1
|
Stratos I, Behrendt AK, Anselm C, Gonzalez A, Mittlmeier T, Vollmar B. Inhibition of TNF-α Restores Muscle Force, Inhibits Inflammation, and Reduces Apoptosis of Traumatized Skeletal Muscles. Cells 2022; 11:2397. [PMID: 35954240 PMCID: PMC9367740 DOI: 10.3390/cells11152397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Muscle injuries are common in humans and are often associated with irrecoverable damage and disability. Upon muscle injury, TNF-α signaling pathways modulate the healing process and are predominantly associated with tissue degradation. In this study we assumed that TNF-α inhibition could reduce the TNF-α-associated tissue degradation after muscle injury. MATERIALS AND METHODS Therefore, the left soleus muscle of 42 male Wistar rats was injured using a standardized open muscle injury model. All rats were treated immediately after injury either with infliximab (single i.p. injection; 10 mg/kg b.w.) or saline solution i.p. Final measurements were conducted at day one, four, and 14 post injury. The muscle force, the muscle cell proliferation, the muscle cell coverage as well as the myofiber diameter served as read out parameters of our experiment. RESULTS Systemic application of infliximab could significantly reduce the TNF-α levels in the injured muscle at day four upon trauma compared to saline treated animals. The ratio of muscle weight to body weight was increased and the twitch muscle force showed a significant rise 14 days after trauma and TNF-α inhibition. Quantification of myofiber diameter in the penumbra zone showed a significant difference between both groups at day one and four after injury, indicated by muscle hypertrophy in the infliximab group. Planimetric analysis of the injured muscle at day 14 revealed increased muscle tissue fraction in the infliximab group compared to the control animals. Muscle cell proliferation did not differ between both groups. CONCLUSIONS These data provide evidence that the TNF-α blockade positively regulates the restauration of skeletal muscles upon injury.
Collapse
Affiliation(s)
- Ioannis Stratos
- Department of Orthopaedic Surgery, Julius-Maximilians University Wuerzburg, 97074 Wuerzburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Ann-Kathrin Behrendt
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Christian Anselm
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Aldebarani Gonzalez
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Thomas Mittlmeier
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| |
Collapse
|
2
|
Silva SB, Honorato-Sampaio K, Costa SP, Domingues TE, da Cruz TMM, Rodrigues CM, Costa KB, Dos Santos JM, da Silva Lage VK, Gaiad TP, Santos AP, Dias-Peixoto MF, Coimbra CC, Dos Reis AM, Szawka RE, Figueiredo PHS, Costa HS, Oliveira MX, Mendonça VA, Lacerda ACR. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci Rep 2022; 12:8764. [PMID: 35610295 PMCID: PMC9130272 DOI: 10.1038/s41598-022-12739-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
Previous studies have highlighted the positive effects of Estradiol (E2) replacement therapy and physical exercise on skeletal muscle during menopause. However, the comparison effects of exercise training (ET) and estradiol replacement therapy during menopause on skeletal muscle have not been investigated to date. This study aimed to compare the effects of endurance exercise training versus E2 replacement therapy on mitochondrial density, redox status, and inflammatory biomarkers in the skeletal muscle of ovariectomized rats. Thirty female Wistar rats (12-week-old) were randomly assigned into three groups: Untrained ovariectomized rats (UN-OVX, n = 10); untrained ovariectomized rats treated with estradiol replacement therapy (E2-OVX); and, trained ovariectomized rats (TR-OVX). After ovariectomy, the E2-OVX rats were treated subcutaneously with E2 (implanted Silastic® capsule containing 360 μg of 17β-estradiol/mL) while the TR-OVX group performed an exercise training protocol (50–70% of maximal running speed on a treadmill, 60 min/day, 5 days/week for 8 weeks). After euthanasia, the soleus muscle was processed for histological and biochemical evaluations. Only exercise prevented the reduction of maximal oxygen consumption and increased mechanical efficiency (ME). While mitochondrial muscle density, total antioxidant capacity (FRAP), catalase (CAT) activity, and interleukin 10 levels were higher in TR-OVX, only OVX-E2 presented higher CAT activity and lower interleukin 6 levels. Endurance exercise training compared with E2 replacement therapy maintains the aerobic capacity improving the ME of OVX rats. In addition, only endurance exercise training raises the skeletal muscle mitochondrial content and tends to balance the redox and inflammatory status in the skeletal muscle of OVX rats.
Collapse
Affiliation(s)
- Sara Barros Silva
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato-Sampaio
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Sabrina Paula Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Timilly Mayra Martins da Cruz
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Cíntia Maria Rodrigues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Karine Beatriz Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Jousielle Márcia Dos Santos
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Vanessa Kelly da Silva Lage
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Thais Peixoto Gaiad
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Martha Dos Reis
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Scheidt Figueiredo
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Henrique Silveira Costa
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil. .,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Çiftci Dede E, Korkusuz P, Bilgiç E, Çetinkaya MA, Korkusuz F. Boron Nano-hydroxyapatite Composite Increases the Bone Regeneration of Ovariectomized Rabbit Femurs. Biol Trace Elem Res 2022; 200:183-196. [PMID: 33715074 DOI: 10.1007/s12011-021-02626-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis is a systemic metabolic disease defined by a decreased bone mineral density, microarchitectural deterioration, and an increased incidence of fragility fractures that may lead to morbidity and mortality. Boron may stimulate new bone formation and regeneration, when combined with nano-hydroxyapatite. We questioned whether injecting boron-containing nano-hydroxyapatite composites with hyaluronan increased the bone mineral density and new bone formation in osteoporotic rabbit femurs. The regenerative effects of injectable boron-containing nano-hydroxyapatite composites from 6 to 12 weeks, which may prevent osteoporotic femoral fractures, were assessed. Boron-containing (10 μg/ml) nano-hydroxyapatite composites were injected into the intramedullary femoral cavity with hyaluronan. These significantly increased the histomorphometric new bone surface to the total bone surface ratio at 6 and 9 weeks. The micro-tomographic bone volume to the total volume ratio and bone mineral density in osteoporotic rabbit femurs increased when compared to the hyaluronan (p = 0.004, p = 0.004, p = 0.004, p = 0.01, respectively) and the sham-control (p = 0.01, p = 0.004, p = 0.01, p = 0.037, respectively) groups. The boron-containing group had a higher bone mineralization and new bone formation compared to the nano-hydroxyapatite group, although the difference was not statistically significant. These findings reveal that intramedullary injection of boron-containing nano-hydroxyapatite with hyaluronan increases new bone formation and mineralization in ovariectomized rabbit femurs. Boron-containing nano-hydroxyapatite composites are promising tissue engineering biomaterials that may have regenerative potential in preventing primary and/or secondary femoral fractures in osteoporosis patients.
Collapse
Affiliation(s)
- Eda Çiftci Dede
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06810, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Elif Bilgiç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Mehmet Alper Çetinkaya
- Animal Research Center, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Feza Korkusuz
- Department of Sport Medicine, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
4
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Dagdeviren S, Jung DY, Friedline RH, Noh HL, Kim JH, Patel PR, Tsitsilianos N, Inashima K, Tran DA, Hu X, Loubato MM, Craige SM, Kwon JY, Lee KW, Kim JK. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J 2016; 31:701-710. [PMID: 27811060 DOI: 10.1096/fj.201600832r] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic-euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.-Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dae Young Jung
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall H Friedline
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jong Hun Kim
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Payal R Patel
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nicholas Tsitsilianos
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kunikazu Inashima
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Duy A Tran
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marilia M Loubato
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Siobhan M Craige
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jung Yeon Kwon
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea; and.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Jason K Kim
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; .,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea; and.,Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Frechette DM, Krishnamoorthy D, Adler BJ, Chan ME, Rubin CT. Diminished satellite cells and elevated adipogenic gene expression in muscle as caused by ovariectomy are averted by low-magnitude mechanical signals. J Appl Physiol (1985) 2015; 119:27-36. [PMID: 25930028 PMCID: PMC4491530 DOI: 10.1152/japplphysiol.01020.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/23/2015] [Indexed: 12/15/2022] Open
Abstract
Age-related degeneration of the musculoskeletal system, accelerated by menopause, is further complicated by increased systemic and muscular adiposity. The purpose of this study was to identify at the molecular, cellular, and tissue levels the impact of ovariectomy on adiposity and satellite cell populations in mice and whether mechanical signals could influence any outcomes. Eight-week-old C57BL/6 mice were ovariectomized, with one half subjected to low-intensity vibration (LIV; 0.3 g/90 Hz, 15 min/day, 5 day/wk; n = 10) for 6 wk and the others sham vibrated (OVX; n = 10). Data are compared with age-matched, intact controls (AC; n = 10). In vivo μCT analysis showed that OVX mice gained 43% total (P < 0.001) and 125% visceral adiposity (P < 0.001) compared with their baseline after 6 wk, whereas LIV gained only 21% total (P = 0.01) and 70% visceral adiposity (P < 0.01). Relative to AC, expression of adipogenic genes (PPARγ, FABP4, PPARδ, and FoxO1) was upregulated in OVX muscle (P < 0.05), whereas LIV reduced these levels (P < 0.05). Adipogenic gene expression was inversely related to the percentage of total and reserve satellite cell populations in the muscle, with both declining in OVX compared with AC (-21 and -28%, respectively, P < 0.01). LIV mitigated these declines (-11 and -17%, respectively). These results provide further evidence of the negative consequences of estrogen depletion and demonstrate that mechanical signals have the potential to interrupt subsequent adipogenic gene expression and satellite cell suppression, emphasizing the importance of physical signals in protecting musculoskeletal integrity and slowing the fat phenotype.
Collapse
Affiliation(s)
| | | | - Benjamin J Adler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| |
Collapse
|
7
|
Brett JO, Rando TA. Alive and well? Exploring disease by studying lifespan. Curr Opin Genet Dev 2014; 26:33-40. [PMID: 25005743 DOI: 10.1016/j.gde.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
A common concept in aging research is that chronological age is the most important risk factor for the development of diverse diseases, including degenerative diseases and cancers. The mechanistic link between the aging process and disease pathogenesis, however, is still enigmatic. Nevertheless, measurement of lifespan, as a surrogate for biological aging, remains among the most frequently used assays in aging research. In this review, we examine the connection between 'normal aging' and age-related disease from the point of view that they form a continuum of aging phenotypes. This notion of common mechanisms gives rise to the converse postulate that diseases may be risk factors for accelerated aging. We explore the advantages and caveats associated with using lifespan as a metric to understand cell and tissue aging, focusing on the elucidation of molecular mechanisms and potential therapies for age-related diseases.
Collapse
Affiliation(s)
- Jamie O Brett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|