase 13 expression and increased collagen type II expression in rats with PTOA (p < 0.05). Early intervention with LIPUS has beneficial effects on delaying cartilage degradation by reducing synovial inflammation and matrix metallopeptidase 13 expression, as well as enhancing collagen type II expression in cartilage.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| | - Han-Yu Chen
- Department of Physical Therapy, Hung-Kuang University, Taichung, Taiwan
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung, Taiwan
| |
Collapse
|
37
|
Hazlewood D, Feng Y, Lu Q, Wang J, Yang X. Treatment of post-traumatic joint contracture in a rabbit model using pulsed, high intensity laser and ultrasound. Phys Med Biol 2018; 63:205009. [PMID: 30196275 DOI: 10.1088/1361-6560/aadff0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Post-traumatic joint contracture induced by scar tissues following a surgery or injury can leave patients in a permanent state of pain and disability, which is difficult to resolve by current treatments. This randomized controlled trial examines the therapeutic effect of pulsed high-intensity laser (PHIL) and pulsed high-intensity focused ultrasound (PHIFU) for post-traumatic joint contracture due to arthrofibrosis. The peak power levels of both PHIL and PHIFU are much higher than that of laser or ultrasound currently used in physical therapy, while short pulses are utilized to prevent damage. To test the effectiveness of these treatments, a rabbit knee model for joint contracture was established. Twenty-one rabbits were split into four groups: untreated control (n = 5), PHIL (n = 5), PHIFU (n = 5), and a PHIL + PHIFU group (n = 6). Maximum extension of the surgically modified rabbit knee was compared to that of the contralateral control knee over the course of 16 weeks. The rabbits in the untreated control group maintained a relatively consistent level of joint contracture, while every rabbit in each of the treatment groups had improved range of motion, eventually leading to a restoration of normal joint extension. Average recovery time was 7.6 ± 1.5 weeks for the PHIL treatment group, 9.8 ± 3.7 weeks for the PHIFU group, and 8.0 ± 2.2 weeks for the combined treatment group. Histopathology demonstrated reduced density and accelerated resorption of scar tissues in the treated knee joints. This study provides evidence that both PHIL and PHIFU are effective in treating post-traumatic joint contracture in rabbits and warrant further investigation into the underlying mechanisms to optimize PHIL and PHIFU based treatments in a larger number of animals.
Collapse
Affiliation(s)
- David Hazlewood
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States of America
| | | | | | | | | |
Collapse
|
38
|
Draper DO, Klyve D, Ortiz R, Best TM. Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: a randomized, placebo-controlled double-blind study. J Orthop Surg Res 2018; 13:257. [PMID: 30326947 PMCID: PMC6192104 DOI: 10.1186/s13018-018-0965-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023] Open
Abstract
Background Wearable long-duration low-intensity ultrasound is an emerging non-invasive and non-narcotic therapy for the daily treatment of musculoskeletal pain. The aim of this randomized, double-blind, placebo-controlled study was to examine whether long-duration low-intensity ultrasound was effective in treating pain and improving function in patients with knee osteoarthritis. Methods Ninety patients with moderate to severe knee pain and radiographically confirmed knee osteoarthritis (Kellgren-Lawrence grade I/II) were randomized for treatment with active (n = 55) or placebo (n = 35) devices applied daily to the treated knee. Investigators and subjects were blinded to treatment groups. Ultrasound (3 MHz, 0.132 W/cm2, 1.3 W) was applied with a wearable device for 4 h daily for 6 weeks, delivering 18,720 J per treatment. The primary outcome was change in pain intensity (numeric rating scale) assessed prior to intervention (baseline) and after 6 weeks. Secondary outcomes of functional change were measured at baseline and after 6 weeks using the Western Ontario McMaster Osteoarthritis Questionnaire (n = 84), along with range of motion (flexion, extension) and isometric muscle strength (flexion, extension and rotation) tests on the injured knee in a small pilot subset (n = 17). Results The study had a 93% retention rate, and there were no significant differences between the groups regarding demographic variables or baseline outcome measures. Patients treated with active therapy observed a significant mean NRS pain reduction over the 6-week study of 1.96 points for active (p < 0.0001), compared with a 0.85 points reduction for placebo (p = 0.13). The functional score was also significantly improved by 505 points for the active group over the 311-point improvement for placebo group compared to baseline (p = 0.02). In the pilot subset evaluated, rotational strength increased from baseline to 6 weeks (3.2 N, p = 0.03); however, no other measures were significant. Conclusions Long-duration low-intensity ultrasound significantly reduced pain and improved joint function in patients with moderate to severe osteoarthritis knee pain. The clinical findings suggest that ultrasound may be used as a conservative non-pharmaceutical and non-invasive treatment option for patients with knee osteoarthritis. Additional research is warranted on non-weight bearing joints of the musculoskeletal system as well as extended treatment time frames and follow-up. Trial registration NCT02083861, registered 11 March 2014, https://clinicaltrials.gov/ct2/show/results/NCT02083861
Collapse
Affiliation(s)
- David O Draper
- Department of Exercise Sciences, Brigham Young University, 106 SFH, Provo, UT, USA.
| | - Dominic Klyve
- Department of Mathematics, Central Washington University, Ellensburg, USA
| | - Ralph Ortiz
- Medical Pain Consultants, Dryden, Dryden, USA
| | - Thomas M Best
- UHealth Sports Performance and Wellness Institute, University of Miami, Florida, USA
| |
Collapse
|
39
|
He D, An Y, Li Y, Wang J, Wu G, Chen L, Zhu G. RNA sequencing reveals target genes of temporomandibular joint osteoarthritis in rats after the treatment of low-intensity pulsed ultrasound. Gene 2018; 672:126-136. [DOI: 10.1016/j.gene.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
|
40
|
Effects of Low-Intensity Pulsed Ultrasound on Knee Osteoarthritis: A Meta-Analysis of Randomized Clinical Trials. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7469197. [PMID: 30105243 PMCID: PMC6076961 DOI: 10.1155/2018/7469197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Background Osteoarthritis (OA) is a common degeneration disease characterized with joint pain. The aim of the present study was to systemically review the effects of LIPUS on pain relief and functional recovery in patients with knee osteoarthritis (OA). Methods PubMed, Embase, and Cochrane Library were searched manually for researches on LIPUS treatment in patients with knee OA from 1945 to July 2017. Two investigators independently selected the studies according to the inclusion and exclusion criteria, extracted the concerned data, and assessed the included studies. Meta-analysis was performed to evaluate VAS, WOMAC, and ambulation speed between control and LIPUS groups. Results Five studies were selected in this study. Compared with control group, LIPUS group received a decrease of pain intensity with moderate heterogeneity (-0.79, 95% CI, -1.57 to 0.00; I2 = 65%, P = 0.04) by VAS and improvement in knee function by WOMAC (-5.30, 95% CI, -2.88 to -7.71; I2 = 44%, P = 0.17). No significant improvement was found in ambulation speed (0.08 m/s, 95% CI, -0.02 to 0.18 m/s; I2 = 68%, P = 0.03). Conclusion The present study includes 5 high quality randomized controlled trials. The result indicated that LIPUS, used to treat knee OA without any adverse effect, had a beneficial effect on pain relief and knee functional recovery. More evidence is needed to prove whether LIPUS is effective in improving walking ability.
Collapse
|
41
|
Bian Y, Zhang M, Wang K. Taurine protects against knee osteoarthritis development in experimental rat models. Knee 2018; 25:374-380. [PMID: 29650413 DOI: 10.1016/j.knee.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the complex diseases that affect a large population of the world. The aim of the current study was to explore the roles of taurine in OA rat models, and discover the related mechanisms. METHODS OA rat models were established by anterior cruciate ligament transection (ACLT) plus medial meniscus resection (MMx) surgery on the right knees. Secondary mechanical allodynia, weight-bearing alterations and knee joint width were evaluated before surgery and every two weeks after surgery. At 14weeks, histopathological analysis was conducted on the knee joint cartilage. Protein amount of MMP-3 and CHOP was evaluated by western blot. RESULTS Taurine injection after surgery significantly relieved the symptoms of OA in rat models in a dose-dependent and time-dependent manner, as shown by alleviation of secondary mechanical allodynia, decrease in hind limb weight-bearing alterations, and inhibited knee swelling. Moreover, histopathological analysis showed that taurine inhibited matrix loss and cartilage degeneration in a dose-dependent manner. Taurine administration strikingly suppressed the expression of matrix metalloproteinase-3 (MMP-3) and CHOP. CONCLUSION These results indicated that taurine administration exhibited protective effects by inhibiting MMP-3 and CHOP expression, and subsequently alleviated the OA symptoms in experimental rat models.
Collapse
Affiliation(s)
- Yiqun Bian
- Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Meng Zhang
- Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Kai Wang
- Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
42
|
Zahoor T, Mitchell R, Bhasin P, Guo Y, Paudel S, Schon L, Zhang Z. Effect of Low-Intensity Pulsed Ultrasound on Joint Injury and Post-Traumatic Osteoarthritis: an Animal Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:234-242. [PMID: 29111161 DOI: 10.1016/j.ultrasmedbio.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) in post-traumatic osteoarthritis (PTOA). Intra-articular fracture of the medial tibial plateau was surgically created in 30 rats. LIPUS was applied to the operated joints either for the first 2 wk (LIPUS1-2 group) or in weeks 4 and 5 after intra-articular fracture (LIPUS4-5 group). In controls, the operated knees were not treated with LIPUS (LIPUS0 group). The rats were monitored with weekly gait analysis and euthanized at week 8. Among the altered gait parameters, the maximal and average paw print areas in the LIPUS1-2 and LIPUS4-5 groups, but not the LIPUS0 group, had either reached baseline or significantly recovered (70%, p <0.05) by week 8. PTOA pathology in both the LIPUS1-2 and LIPUS4-5 groups was less severe than that in the LIPUS0 group (Mankin score: 5.4 and 4.5 vs. 8.8, p <0.05). In conclusion, LIPUS treatment partially improved the gait of the affected limbs and reduced cartilage degeneration in PTOA.
Collapse
Affiliation(s)
- Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Priya Bhasin
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Yi Guo
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA.
| |
Collapse
|
43
|
Kanaguchi Arita A, Yonemitsu I, Ikeda Y, Miyazaki M, Ono T. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats. Oral Dis 2017; 24:600-610. [DOI: 10.1111/odi.12798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022]
Affiliation(s)
- A Kanaguchi Arita
- Department of Orthodontic Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - I Yonemitsu
- Department of Orthodontic Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Y Ikeda
- Department of Orthodontic Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - M Miyazaki
- Department of Orthodontic Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - T Ono
- Department of Orthodontic Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
44
|
Jia PT, Zhang XL, Zuo HN, Lu X, Li L. Articular cartilage degradation is prevented by tanshinone IIA through inhibiting apoptosis and the expression of inflammatory cytokines. Mol Med Rep 2017; 16:6285-6289. [PMID: 28849083 DOI: 10.3892/mmr.2017.7340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of tanshinone IIA on the degradation of articular cartilage in a rat model of osteoarthritis (OA). The OA rat model was established by anterior cruciate ligament transection (ACLT) and medial meniscus resection (MMx). The animals were treated for 28 days with 0.25‑0.5 mg/kg doses of tanshinone IIA following ACLT + MMx. The knee joints of the rats in the ACLT + MMx group exhibited marked alterations in articular cartilage histopathology and higher Mankin scores, compared with those in the normal group. Tanshinone IIA treatment at a dose of 0.5 mg/kg significantly inhibited cartilage degradation and improved Mankin scores in the OA rat model (P<0.002). Tanshinone IIA treatment completely inhibited the ACLT + MMx‑induced accumulation of inflammatory cells and disintegration of synovial lining in the rats. An increase in the dose of tanshinone IIA between 0.25 and 0.5 mg/kg reduced the proportion of apoptotic chrondrocytes from 41 to 2% on day 29. Treatment of the rats in the ACLT + MMx group with 0.5 mg/kg doses of tanshinone IIA markedly inhibited the expression level of matrix metalloproteinase and increased the expression of tissue inhibitor of metalloproteinase in the rat articular cartilage tissues. Tanshinone IIA treatment significantly reduced the levels of inflammatory cytokines, including interleukin‑1β, tumor necrosis factor‑α and nitric oxide in rat serum samples. The protein expression levels of bone morphogenetic protein and transforming growth factor‑β were significantly increased by tanshinone IIA in the ACLT + MMx rats. Therefore, tanshinone IIA inhibited articular cartilage degradation through inhibition of apoptosis and expression levels of inflammatory cytokines, offering potential for use in the treatment of OA.
Collapse
Affiliation(s)
- Pei-Tong Jia
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing-Lin Zhang
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Hai-Ning Zuo
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing Lu
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lin Li
- Department of Orthopedics, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
45
|
Moghaddam ZH, Mokhtari-Dizaji M, Movahedin M, Ravari ME. Estimation of the distribution of low-intensity ultrasound mechanical index as a parameter affecting the proliferation of spermatogonia stem cells in vitro. ULTRASONICS SONOCHEMISTRY 2017; 37:571-581. [PMID: 28427670 DOI: 10.1016/j.ultsonch.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 06/07/2023]
Abstract
Considering the use of physical and mechanical stimulation, such as low-intensity ultrasound for proliferation and differentiation of stem cells, it is essential to understand the physical and acoustical mechanisms of acoustic waves in vitro. Mechanical index is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the mechanical index was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. Due to low intensity of ultrasound, Rayleigh integral model has been used for acoustic pressure computation. The acoustic pressure and mechanical index equations are modeled and solved to estimate optimal mechanical index for 28, 40, 150kHz and 1MHz frequencies. This model are solved in different intensities and distances from transducer in cylindrical coordinates. Based on the results of the mechanical index, regions with threshold mechanical index of 0.7 were identified for extracting of radiation arrangement to cell medium. Acoustic pressure distribution along the axial and radial was extracted. In order to validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1MHz and 40kHz. Low-intensity ultrasound with 0.40 mechanical index is more effective on enhancing the proliferation rate of the spermatogonia stem cells during the seven days of culture. In contrast, higher mechanical index has a harmful effect on the spermatogonial stem cells. Thus, considering cavitation threshold of different materials is necessary to find effective mechanical index ranges on proliferation for the used frequencies. This acoustic propagation model and ultrasound mechanical index assessments can be used with acceptable accuracy, for the extraction special arrangement of acoustic exposure used in biological conditions in vitro. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.
Collapse
Affiliation(s)
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Iran.
| | - Mansoureh Movahedin
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ehsan Ravari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| |
Collapse
|
46
|
Legrand CB, Lambert CJ, Comblain FV, Sanchez C, Henrotin YE. Review of Soluble Biomarkers of Osteoarthritis: Lessons From Animal Models. Cartilage 2017; 8:211-233. [PMID: 28618869 PMCID: PMC5625856 DOI: 10.1177/1947603516656739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective Osteoarthritis (OA) is one of the leading causes of disability within the adult population. Currently, its diagnosis is mainly based on clinical examination and standard radiography. To date, there is no way to detect the disease at a molecular level, before the appearance of structural changes and symptoms. So an attractive alternative for monitoring OA is the measurement of biochemical markers in blood, urine, or synovial fluid, which could reflect metabolic changes in joint tissue and therefore disease onset and progression. Animal models are relevant to investigate the early stage of OA and metabolic changes occurring in joint tissues. The goal of this narrative review is to summarize the scientific data available in the literature on soluble biomarkers in animal models of OA. Design A literature search was conducted using the PubMed/Medline and Scopus databases between February 1995 and December 2015. All original articles, systematic and narrative reviews published in French or in English were considered. Results We summarized the data of 69 studies and proposed a classification scheme for OA biomarkers in animal studies, largely inspired by the BIPEDS classification. Conclusions Studies about biomarkers and animal models indicate that some markers could be valuable to monitor OA progression and assess therapeutic response in some animal models.
Collapse
Affiliation(s)
- Catherine B. Legrand
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Cécile J. Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Fanny V. Comblain
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Yves E. Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
47
|
The Role of Low-Intensity Pulsed Ultrasound on Cartilage Healing in Knee Osteoarthritis: A Review. PM R 2017; 9:1268-1277. [PMID: 28606838 DOI: 10.1016/j.pmrj.2017.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/05/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
Ultrasound (US) is a therapeutic modality that has been used in the treatment of musculoskeletal conditions for decades. In recent years, there have been technological advancements using low-intensity pulsed ultrasound (LIPUS) as a clinical modality. The purpose of this review was to critically examine the medical literature to determine the effects of LIPUS on the chondrogenic properties of knee osteoarthritis. A literature search of 3 major databases (PubMed, Scopus, and EMBASE) was performed. Two independent physician reviewers screened titles and abstracts, yielding a total of 18 relevant articles after the inclusion and exclusion criteria were applied. Results favored that LIPUS has a promising effect on the cellular elements in articular cartilage, specifically on chondrocytes in knee osteoarthritis. Although the use of LIPUS is encouraging based on basic science and preclinical data, there is a paucity of evidence with respect to humans. Consequently, there is insufficient evidence to recommend for or against LIPUS in clinical OA populations. We suggest future directions for research centered on LIPUS in both human and animal models to delineate the effect on the biologic properties of cartilage in knee osteoarthritis. LEVEL OF EVIDENCE III.
Collapse
|
48
|
Nishida T, Kubota S, Aoyama E, Yamanaka N, Lyons KM, Takigawa M. Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation. Osteoarthritis Cartilage 2017; 25:759-769. [PMID: 27729291 DOI: 10.1016/j.joca.2016.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE CCN family protein 2/connective tissue growth factor (CCN2/CTGF) promotes cartilage regeneration in experimental osteoarthritis (OA) models. However, CCN2 production is very low in articular cartilage. The aim of this study was to investigate whether or not CCN2 was promoted by cultured chondrocytes treated with low-intensity pulsed ultrasound (LIPUS) and to clarify its mechanism. METHODS Human chondrocytic cell line (HCS)-2/8, rat primary epiphyseal and articular cartilage cells, and Ccn2-deficient chondrocytes that impaired chondrocyte differentiation, were treated with LIPUS for 20 min at 3.0 MHz frequency and 60 mW/cm2 power. Expressions of chondrocyte differentiation marker mRNAs were examined by real-time PCR (RT-PCR) analysis from HCS-2/8 cells and Ccn2-deficient chondrocytes at 30 min and 1 h after LIPUS treatment, respectively. CCN2 production was examined by Western blotting after 5 h of LIPUS treatment. Moreover, Ca2+ influx was measured by using a Fluo-4 probe. RESULTS The gene expression of chondrocyte differentiation markers and CCN2 production were increased in cultured chondrocytes treated with LIPUS. In addition, Ca2+ influx and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2 were increased by LIPUS treatment, and the stability of TRPV4 and BKca channel mRNAs was decreased by siRNA against CCN2. Consistent with those findings, the LIPUS-induced the gene expressions of type II collagen (COL2a1) and Aggrecan (ACAN) observed in wild-type cells were not observed in the Ccn2-deficient chondrocytes. CONCLUSION These data indicate that chondrocyte differentiation represented by CCN2 production was mediated via MAPK pathways activated by LIPUS-stimulated Ca2+ influx, which in turn was supported by the induced CCN2 molecules in articular chondrocytes.
Collapse
Affiliation(s)
- T Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | - E Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | | | - K M Lyons
- Department of Orthopedic Surgery, UCLA, CA, USA.
| | - M Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| |
Collapse
|
49
|
Abstract
Ultrasound is an inaudible form of acoustic sound wave at 20 kHz or above that is widely used in the medical field with applications including medical imaging and therapeutic stimulation. In therapeutic ultrasound, low-intensity pulsed ultrasound (LIPUS) is the most widely used and studied form that generally uses acoustic waves at an intensity of 30 mW/cm2, with 200 ms pulses and 1.5 MHz. In orthopaedic applications, it is used as a biophysical stimulus for musculoskeletal tissue repair to enhance tissue regeneration. LIPUS has been shown to enhance fracture healing by shortening the time to heal and reestablishment of mechanical properties through enhancing different phases of the healing process, including the inflammatory phase, callus formation, and callus remodelling phase. Reports from in vitro studies reveal insights in the mechanism through which acoustic stimulations activate cell surface integrins that, in turn, activate various mechanical transduction pathways including FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), PI3K, and Akt. It is then followed by the production of cyclooxygenase 2 and prostaglandin E2 to stimulate further downstream angiogenic, osteogenic, and chondrogenic cytokines, explaining the different enhancements observed in animal and clinical studies. Furthermore, LIPUS has also been shown to have remarkable effects on mesenchymal stem cells (MSCs) in musculoskeletal injuries and tissue regeneration. The recruitment of MSCs to injury sites by LIPUS requires the SDF-1 (stromal cell derived factor-1)/CXCR-4 signalling axis. MSCs would then differentiate differently, and this is regulated by the presence of different cytokines, which determines their fates. Other musculoskeletal applications including bone–tendon junction healing, and distraction osteogenesis are also explored, and the results are promising. However, the use of LIPUS is controversial in treating osteoporosis, with negative findings in clinical settings, which may be attributable to the absence of an injury entry point for the acoustic signal to propagate, strong attenuation effect of cortical bone and the insufficient intensity for penetration, whereas in some animal studies it has proven effective.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwok-Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
50
|
Zhang P. Ginsenoside‑Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol Rep 2017; 37:1497-1502. [PMID: 28112382 DOI: 10.3892/or.2017.5392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/07/2016] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effect of ginsenoside‑Rg5 on the degradation of articular cartilage in osteoarthritis rat model and on induction of chondrocyte apoptosis. Osteoarthritis rat model was prepared by ligament transection and medial meniscus resection. The rats were then treated with different doses (1, 2, 5, 10 and 15 µM) of ginsenoside‑Rg5 for 48 h. The results from histopathological analysis revealed a significant (P=0.005) prevention of cartilage degradation in OA rat model by ginsenoside‑Rg5 treatment at 15 µM. Ginsenoside‑Rg5 treatment prevented the disintegration of synovial membrane to a significant (P=0.005) extent. The proportion of apoptotic cells in the knee joints was reduced to 7% by ginsenoside‑Rg5 treatment after one month compared to the control. Treatment of the rats with ginsenoside‑Rg5 caused increase in the levels of proteoglycan, collagen and type II collagen by 5-, 3- and 4-fold compared to the control group. Immunohistochemistry revealed that the level of MMP-13 was reduced to 45% and that of TIMP‑1 was increased by 67% on treatment with ginsenoside‑Rg5. The levels of interleukin-1β, tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthetase were reduced by 67, 54, 32 ad 49%, respectively after one month of treatment with 15 mg/kg dose of ginsenoside‑Rg5. The expression was increased to 67 and 52% for BMP-2 and TGF-β1, respectively on treatment with ginsenoside‑Rg5. Thus ginsenoside‑Rg5 prevents cartilage degradation in the OA rats and inhibits cartilage apoptosis, therefore it can be used for osteoarthritis treatment.
Collapse
Affiliation(s)
- Ping Zhang
- The Disease Prevention Center of Anyang Hospital of Traditional Chinese Medicine of Henan Province, Nanyang, Henan 455000, P.R. China
| |
Collapse
|