1
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience 2024; 27:109983. [PMID: 38827404 PMCID: PMC11140209 DOI: 10.1016/j.isci.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Christina Finelli
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Chun-Yuh Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Padrona M, Maroquenne M, El-Hafci H, Rossiaud L, Petite H, Potier E. Glucose depletion decreases cell viability without triggering degenerative changes in a physiological nucleus pulposus explant model. J Orthop Res 2024; 42:1111-1121. [PMID: 37975418 DOI: 10.1002/jor.25742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Although the etiology of intervertebral disc degeneration is still unresolved, the nutrient paucity resulting from its avascular nature is suspected of triggering degenerative processes in its core: the nucleus pulposus (NP). While severe hypoxia has no significant effects on NP cells, the impact of glucose depletion, such as found in degenerated discs (0.2-1 mM), is still uncertain. Using a pertinent ex-vivo model representative of the unique disc microenvironment, the present study aimed, therefore, at determining the effects of "degenerated" (0.3 mM) glucose levels on bovine NP explant homeostasis. The effects of glucose depletion were evaluated on NP cell viability, apoptosis, phenotype, metabolism, senescence, extracellular matrix anabolism and catabolism, and inflammatory mediator production using fluorescent staining, RT-qPCR, (immuno)histology, ELISA, biochemical, and enzymatic assays. Compared to the "healthy" (2 mM) glucose condition, exposure to the degenerated glucose condition led to a rapid and extensive decrease in NP cell viability associated with increased apoptosis. Although the aggrecan and collagen-II gene expression was also downregulated, NP cell phenotype, and senescence, matrix catabolism, and inflammatory mediator production were not, or only slightly, affected by glucose depletion. The present study provided evidence for glucose depletion as an essential player in NP cell viability but also suggested that other microenvironment factor(s) may be involved in triggering the typical shift of NP cell phenotype observed during disc degeneration. The present study contributes new information for better understanding disc degeneration at the cellular-molecular levels and thus helps to develop relevant therapeutical strategies to counteract it.
Collapse
Affiliation(s)
| | | | - Hanane El-Hafci
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | | | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| |
Collapse
|
3
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
4
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo Signaling Modulates the Inflammatory Response of Chondrocytes to Mechanical Compressive Loading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544419. [PMID: 37662374 PMCID: PMC10473729 DOI: 10.1101/2023.06.09.544419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Knee osteoarthritis (KOA) is a degenerative disease resulting from mechanical overload, where direct physical impacts on chondrocytes play a crucial role in disease development by inducing inflammation and extracellular matrix degradation. However, the signaling cascades that sense these physical impacts and induce the pathogenic transcriptional programs of KOA remain to be defined, which hinders the identification of novel therapeutic approaches. Recent studies have implicated a crucial role of Hippo signaling in osteoarthritis. Since Hippo signaling senses mechanical cues, we aimed to determine its role in chondrocyte responses to mechanical overload. Here we show that mechanical loading induces the expression of inflammatory and matrix-degrading genes by activating the nuclear factor-kappaB (NFκB) pathway in a Hippo-dependent manner. Applying mechanical compressional force to 3-dimensional cultured chondrocytes activated NFκB and induced the expression of NFκB target genes for inflammation and matrix degradation (i.e., IL1β and ADAMTS4). Interestingly, deleting the Hippo pathway effector YAP or activating YAP by deleting core Hippo kinases LATS1/2 blocked the NFκB pathway activation induced by mechanical loading. Consistently, treatment with a LATS1/2 kinase inhibitor abolished the upregulation of IL1β and ADAMTS4 caused by mechanical loading. Mechanistically, mechanical loading activates Protein Kinase C (PKC), which activates NFκB p65 by phosphorylating its Serine 536. Furthermore, the mechano-activation of both PKC and NFκB p65 is blocked in LATS1/2 or YAP knockout cells, indicating that the Hippo pathway is required by this mechanoregulation. Additionally, the mechanical loading-induced phosphorylation of NFκB p65 at Ser536 is blocked by the LATS1/2 inhibitor Lats-In-1 or the PKC inhibitor AEB-071. Our study suggests that the interplay of the Hippo signaling and PKC controls NFκB-mediated inflammation and matrix degradation in response to mechanical loading. Chemical inhibitors targeting Hippo signaling or PKC can prevent the mechanoresponses of chondrocytes associated with inflammation and matrix degradation, providing a novel therapeutic strategy for KOA.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, FL
| | | | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Chun-Yuh Huang
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
5
|
Pushpa BT, Rajasekaran S, Easwaran M, Murugan C, Algeri R, Sri Vijay Anand KS, Mugesh Kanna R, Shetty AP. ISSLS PRIZE in basic science 2023: Lactate in lumbar discs-metabolic waste or energy biofuel? Insights from in vivo MRS and T2r analysis following exercise and nimodipine in healthy volunteers. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1491-1503. [PMID: 36790504 DOI: 10.1007/s00586-023-07540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE To quantitatively assess the dynamic changes of Lactate in lumbar discs under different physiological conditions using MRS and T2r. METHODS In step1, MRS and T2r sequences were standardized in 10 volunteers. Step2, analysed effects of high cellular demand. 66 discs of 20 volunteers with no back pain were evaluated pre-exercise (EX-0), immediately after targeted short-time low back exercises (EX-1) and 60 min after (EX-2). In Step 3, to study effects of high glucose and oxygen concentration, 50 lumbar discs in 10 volunteers were analysed before (D0) and after 10 days intake of the calcium channel blocker, nimodipine (D1). RESULTS Lactate showed a distinctly different response to exercise in that Grade 1 discs with a significant decrease in EX-1 and a trend for normalization in Ex-2. In contrast, Pfirrmann grade 2 and 3 and discs above 40 years showed a higher lactate relative to proteoglycan in EX-0, an increase in lactate EX-1 and mild dip in Ex-2. Similarly, following nimodipine, grade 1 discs showed an increase in lactate which was absent in grade 2 and 3 discs. In contrast, exercise and Nimodipine had no significant change in T2r values and MRS spectrum of proteoglycan, N-acetyl aspartate, carbohydrate, choline, creatine, and glutathione across age groups and Pfirrmann grades. CONCLUSION MRS documented changes in lactate response to cellular demand which suggested a 'Lactate Symbiotic metabolic Pathway'. The differences in lactate response preceded changes in Proteoglycan/hydration and thus could be a dynamic radiological biomarker of early degeneration.
Collapse
Affiliation(s)
- B T Pushpa
- Department of Radiodiagnosis, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| | - Murugesh Easwaran
- Ganga Research Centre, 187, Mettupalayam Road, Koundampalayam, Coimbatore, India
| | - Chandhan Murugan
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raksha Algeri
- Department of Radiodiagnosis, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - K S Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| |
Collapse
|
6
|
Salzer E, Mouser VHM, Bulsink JA, Tryfonidou MA, Ito K. Dynamic loading leads to increased metabolic activity and spatial redistribution of viable cell density in nucleus pulposus tissue. JOR Spine 2023; 6:e1240. [PMID: 36994465 PMCID: PMC10041377 DOI: 10.1002/jsp2.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Background Nucleus pulposus (NP) cell density is orchestrated by an interplay between nutrient supply and metabolite accumulation. Physiological loading is essential for tissue homeostasis. However, dynamic loading is also believed to increase metabolic activity and could thereby interfere with cell density regulation and regenerative strategies. The aim of this study was to determine whether dynamic loading could reduce the NP cell density by interacting with its energy metabolism. Methods Bovine NP explants were cultured in a novel NP bioreactor with and without dynamic loading in milieus mimicking the pathophysiological or physiological NP environment. The extracellular content was evaluated biochemically and by Alcian Blue staining. Metabolic activity was determined by measuring glucose and lactate in tissue and medium supernatants. A lactate-dehydrogenase staining was performed to determine the viable cell density (VCD) in the peripheral and core regions of the NP. Results The histological appearance and tissue composition of NP explants did not change in any of the groups. Glucose levels in the tissue reached critical values for cell survival (≤0.5 mM) in all groups. Lactate released into the medium was increased in the dynamically loaded compared to the unloaded groups. While the VCD was unchanged on Day 2 in all regions, it was significantly reduced in the dynamically loaded groups on Day 7 (p ≤ 0.01) in the NP core, which led to a gradient formation of VCD in the group with degenerated NP milieu and dynamic loading (p ≤ 0.05). Conclusion It was demonstrated that dynamic loading in a nutrient deprived environment similar to that during IVD degeneration can increase cell metabolism to the extent that it was associated with changes in cell viability leading to a new equilibrium in the NP core. This should be considered for cell injections and therapies that lead to cell proliferation for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Vivian H. M. Mouser
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jurgen A. Bulsink
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
7
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
ISSLS Prize in Bioengineering Science 2022: low rate cyclic loading as a therapeutic strategy for intervertebral disc regeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1088-1098. [PMID: 35524071 DOI: 10.1007/s00586-022-07239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The intervertebral disc degenerates with age and has a poor propensity for regeneration. Small molecule transport plays a key role in long-term degradation and repair. Convection (bulk flow), induced by low rate cyclic loading of the intervertebral disc, has been shown to increase transport of small molecules. However, the potential therapeutic benefit of low rate cyclic loading on degenerated discs has not been described. The purpose of this study was to determine if a sustained (daily) low rate cyclic loading regimen could slow, arrest, or reverse intervertebral disc degeneration in the rabbit lumbar spine. METHODS Fifty-six New Zealand white rabbits (>12 months old) were designated as either Control (no disc puncture), 8D (disc puncture followed by 8 weeks of degeneration), 16D (disc puncture followed by 16 weeks of degeneration), or Therapy (disc puncture followed by 8 weeks of degeneration and then 8 weeks of daily low rate cyclic loading). Specimens were evaluated by T2 mapping, Pfirrmann scale grading, nucleus volume, disc height index, disc morphology and structure, and proteoglycan content. RESULTS In every metric, mean values for the Therapy group fell between Controls and 8D animals. These results suggest that sustained low rate cyclic loading had a therapeutic effect on the already degenerated disc and the regimen promoted signs of regeneration. If these results translate clinically, this approach could fulfil a significant clinical need by providing a means of non-invasively treating intervertebral disc degeneration.
Collapse
|
10
|
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y, Yan YG. Comprehensive analysis of N6-methyladenosine (m 6A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Translat 2022; 31:126-138. [PMID: 34976732 PMCID: PMC8685911 DOI: 10.1016/j.jot.2021.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To study the N6-methyladenosine (m6A) modification pattern of nucleus pulposus (NP) tissue during intervertebral disc degeneration (IDD). Methods A standing mouse model was generated, and staining and imaging methods were used to evaluate the IDD model. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) was used to analyze m6A methylation-associated transcripts in the NP, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of methylation-related enzymes and conduct bio-informatics analysis. Results The standing mouse model caused IDD. Continuous axial pressure changed the expression of related methylases in degenerated NP tissue. Relative to the control group, the expression levels of KIAA1429, METTL14, METTL3, METTL4, WTAP, DGCR8, EIF3A and YTHDC1 in the experimental group were higher, while those of FTO, ELAVL1, HNRNPC1 and SRSF2 were lower. We identified 985 differentially expressed genes through MeRIP-Seq, among which 363 genes were significantly up-regulated, and 622 genes were significantly down-regulated. In addition, among the 9648 genes counted, 1319 m6A peaks with significant differences in methylation were identified, among which 933 were significantly up-regulated, and 386 were significantly down-regulated. Genes and pathways that were enriched in IDD have been identified. Conclusion The results of this study elucidated the m6A methylation pattern of NP tissue in degenerated lumbar intervertebral disc of mice and provided new perspectives and clues for research on and the treatment of lumbar disc degeneration. The Translational potential of this article As one of the important causes of low back and leg pain, intervertebral disc degeneration brings a huge economic burden to the society, family and medical system. Therefore, understanding the molecular and cellular mechanisms of intervertebral disc degeneration is of great significance for guiding clinical treatment. In this study, methylated RNA immunoprecipitation with next-generation sequencing on mice lumbar nucleus pulposus tissues found that differentially expressed genes and changes in the expression of related methylases, confirming that RNA methylation is involved in intervertebral disc degeneration. The process provides new vision and clues for future research on intervertebral disc degeneration.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hao-xiang Chen
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shan Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-hua Tan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Xie
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-bo Xue
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xue-lin Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| | - Yi-guo Yan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
- Corresponding author. Department of Spine Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
11
|
Mitochondrial quality control in intervertebral disc degeneration. Exp Mol Med 2021; 53:1124-1133. [PMID: 34272472 PMCID: PMC8333068 DOI: 10.1038/s12276-021-00650-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties. Indeed, mitochondrial structural and functional disruption has been observed in degenerated nucleus pulposus (NP) cells and intervertebral discs. Multilevel and well-orchestrated strategies, namely, mitochondrial quality control (MQC), are involved in the maintenance of mitochondrial integrity, mitochondrial proteostasis, the mitochondrial antioxidant system, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Here, we address the key evidence and current knowledge of the role of mitochondrial function in the IDD process and consider how MQC strategies contribute to the protective and detrimental properties of mitochondria in NP cell function. The relevant potential therapeutic treatments targeting MQC for IDD intervention are also summarized. Further clarification of the functional and synergistic mechanisms among MQC mechanisms may provide useful clues for use in developing novel IDD treatments.
Collapse
|
12
|
Wang X, Chen N, Du Z, Ling Z, Zhang P, Yang J, Khaleel M, Khoury AN, Li J, Li S, Huang H, Zhou X, Han Y, Wei F. Bioinformatics analysis integrating metabolomics of m 6A RNA microarray in intervertebral disc degeneration. Epigenomics 2020; 12:1419-1441. [PMID: 32627576 DOI: 10.2217/epi-2020-0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To explore the potential functions and mechanism of N6.methyladenosine (m6A) abnormality of RNAs in nucleus pulposus from the intervertebral disc degeneration (IDD). Materials & methods: We performed rat model, m6A epitranscriptomic microarray, bioinformatics analysis and metabolomics. Results: In IDD, most of the differentially methylated RNAs showed a significant demethylation situation. The competing endogenous RNA network LOC102555094/miR-431/GSK-3β combining downstream Wnt pathway were identified in bioinformatics analysis. For metabolomics, activation of Wnt pathway led to reprogramming of glucose metabolism and enzyme activation of PKM2. Finally, quantitative real-time PCR and methylated RNA immunoprecipitation coupled with quantitative real-time PCR revealed the positive correlation between demethylation of LOC102555094 and expression of both FTO and ZFP217. Conclusion: LOC102555094 might be demethylated by ZFP217, activating FTO and LOC102555094/miR-431/GSK-3β/Wnt played a crucial role in IDD.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Zefeng Du
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Zemin Ling
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510030, China
| | - Penghui Zhang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Mohammed Khaleel
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anthony N Khoury
- Hip Preservation Center, Baylor University Medical Center at Dallas, TX 75390, USA
| | - Jianwen Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Songbo Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Haoyang Huang
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Xinwei Zhou
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Yueyin Han
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| |
Collapse
|
13
|
Yin X, Motorwala A, Vesvoranan O, Levene HB, Gu W, Huang CY. Effects of Glucose Deprivation on ATP and Proteoglycan Production of Intervertebral Disc Cells under Hypoxia. Sci Rep 2020; 10:8899. [PMID: 32483367 PMCID: PMC7264337 DOI: 10.1038/s41598-020-65691-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
As the most common cause of low back pain, the cascade of intervertebral disc (IVD) degeneration is initiated by the disappearance of notochordal cells and progressive loss of proteoglycan (PG). Limited nutrient supply in the avascular disc environment restricts the production of ATP which is an essential energy source for cell survival and function such as PG biosynthesis. The objective of this study was to examine ATP level and PG production of porcine IVD cells under prolonged exposure to hypoxia with physiological glucose concentrations. The results showed notochordal NP and AF cells responded differently to changes of oxygen and glucose. Metabolic activities (including PG production) of IVD cells are restricted under the in-vivo nutrient conditions while NP notochordal cells are likely to be more vulnerable to reduced nutrition supply. Moreover, provision of energy, together or not with genetic regulation, may govern PG production in the IVD under restricted nutrient supply. Therefore, maintaining essential levels of nutrients may reduce the loss of notochordal cells and PG in the IVD. This study provides a new insight into the metabolism of IVD cells under nutrient deprivation and the information for developing treatment strategies for disc degeneration.
Collapse
Affiliation(s)
- Xue Yin
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Aarif Motorwala
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Oraya Vesvoranan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Howard B Levene
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Weiyong Gu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.,Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
14
|
Salazar-Noratto GE, Luo G, Denoeud C, Padrona M, Moya A, Bensidhoum M, Bizios R, Potier E, Logeart-Avramoglou D, Petite H. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells 2019; 38:22-33. [PMID: 31408238 DOI: 10.1002/stem.3079] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.
Collapse
Affiliation(s)
- Giuliana E Salazar-Noratto
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Guotian Luo
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Cyprien Denoeud
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Mathilde Padrona
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Adrien Moya
- South Florida Veterans Affairs Foundation for Research and Education, Inc., Miami, Florida.,Geriatric Research, Education and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, Florida
| | - Morad Bensidhoum
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Esther Potier
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Delphine Logeart-Avramoglou
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Hervé Petite
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
15
|
Jaworski LM, Kleinhans KL, Jackson AR. Effects of Oxygen Concentration and Culture Time on Porcine Nucleus Pulposus Cell Metabolism: An in vitro Study. Front Bioeng Biotechnol 2019; 7:64. [PMID: 31001527 PMCID: PMC6454860 DOI: 10.3389/fbioe.2019.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a common ailment that affects millions of individuals each year and is linked to degeneration of the intervertebral discs in the spine. Intervertebral disc degeneration is known to result from an imbalance in anabolic and catabolic activity by disc cells. Due to the avascular nature of the intervertebral disc, oxygen deficiency may occur in the central nucleus pulposus (NP). The resulting hypoxia affects matrix regulation and energy metabolism of disc cells, although the mechanisms are not fully understood. This study investigates in vitro glucose consumption and gene expression by NP cells over time under varying oxygen tensions. Notochordal porcine NP cells were cultured in agarose discs at 21, 5, or 1% oxygen tension for 1, 5, or 10 days. The expression of 10 key matrix genes, as well as Brachyury (T), by NP cells was analyzed using RT-PCR. Glucose consumption was measured using a two-point method. Results show that culture time and oxygen tension significantly affect glucose consumption rates by porcine NP cells. There were also significant changes in T expression based on oxygen level and culture time. The 1% oxygen tension had a significantly higher T expression on day 10 than the other two groups, which may indicate a better maintenance of the notochordal phenotype. MMP 1 and 13 expression increased over time for all groups, while only the 5% group showed an increase over time for MMP 3. TIMP expression followed the direction of MMPs but to a lesser magnitude. Five percent and twenty-one percent oxygen tensions led to decreases in anabolic gene expression while 1% led to increases. Oxygen concentration and culture time significantly impacted glucose consumption rate and the gene expression of matrix regulatory genes with hypoxic conditions most accurately maintaining the proper NP phenotype. This information is valuable not only for understanding disc pathophysiology, but also for harnessing the potential of notochordal NP cells in therapeutic applications.
Collapse
Affiliation(s)
- Lukas M Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Kelsey L Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alicia R Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
16
|
Abstract
Mechanical loading of the intervertebral disc (IVD) initiates cell-mediated remodeling events that contribute to disc degeneration. Cells of the IVD, nucleus pulposus (NP) and anulus fibrosus (AF), will exhibit various responses to different mechanical stimuli which appear to be highly dependent on loading type, magnitude, duration, and anatomic zone of cell origin. Cells of the NP, the innermost region of the disc, exhibit an anabolic response to low-moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure, while higher magnitudes promote a catabolic response marked by increased protease expression and activity. Cells of the outer AF are responsive to physical forces in a manner that depends on frequency and magnitude, as are cells of the NP, though they experience different forces, deformations, pressure, and osmotic pressure in vivo. Much remains to be understood of the mechanotransduction pathways that regulate IVD cell responses to loading, including responses to specific stimuli and also differences among cell types. There is evidence that cytoskeletal remodeling and receptor-mediated signaling are important mechanotransduction events that can regulate downstream effects like gene expression and posttranslational biosynthesis, all of which may influence phenotype and bioactivity. These and other mechanotransduction events will be regulated by known and to-be-discovered cell-matrix and cell-cell interactions, and depend on composition of extracellular matrix ligands for cell interaction, matrix stiffness, and the phenotype of the cells themselves. Here, we present a review of the current knowledge of the role of mechanical stimuli and the impact upon the cellular response to loading and changes that occur with aging and degeneration of the IVD.
Collapse
Affiliation(s)
- Bailey V Fearing
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, Texas
| | - Lori A Setton
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nadeen O Chahine
- Department of Orthopedic Surgery & Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
17
|
Bardonova LA, Sheikh O, Malova IO, Sorokovikov VA, Byvaltsev VA. ENERGY SUPPLY AND DEMAND IN THE INTERVERTEBRAL DISC. COLUNA/COLUMNA 2018. [DOI: 10.1590/s1808-185120181703193837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The intervertebral disc (IVD) is one of the parts of the body most commonly affected by disease, and it is only recently that we have come closer to understanding the reasons for its degeneration, in which nutrient supply plays a crucial role. In this literature review, we discuss the basic principles and characteristics of energy supply and demand to the IVD. Specifically, we review how different metabolites influence IVD cell activity, the effects of mechanical loading on IVD cell metabolism, and differences in energy metabolism of the annulus fibrous and nucleus pulposus cell phenotypes. Determining the factors that influence nutrient supply and demand in the IVD will enhance our understanding of the IVD pathology, and help to elucidate new therapeutic targets for IVD degeneration treatment.
Collapse
|
18
|
De Geer CM. Intervertebral Disk Nutrients and Transport Mechanisms in Relation to Disk Degeneration: A Narrative Literature Review. J Chiropr Med 2018; 17:97-105. [PMID: 30166966 DOI: 10.1016/j.jcm.2017.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The purpose of this paper was to review the literature regarding the mechanisms leading to degeneration in intervertebral disks and to discuss contributing mechanical and biological factors. Methods The inclusion criteria for the literature review were research studies conducted in the last 3 decades with free full-text available in English. Review articles and articles pertaining to temporomandibular joints and joints of the body other than the intervertebral disk were excluded. The following databases were searched: PubMed, EBSCOhost, and Google Scholar through September 9, 2016. Results A total of 57 articles were used in this review. Intervertebral disk cells require glucose for sustainability and oxygen to synthesize matrix components. Nutrients enter the disk via 2 vascular supply routes: capillary beds of end plates and the peripheral annulus fibrosus. Solute size, shape and charge, compression, and metabolic demand all influence the efficiency of nutrient transport, and alterations of any of these factors may have effects on nutrient transport and, potentially, disk degeneration. Conclusions Progressive nutrient transport disruptions may actively contribute in advancing the phases of degenerative disk disease. Such disruptions include dysfunctional loading and spinal position, lack of motion, high frequency loading, disk injury, aging, smoking, an acidic environment, and a lack of nutrient bioavailability.
Collapse
|
19
|
Gullbrand SE, Smith LJ, Smith HE, Mauck RL. Promise, progress, and problems in whole disc tissue engineering. JOR Spine 2018; 1:e1015. [PMID: 31463442 PMCID: PMC6686799 DOI: 10.1002/jsp2.1015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration is frequently implicated as a cause of back and neck pain, which are pervasive musculoskeletal complaints in modern society. For the treatment of end stage disc degeneration, replacement of the disc with a viable, tissue-engineered construct that mimics native disc structure and function is a promising alternative to fusion or mechanical arthroplasty techniques. Substantial progress has been made in the field of whole disc tissue engineering over the past decade, with a variety of innovative designs characterized both in vitro and in vivo in animal models. However, significant barriers to clinical translation remain, including construct size, cell source, culture technique, and the identification of appropriate animal models for preclinical evaluation. Here we review the clinical need for disc tissue engineering, the current state of the field, and the outstanding challenges that will need to be addressed by future work in this area.
Collapse
Affiliation(s)
- Sarah E. Gullbrand
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvania
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Lachlan J. Smith
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvania
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Harvey E. Smith
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvania
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Robert L. Mauck
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvania
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
20
|
Steward AJ, Kelly DJ, Wagner DR. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure. Tissue Eng Part A 2017; 22:831-9. [PMID: 27137792 DOI: 10.1089/ten.tea.2015.0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on chondrogenesis, suggesting that mechanisms other than purinergic signaling also regulate the response of MSCs to HP.
Collapse
Affiliation(s)
- Andrew J Steward
- 1 Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame , Notre Dame, Indiana.,2 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- 2 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,3 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,4 Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin , Dublin, Ireland
| | - Diane R Wagner
- 5 Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,6 Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| |
Collapse
|
21
|
Zhang B, Hou R, Zou Z, Luo T, Zhang Y, Wang L, Wang B. Mechanically induced autophagy is associated with ATP metabolism and cellular viability in osteocytes in vitro. Redox Biol 2017; 14:492-498. [PMID: 29096322 PMCID: PMC5680519 DOI: 10.1016/j.redox.2017.10.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022] Open
Abstract
Both mechanical loading and intracellular autophagy play important roles in bone homeostasis; however, their relationship remains largely unexplored. The objectives of this study were to determine whether osteocytes undergo autophagy upon fluid shear stress (FSS) loading and to determine the correlation between mechanically induced autophagy and ATP metabolism. Autophagic vacuoles were observed by transmission electron microscopy (TEM) in osteocyte-like MLO-Y4 cells subjected to FSS. Increased autophagic flux was further confirmed by the increased amount of the LC3-II isoform and the degradation of p62. Fluorescent puncta distributed in the cytoplasm were observed in the GFP-LC3 transformed cells subjected to FSS. Furthermore, FSS-induced ATP release and synthesis in osteocytes were attenuated by inhibiting autophagy with 3-MA. After FSS exposure, a high ratio of cell death was observed in cultures pretreated with 3-MA, an autophagy inhibitor, with no significantly different Caspase 3/7 activity. Our results indicated that FSS induces protective autophagy in osteocytes and that mechanically induced autophagy is associated with ATP metabolism and osteocyte survival. From the clinical perspective, it may be possible to enhance skeletal cell survival with drugs that modulate the autophagic state, and the autophagy-related pathway could be a potential target for the prevention of ageing-related bone disorders. Fluid flow shear stress (FSS) induces activation of autophagic flux in MLO-Y4 osteocytes. FSS-induced autophagy promoted ATP metabolism in MLO-Y4 osteocytes. Inhibited autophagy decreased FSS-induced ATP release. FSS-induced autophagy was beneficial to the osteocyte survival after FSS exposure.
Collapse
Affiliation(s)
- Bingbing Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rutao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhen Zou
- Department of Medical Laboratory Technology, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Medical Laboratory Technology, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Enhancement of Energy Production of the Intervertebral Disc by the Implantation of Polyurethane Mass Transfer Devices. Ann Biomed Eng 2017; 45:2098-2108. [PMID: 28612187 DOI: 10.1007/s10439-017-1867-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Insufficient nutrient supply has been suggested to be one of the etiologies for intervertebral disc (IVD) degeneration. We are investigating nutrient transport into the IVD as a potential treatment strategy for disc degeneration. Most cellular activities in the IVD (e.g., cell proliferation and extracellular matrix production) are mainly driven by adenosine-5'-triphosphate (ATP) which is the main energy currency. The objective of this study was to investigate the effect of increased mass transfer on ATP production in the IVD by the implantation of polyurethane (PU) mass transfer devices. In this study, the porcine functional spine units were used and divided into intact, device and surgical groups. For the device and surgical groups, two puncture holes were created bilaterally at the dorsal side of the annulus fibrosus (AF) region and the PU mass transfer devices were only implanted into the holes in the device group. Surgical groups were observed for the effects of placing the holes through the AF only. After 7 days of culture, the surgical group exhibited a significant reduction in the compressive stiffness and disc height compared to the intact and device groups, whereas no significant differences were found in compressive stiffness, disc height and cell viability between the intact and device groups. ATP, lactate and the proteoglycan contents in the device group were significantly higher than the intact group. These results indicated that the implantation of the PU mass transfer device can promote the nutrient transport and enhance energy production without compromising mechanical and cellular functions in the disc. These results also suggested that compromise to the AF has a negative impact on the IVD and must be addressed when treatment strategies are considered. The results of this study will help guide the development of potential strategies for disc degeneration.
Collapse
|
23
|
Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater 2017; 54:212-226. [PMID: 28285075 DOI: 10.1016/j.actbio.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 01/07/2023]
Abstract
We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach. STATEMENT OF SIGNIFICANCE Low back pain (LBP) is associated with degeneration of the intervertebral disc (IVD). We have previously described development of a jelly delivery system (hydrogel). This has the potential to deliver adult stem cells to the centre of the IVD, known as the nucleus pulposus (NP). Here, we have demonstrated that adult stem cells can be safely injected into the NP using small bore needles, reducing damage to the disc. Following injection the hydrogel integrates with surrounding NP tissue, promotes differentiation of stem cells towards disc cells and restores IVD mechanical function. The hydrogel could be used to restore mechanical function to the IVD and deliver cells to promote regeneration of the disc as a minimally invasive treatment for LBP.
Collapse
|
24
|
Dittmar R, van Rijsbergen MM, Ito K. Moderately Degenerated Human Intervertebral Disks Exhibit a Less Geometrically Specific Collagen Fiber Orientation Distribution. Global Spine J 2016; 6:439-46. [PMID: 27433427 PMCID: PMC4947399 DOI: 10.1055/s-0035-1564805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
STUDY DESIGN Collagen fiber orientation analysis in moderately degenerated human cadaveric annulus fibrosus (AF) tissue samples. OBJECTIVE Little is known about the changes in tissue architecture during early degeneration of intervertebral disks (IVDs). As collagen organization strongly affects the disk function, the objective of this study was to quantify the AF collagen orientation and its spatial distribution in moderately degenerated IVDs (Pfirrmann grade III). METHODS AF tissue samples were dissected from four circumferential (anterior, left and right lateral, and posterior) and two radial (outer and inner) locations. Cryosections were imaged using Second Harmonic Generation microscopy, and the collagen fiber orientations per location were determined utilizing a fiber-tracking image analysis algorithm. Also, the proportionality between the fibers aligned in the primary direction versus other oriented fibers was determined. RESULTS Mean collagen fiber angles ranged between 21 and 31 degrees for outer and 15 to 19 degrees for inner AF samples. Mean collagen orientations at circumferential locations were only significantly different from each other at inner anterior and lateral location. Similarly, fiber angles between the outer and inner AF were not significantly different except at the posterior location. Fiber orientation proportionality did not show large variations. Except for a significant difference in outer AF proportionality between posterior and lateral positions, no other differences were observed. CONCLUSION The results of this study provide the first quantitative evidence that the collagen fiber orientation of moderately degenerated disks exhibits a spatial rather than homogeneous distribution and typical collagen orientation gradients characterizing healthy IVDs are only partially retained.
Collapse
Affiliation(s)
- Roman Dittmar
- Division of Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Shared first authorship.
| | - Marc M. van Rijsbergen
- Division of Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Shared first authorship.
| | - Keita Ito
- Division of Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Keita Ito, MD, ScD Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513, GEM-Z 4.115, 5600 MB EindhovenThe Netherlands
| |
Collapse
|
25
|
Gao G, He J, Nong L, Xie H, Huang Y, Xu N, Zhou D. Periodic mechanical stress induces the extracellular matrix expression and migration of rat nucleus pulposus cells by upregulating the expression of intergrin α1 and phosphorylation of downstream phospholipase Cγ1. Mol Med Rep 2016; 14:2457-64. [PMID: 27484337 PMCID: PMC4991676 DOI: 10.3892/mmr.2016.5549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain and an important socioeconomic burden. Degradation of the extracellular matrix (ECM) of nucleus pulposus (NP) cells in the interverterbal disk is important for IDD. Stress of a suitable frequency and amplitude promotes the synthesis of the ECM of NP cells, however, the associated mechanisms remain to be fully elucidated The present study aimed to investigate the effect of integrin α1 on the migration and ECM synthesis of NP cells under soft periodic mechanical stress. Rat NP cells were isolated and plated onto slides, and were then treated with or without the use of a periodic mechanical stress system. The expression levels of integrin α1, α5 and αv, ECM collagen 2A1 (Col2A1) and aggrecan, and the phosphorylation of phospholipase C-γ1 (PLCγ1) were measured using reverse transcription-quantitative polymerase chain reaction and western blot analyses. Cell migration was assayed using a scratch experiment. The results showed that exposure to periodic mechanical stress significantly induced the mRNA expression levels of Col2A1 and aggrecan, cell migration, mRNA expression of integrin α1 and phosphorylation of PLC-γ1 of the NP, compared with the control (P<0.05). Inhibition of the PLCγ1 protein by U73122 significantly decreased the ECM expression under periodic mechanical stress (P<0.05). Small interfering RNA-mediated integrin α1 gene knockdown suppressed the mRNA expression levels of Col2A1 and aggrecan, and suppressed the migration and phosphorylation of PLCγ1 of the NP cells under periodic mechanical stress, compared with the control (P<0.05). In conclusion, periodic mechanical stress induced ECM expression and the migration of NP cells via upregulating the expression of integrin α1 and the phosphorylation of downstream PLCγ1. These findings provide novel information to aid the understanding of the pathogenesis and development of IDD.
Collapse
Affiliation(s)
- Gongming Gao
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jin He
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Luming Nong
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hua Xie
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Yongjing Huang
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Nanwei Xu
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Dong Zhou
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
26
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
27
|
Li P, Gan Y, Wang H, Zhang C, Wang L, Xu Y, Song L, Li S, Li S, Ou Y, Zhou Q. Dynamic Compression Effects on Immature Nucleus Pulposus: a Study Using a Novel Intelligent and Mechanically Active Bioreactor. Int J Med Sci 2016; 13:225-34. [PMID: 26941583 PMCID: PMC4773287 DOI: 10.7150/ijms.13747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous cell culture and animal in vivo studies indicate the obvious effects of mechanical compression on disc cell biology. However, the effects of dynamic compression magnitude, frequency and duration on the immature nucleus pulposus (NP) from an organ-cultured disc are not well understood. OBJECTIVE To investigate the effects of a relatively wide range of compressive magnitudes, frequencies and durations on cell apoptosis and matrix composition within the immature NP using an intelligent and mechanically active bioreactor. METHODS Discs from the immature porcine were cultured in a mechanically active bioreactor for 7 days. The discs in various compressive magnitude groups (0.1, 0.2, 0.4, 0.8 and 1.3 MPa at a frequency of 1.0 Hz for 2 hours), frequency groups (0.1, 0.5, 1.0, 3.0 and 5.0 Hz at a magnitude of 0.4 MPa for 2 hours) and duration groups (1, 2, 4 and 8 hours at a magnitude of 0.4 MPa and frequency of 1.0 Hz) experienced dynamic compression once per day. Discs cultured without compression were used as controls. Immature NP samples were analyzed using the TUNEL assay, histological staining, glycosaminoglycan (GAG) content measurement, real-time PCR and collagen II immunohistochemical staining. RESULTS In the 1.3 MPa, 5.0 Hz and 8 hour groups, the immature NP showed a significantly increase in apoptotic cells, a catabolic gene expression profile with down-regulated matrix molecules and up-regulated matrix degradation enzymes, and decreased GAG content and collagen II deposition. In the other compressive magnitude, frequency and duration groups, the immature NP showed a healthier status regarding NP cell apoptosis, gene expression profile and matrix production. CONCLUSION Cell apoptosis and matrix composition within the immature NP were compressive magnitude-, frequency- and duration-dependent. The relatively high compressive magnitude or frequency and long compressive duration are not helpful for maintaining the healthy status of an immature NP.
Collapse
Affiliation(s)
- Pei Li
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yibo Gan
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Haoming Wang
- 2. Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, 404000, China
| | - Chengmin Zhang
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liyuan Wang
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Xu
- 3. Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Song
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Songtao Li
- 4. Department of Orthopedic Surgery, No. 181 Hospital of PLA, Guilin, Guangxi, 541002, China
| | - Sukai Li
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yangbin Ou
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Zhou
- 1. Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
28
|
Lee JTY, Cheung KMC, Leung VYL. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J Orthop Res 2015; 33:1743-55. [PMID: 26036782 DOI: 10.1002/jor.22942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/08/2015] [Indexed: 02/04/2023]
Abstract
Differences in matrix compositions in human nucleus pulposus (NP) clinical samples demand different cell isolation protocols for optimal results but there is no clear guide about this to date. Sub-optimal protocols may result in low cell yield, limited reliability of results or even failure of experiments. Cell yield, viability and attachment of cells isolated from bovine NP tissue with different protocols were estimated by cell counting, Trypan blue staining and cell culturing respectively. RNA was extracted from isolated cells and quantified by Nanodrop spectrometry and RT-qPCR. Higher collagenase concentration, longer digestion duration and pronase pre-treatment increased the cell yield. Cell viability remained high (<5% dead cells) even after 0.2% collagenase treatment for overnight. NP cells remained to have high ACAN, COL2A1, CDH2, KRT18, and KRT19 expression compared to muscle cells for different cell isolation conditions tested. Digestion by collagenase alone without the use of pronase could isolate cells from human degenerated NP tissue but clusters of cells were observed. We suggest the use of the disappearance of tissue as an indirect measure of cells released. This study provides a guide for researchers to decide the parameters involved in NP cell isolation for optimal outcome.
Collapse
Affiliation(s)
- Juliana T Y Lee
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
29
|
Wang F, Shi R, Cai F, Wang YT, Wu XT. Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells Dev 2015; 24:2479-95. [PMID: 26228642 DOI: 10.1089/scd.2015.0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in segmental instability and irritates neural compressive symptoms, such as low back pain and motor deficiency. The transplanting of stem cell into degenerative discs has attracted increasing clinical attention, as a new and proven approach to alleviating disc degeneration and to relieving discogenic pains. Aside from supplementation with stem cells, the IVD itself already contains a pool of stem and progenitor cells. Since the resident disc stem cells are incapable of reversing the pathologic changes that occur during aging and disc degeneration, it has been debated as to whether transplanted stem cells are capable of providing an efficient and durable therapeutic effect, even though there have been positive outcomes in both animal models and in clinical trials. This review aims to decipher the interactions between the stem cell and the disc microenvironment. Within their new niches in the IVD, the exogenous stem cell shows metabolic adaptation to the low-glucose supply, hypoxia, and compressive loadings, but demonstrates little tolerance to the disc-like acidity and hypertonicity. Similarly, the survival of endogenous stem cells is threatened as well by the harsh disc microenvironment, which may exhaust the stem cell resources and restrict the self-repair capacity of a degenerating IVD. To eliminate the intrinsic obstacles within the stressful disc niches, stem cells should be delivered with an injectable scaffold that provides both survival and mechanical support. Quick healing or concretion of the injection injuries, which minimizes stem cell leakage and disturbance to disc homeostasis, is of equal importance toward achieving efficient stem cell-based disc regeneration.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Yun-Tao Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| |
Collapse
|
30
|
Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics. Curr Rev Musculoskelet Med 2015; 8:18-31. [PMID: 25694233 DOI: 10.1007/s12178-014-9253-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.
Collapse
|
31
|
Reitmaier S, Kreja L, Gruchenberg K, Kanter B, Silva-Correia J, Oliveira JM, Reis RL, Perugini V, Santin M, Ignatius A, Wilke HJ. In vivo biofunctional evaluation of hydrogels for disc regeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 23:19-26. [PMID: 24121748 PMCID: PMC3897837 DOI: 10.1007/s00586-013-2998-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. METHODS In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. RESULTS Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. CONCLUSIONS None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioning.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Ludwika Kreja
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Katharina Gruchenberg
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Britta Kanter
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Joana Silva-Correia
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Valeria Perugini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Anita Ignatius
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Hans-Joachim Wilke
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| |
Collapse
|
32
|
Gonzales S, Wang C, Levene H, Cheung HS, Huang CYC. ATP promotes extracellular matrix biosynthesis of intervertebral disc cells. Cell Tissue Res 2014; 359:635-642. [PMID: 25407524 DOI: 10.1007/s00441-014-2042-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023]
Abstract
We have recently found a high accumulation of extracellular adenosine triphosphate (ATP) in the center of healthy porcine intervertebral discs (IVD). Since ATP is a powerful extracellular signaling molecule, extracellular ATP accumulation might regulate biological activities in the IVD. The objective of this study was therefore to investigate the effects of extracellular ATP on the extracellular matrix (ECM) biosynthesis of porcine IVD cells isolated from two distinct anatomical regions: the annulus fibrosus (AF) and nucleus pulposus (NP). ATP treatment significantly promotes ECM deposition and corresponding gene expression (aggrecan and type II collagen) by both cell types in three-dimensional agarose culture. A significant increase in ECM accumulation has been found in AF cells at a lower ATP treatment level (20 μM) compared with NP cells (100 μM), indicating that AF cells are more sensitive to extracellular ATP than NP cells. NP cells also exhibit higher ECM accumulation and intracellular ATP than AF cells under control and treatment conditions, suggesting that NP cells are intrinsically more metabolically active. Moreover, ATP treatment also augments the intracellular ATP level in NP and AF cells. Our findings suggest that extracellular ATP not only promotes ECM biosynthesis via a molecular pathway, but also increases energy supply to fuel that process.
Collapse
Affiliation(s)
- Silvia Gonzales
- Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL, 33124-0621, USA
| | - Chong Wang
- Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL, 33124-0621, USA
| | - Howard Levene
- Department of Neurological Surgery, University of Miami, Miami, FL, 33136, USA
| | - Herman S Cheung
- Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL, 33124-0621, USA
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Chun-Yuh Charles Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL, 33124-0621, USA.
| |
Collapse
|
33
|
Abstract
Extracellular adenosine-5'-triphosphate (ATP) triggers biological responses in a wide variety of cells and tissues and activates signaling cascades that affect cell membrane potential and excitability. It has been demonstrated that compressive loading promotes ATP production and release by intervertebral disc (IVD) cells, while a high level of extracellular ATP accumulates in the nucleus pulposus (NP) of the IVD. In this study, a noninvasive system was developed to measure ATP-induced changes in the membrane potential of porcine IVD cells using the potential sensitive dye di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS).The responses of NP and annulus fibrosus (AF) cells to ATP were examined in monolayer and 3-dimensional cultures. It was found that the pattern and magnitude of membrane potential change in IVD cells induced by extracellular ATP depended on cell type, culture condition, and ATP dose. In addition, gene expression of P2X4 purinergic receptor was found in both cell types. Inhibition of the ATP-induced response by pyridoxalphosphate-6-azophenyl-2', 4'-disulfonate (PPADS), a non-competitive inhibitor of P2 receptors, suggests that ATP may modulate the biological activities of IVD cells via P2 purinergic receptors.
Collapse
|
34
|
Malandrino A, Noailly J, Lacroix D. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc. J Biomech 2014; 47:1520-5. [DOI: 10.1016/j.jbiomech.2014.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 01/03/2023]
|
35
|
Caspase 3 Silencing Inhibits Biomechanical Overload–Induced Intervertebral Disk Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:753-64. [DOI: 10.1016/j.ajpath.2013.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/03/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023]
|
36
|
Wang C, Gonzales S, Levene H, Gu W, Huang CYC. Energy metabolism of intervertebral disc under mechanical loading. J Orthop Res 2013; 31:1733-8. [PMID: 23843186 PMCID: PMC3787952 DOI: 10.1002/jor.22436] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism.
Collapse
Affiliation(s)
- Chong Wang
- Department of Biomedical Engineering, University of Miami, P.O. Box 248294, Coral Gables, Florida, 33146
| | - Silvia Gonzales
- Department of Biomedical Engineering, University of Miami, P.O. Box 248294, Coral Gables, Florida, 33146
| | - Howard Levene
- Department of Neurological Surgery, University of Miami, Miami, Florida, 33136
| | - Weiyong Gu
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, Florida, 33146
| | - Chun-Yuh Charles Huang
- Department of Biomedical Engineering, University of Miami, P.O. Box 248294, Coral Gables, Florida, 33146
| |
Collapse
|
37
|
Reitmaier S, Schmidt H, Ihler R, Kocak T, Graf N, Ignatius A, Wilke HJ. Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 2013; 8:e69610. [PMID: 23894509 PMCID: PMC3722231 DOI: 10.1371/journal.pone.0069610] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose Currently, no studies exist, which attest the suitability of the ovine intervertebral disc as a biomechanical in vivo model for preclinical tests of new therapeutic strategies of the human disc. By measuring the intradiscal pressure in vivo, the current study attempts to characterize an essential biomechanical parameter to provide a more comprehensive physiological understanding of the ovine intervertebral disc. Methods Intradiscal pressure (IDP) was measured for 24 hours within the discs L2-L3 and L4-L5 via a piezo-resistive pressure sensor in one merino sheep. The data were divided into an activity and a recovery phase and the corresponding average pressures for both phases were determined. Additionally, IDPs for different static and dynamic activities were analyzed and juxtaposed to human data published previously. After sacrificing the sheep, the forces corresponding to the measured IDPs were examined ex vivo in an axial compression test. Results The temporal patterns of IDP where pressure decreased during activity and increased during rest were comparable between humans and sheep. However, large differences were observed for different dynamic activities such as standing up or walking. Here, IDPs averaged 3.73 MPa and 1.60 MPa respectively, approximately two to four times higher in the ovine disc compared to human. These IDPs correspond to lower ex vivo derived axial compressive forces for the ovine disc in comparison to the human disc. For activity and rest, average ovine forces were 130 N and 58 N, compared to human forces of 400-600 N and 100 N, respectively. Conclusions In vivo IDPs were found to be higher in the ovine than in the human disc. In contrast, axial forces derived ex vivo were markedly lower in comparison to humans. Both should be considered in future preclinical tests of intradiscal therapies using the sheep. The techniques used in the current study may serve as a protocol for measuring IDP in a variety of large animal models.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Neidlinger-Wilke C, Galbusera F, Pratsinis H, Mavrogonatou E, Mietsch A, Kletsas D, Wilke HJ. Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23 Suppl 3:S333-43. [DOI: 10.1007/s00586-013-2855-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/24/2022]
|
39
|
Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations. J Mech Behav Biomed Mater 2013; 26:1-10. [PMID: 23796430 DOI: 10.1016/j.jmbbm.2013.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/21/2013] [Accepted: 05/14/2013] [Indexed: 11/23/2022]
Abstract
Numerical studies of the intervertebral disc (IVD) are important to better understand the load transfer and the mechanobiological processes within the disc. Among the relevant calculations, fluid-related outputs are critical to describe and explore accurately the tissue properties. Porohyperelastic finite element models of IVD can describe accurately the disc behaviour at the organ level and allow the inclusion of fluid effects. However, results may be affected by numerical instabilities when fast load rates are applied. We hypothesized that such instabilities would appear preferentially at material discontinuities such as the annulus-nucleus boundary and should be considered when testing mesh convergence. A L4-L5 IVD model including the nucleus, annulus and cartilage endplates were tested under pure rotational loads, with different levels of mesh refinement. The effect of load relaxation and swelling were also studied. Simulations indicated that fluid velocity oscillations appeared due to numerical instability of the pore pressure spatial derivative at material discontinuities. Applying local refinement only was not enough to eliminate these oscillations. In fact, mesh refinements had to be local, material-dependent, and supplemented by the creation of a material transition zone, including interpolated material properties. Results also indicated that oscillations vanished along load relaxation, and faster attenuation occurred with the incorporation of the osmotic pressure. We concluded that material discontinuities are a major cause of instability for poromechanical calculations in multi-tissue models when load velocities are simulated. A strategy was presented to address these instabilities and recommendations on the use of IVD porohyperelastic models were given.
Collapse
|
40
|
Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 2013; 22:1162-76. [PMID: 23259403 DOI: 10.1089/scd.2012.0597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nucleus pulposus (NP) plays a prominent role in both the onset and progression of intervertebral disc degeneration. While autologous repair strategies have demonstrated some success, their in vitro culture system is outdated and insufficient for maintaining optimally functioning cells through the required extensive passaging. Consequently, the final population of cells may be unsuitable for the overwhelming task of repairing tissue in vivo and could result in subpar clinical outcomes. Recent work has identified synovium-derived stem cells (SDSCs) as a potentially important new candidate. This population of precursors can promote matrix regeneration and additionally restore the balance of catabolic and anabolic metabolism of surrounding cells. Another promising application is their ability to produce an extracellular matrix in vitro that can be modified via decellularization to produce a tissue-specific substrate for efficient cell expansion, while retaining chondrogenic potential. When combined with hypoxia, soluble factors, and other environmental regulators, the resultant complex microenvironment will more closely resemble the in vivo niche, which further improves the cell capacity, even after extensive passaging. In this review, the adaptive mechanisms NP cells utilize in vivo are considered for insight into what factors are important for constructing a tissue-specific in vitro niche. Evidence for the use of SDSCs for NP regeneration is also discussed. Many aspects of NP behavior are still unknown, which could lead to future work yielding key information on producing sufficient numbers of a high-quality NP-specific population that is able to regenerate deteriorated NP in vivo.
Collapse
Affiliation(s)
- Mark Shoukry
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506-9196, USA
| | | | | |
Collapse
|
41
|
Wang C, Huang CYC, Lin WC. Optical ATP biosensor for extracellular ATP measurement. Biosens Bioelectron 2013; 43:355-61. [PMID: 23357001 DOI: 10.1016/j.bios.2012.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 01/05/2023]
Abstract
Extracellular Adenosine-5'-triphosphate (ATP) is an important multi-functional molecule which can mediate numerous physiological activities by activating purinergic P2 receptors. The objective of this study was to develop a novel optical ATP sensor for in-situ extracellular ATP measurement in biological tissues. The optical ATP sensor was made by applying two layers of sol-gel coating to the end of an optical fiber probe end. The first layer contained ruthenium complex for sensing changes in oxygen concentration which resulted from oxidation of ATP by glycerol kinase and glycerol 3-phosphate oxidase entrapped in the second layer. It was demonstrated that the optical ATP sensor was capable of detecting ATP concentration at a broad range of 10(-3)mM to 1.5mM.A compensation method was established to enable the optical sensor to determine ATP concentration at different oxygen levels. This study also demonstrated the capability of ATP sensor to measure extracellular ATP content in biological tissues (i.e., porcine intervertebral disc). In addition, it was shown that the optical ATP sensor was not affected by pH and derivatives of extracellular ATP. Therefore, the newly developed optical ATP sensor is a good option for in-situ extracellular ATP measurement.
Collapse
Affiliation(s)
- C Wang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | | |
Collapse
|
42
|
Smith LJ, Chiaro JA, Nerurkar NL, Cortes DH, Horava SD, Hebela NM, Mauck RL, Dodge GR, Elliott DM. Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 2011; 22:291-301. [PMID: 22102324 PMCID: PMC3424069 DOI: 10.22203/ecm.v022a22] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc degeneration is characterized by a cascade of cellular, biochemical and structural changes that may lead to functional impairment and low back pain. Interleukin-1 beta (IL-1β) is strongly implicated in the etiology of disc degeneration, however there is currently no direct evidence linking IL-1β upregulation to downstream biomechanical changes. The objective of this study was to evaluate long-term agarose culture of nucleus pulposus (NP) cells as a potential in vitro model system to investigate this. Bovine NP cells were cultured in agarose for 49 days in a defined medium containing transforming growth factor-beta 3, after which both mechanical properties and composition were evaluated and compared to native NP. The mRNA levels of NP cell markers were compared to those of freshly isolated NP cells. Glycosaminoglycan (GAG) content, aggregate modulus and hydraulic permeability of mature constructs were similar to native NP, and aggrecan and SOX9 mRNA levels were not significantly different from freshly isolated cells. To investigate direct links between IL-1β and biomechanical changes, mature agarose constructs were treated with IL-1β, and effects on biomechanical properties, extracellular matrix composition and mRNA levels were quantified. IL-1β treatment resulted in upregulation of a disintegrin and metalloproteinase with thrombospondin motifs 4, matrix metalloproteinase-13 and inducible nitric oxide sythase, decreased GAG and modulus, and increased permeability. To evaluate the model as a test platform for therapeutic intervention, co-treatment with IL-1β and IL-1 receptor antagonist (IL-1ra) was evaluated. IL-1ra significantly attenuated degradative changes induced by IL-1β. These results suggest that this in vitro model represents a reliable and cost-effective platform for evaluating new therapies for disc degeneration.
Collapse
|