1
|
Wen W, Zhao Z, Zheng Z, Zhao S, Zhao H, Cheng X, Du H, Li Z, Wang S, Qiu G, Wu Z, Zhang TJ, Wu N. Rare variant association analyses reveal the significant contribution of carbohydrate metabolic disturbance in severe adolescent idiopathic scoliosis. J Med Genet 2024; 61:666-676. [PMID: 38724173 PMCID: PMC11228217 DOI: 10.1136/jmg-2023-109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.
Collapse
Affiliation(s)
- Wen Wen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Feinberg School of Medicine, Northwestern University; Chicago, Chicago, Illinois, USA
| | - Xi Cheng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, Beijing, Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
3
|
Terhune E, Heyn P, Piper C, Wethey C, Monley A, Cuevas M, Hadley Miller N. Association between genetic polymorphisms and risk of adolescent idiopathic scoliosis in case-control studies: a systematic review. J Med Genet 2024; 61:196-206. [PMID: 37696603 DOI: 10.1136/jmg-2022-108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥10° with rotation. Approximately 2%-3% of children across populations are affected with AIS, and this condition is responsible for ~$3 billion in costs within the USA. Although AIS is believed to have a strong genetic contribution, clinical translation of identified genetic variants has stalled. METHODS The databases MEDLINE (via PubMed), Embase, Google Scholar and Ovid MEDLINE were searched and limited to articles in English. Title and abstract, full-text and data extraction screening was conducted through Covidence, followed by data transfer to a custom REDCap database. Studies containing variant-level data using genome-wide methodology as well as validation studies of genome-wide methods were considered. Quality assessment was conducted using Q-Genie. RESULTS 33 studies were included, including 9 genome-wide association studies, 4 whole exome sequencing and 20 validation studies. Combined, these studies included data from >35,000 cases and >67,000 controls, not including validation cohorts. Additionally, results from six meta-analyses containing novel cohorts were also reported. All included study cohorts were from populations of primarily East Asian or Caucasian descent. Quality assessment found that overall study quality was high and control group selection was moderate. The highest number of reported associations were in single nucleotide polymorphisms (SNPs) in or near LBX1, LBX1-AS1, GPR126/ADGRG6 or BNC2. CONCLUSION AIS risk may be influenced by specific SNPs, particularly those in/near LBX1 and GPR126. Translatability of study findings is unknown due to an underrepresentation of most ethnic groups as well as few identified genome-wide studies. Further studies may benefit from increased cohort diversity and thorough evaluation of control cohort groups.
Collapse
Affiliation(s)
- Elizabeth Terhune
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Patricia Heyn
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christi Piper
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cambria Wethey
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Monley
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa Cuevas
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Liu S, Ho LY, Hassan Beygi B, Wong MS. Effectiveness of Orthotic Treatment on Clinical Outcomes of the Patients with Adolescent Idiopathic Scoliosis Under Different Wearing Compliance Levels: A Systematic Review. JBJS Rev 2023; 11:01874474-202310000-00010. [PMID: 38079521 DOI: 10.2106/jbjs.rvw.23.00110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND Wearing spinal orthosis for 16 to 23 hours a day during the teenage years could be challenging and stressful for patients with adolescent idiopathic scoliosis (AIS). The investigation of clinical outcomes under various orthosis-wearing compliances can provide helpful insight into orthotic treatment dosage. This systematic review aims to investigate actual orthosis-wearing compliance and evaluate the effectiveness of orthotic treatment in controlling scoliotic curvature and preventing surgery for patients with AIS under various levels of orthosis-wearing compliance. METHODS A literature search of 7 electronic databases, namely PubMed, MEDLINE, Cochrane Library, Scopus, CINAHL Complete, Web of Science, and Embase, was conducted on May 19, 2023. Participant characteristics, orthotic treatment protocols, compliance information, outcome measures, and key findings were extracted. The Newcastle-Ottawa Scales were used to evaluate the quality of included cohort and case-control studies. RESULTS This study systematically reviewed 17 of 1,799 identified studies, including 1,981 subjects. The actual compliance was inconsistent and ranged from 7.0 to 18.8 hours daily. The proportion of compliant subjects in each study varied from 16.0% to 78.6% due to the heterogeneity of calculation period, measurement methods, and orthosis prescription time. Thirteen studies were investigated to determine the effectiveness of orthotic treatment in controlling curve deformity under different compliance groups, and 2 studies compared the compliance under different treatment outcomes. The rate of curve progression, defined as surpassing the measurement error threshold of 5° or 6° after orthotic treatment, varied from 1.8% to 91.7% across the studies. Ten studies defined the treatment failure, surgery, or surgery indication as Cobb angle progressing to a certain degree (e.g., 40°, 45°, or 50°) and reported failure/surgery/surgery indication rates ranging from 0.0% to 91.7% among different compliance level groups. CONCLUSION This review found that the actual compliance with orthotic treatment was generally lower than the prescribed wearing time and exhibited wide variation among different studies. The electronic compliance monitors show promise in regular orthotic treatment practice. More importantly, the group with higher and consistent compliance has significantly less curve progression and lower surgery or failure rate than the group with lower and inconsistent compliance. Further studies are proposed to investigate the minimal orthosis-wearing compliance in patients with AIS treated with different types of orthoses. LEVEL OF EVIDENCE Level III, Systematic Review. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Shan Liu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | | | | | | |
Collapse
|
6
|
Otomo N, Khanshour AM, Koido M, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Herring JA, Ogura Y, Takahashi Y, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Inami S, Wise CA, Kochi Y, Matsumoto M, Ikegawa S, Watanabe K, Terao C. Evidence of causality of low body mass index on risk of adolescent idiopathic scoliosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1089414. [PMID: 37415668 PMCID: PMC10319580 DOI: 10.3389/fendo.2023.1089414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Adolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated. Material and methods Mendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese. Results Significant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI. Conclusions Our Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS.
Collapse
Affiliation(s)
- Nao Otomo
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Anas M. Khanshour
- Center for Translational Research, Scottish Rite for Children, Dallas, TX, United States
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - John A. Herring
- Department of Orthopaedic Surgery , Scottish Rite for Children, Dallas, TX, United States
- Department of Orthopaedic Surgery and Pediatric, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yoji Ogura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Koki Uno
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Manabu Ito
- Department of Orthopaedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopaedic and Spine Surgery, Fukuoka Children’s Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Takahiro Iida
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
- Department of Orthopaedic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery Graduated School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopaedic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Mitsuru Yagi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Eijiro Okada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Katsuki Kono
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Kono Orthopaedic Clinic, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Inami
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Carol A. Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX, United States
- Department of Orthopaedic Surgery and Pediatric, University of Texas Southwestern Medical Center, Dallas, TX, United States
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental and University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
7
|
Terhune EA, Monley AM, Cuevas MT, Wethey CI, Gray RS, Hadley-Miller N. Genetic animal modeling for idiopathic scoliosis research: history and considerations. Spine Deform 2022; 10:1003-1016. [PMID: 35430722 DOI: 10.1007/s43390-022-00488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of musculoskeletal surgery and research. METHODS In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations for researchers. RESULTS Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in humans, scoliosis is a difficult condition to replicate in model organisms. CONCLUSION We advocate careful selection of animal models based on the scientific question and introduce gaps and limitations in the current literature. We advocate future research efforts to include animal models with multiple characterized genetic or environmental perturbations to reflect current understanding of the human condition.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA. .,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Janusz P, Tokłowicz M, Andrusiewicz M, Kotwicka M, Kotwicki T. Association of LBX1 Gene Methylation Level with Disease Severity in Patients with Idiopathic Scoliosis: Study on Deep Paravertebral Muscles. Genes (Basel) 2022; 13:genes13091556. [PMID: 36140724 PMCID: PMC9498322 DOI: 10.3390/genes13091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic scoliosis (IS) is a multifactorial disease with a genetic background. The association of Ladybird Homeobox 1 (LBX1) polymorphisms with IS has been proven in multiple studies. However, the epigenetic mechanisms have not been evaluated. This study aimed to evaluate the LBX1 methylation level in deep paravertebral muscles in order to analyze its association with IS occurrence and/or IS severity. Fifty-seven IS patients and twenty non-IS patients were examined for the paravertebral muscles’ methylation level of the LBX1 promoter region. There was no significant difference in methylation level within paravertebral muscles between patients vs. controls, except for one CpG site. The comparison of the paravertebral muscles’ LBX1 promoter region methylation level between patients with a major curve angle of ≤70° vs. >70° revealed significantly higher methylation levels in 17 of 23 analyzed CpG sequences at the convex side of the curvature in patients with a major curve angle of >70° for the reverse strand promoter region. The association between LBX1 promoter methylation and IS severity was demonstrated. In patients with severe IS, the deep paravertebral muscles show an asymmetric LBX1 promoter region methylation level, higher at the convex scoliosis side, which reveals the role of locally acting factors in IS progression.
Collapse
Affiliation(s)
- Piotr Janusz
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, 28 Czerwca 1956 r. Street 135/147, 61-545 Poznań, Poland
| | - Małgorzata Tokłowicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8547167
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | - Tomasz Kotwicki
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, 28 Czerwca 1956 r. Street 135/147, 61-545 Poznań, Poland
| |
Collapse
|
9
|
Marya S, Tambe AD, Millner PA, Tsirikos AI. Adolescent idiopathic scoliosis : a review of aetiological theories of a multifactorial disease. Bone Joint J 2022; 104-B:915-921. [PMID: 35909373 DOI: 10.1302/0301-620x.104b8.bjj-2021-1638.r1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article: Bone Joint J 2022;104-B(8):915-921.
Collapse
Affiliation(s)
- Shivan Marya
- Royal Manchester Children's Hospital, Manchester, UK
| | | | | | - Athanasios I Tsirikos
- Scottish National Spine Deformity Centre, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
10
|
Terhune EA, Heyn PC, Piper CR, Hadley-Miller N. Genetic variants associated with the occurrence and progression of adolescent idiopathic scoliosis: a systematic review protocol. Syst Rev 2022; 11:118. [PMID: 35681176 PMCID: PMC9178937 DOI: 10.1186/s13643-022-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥ 10° with rotation. Approximately 2-3% of children in most populations are affected with AIS, and this condition is responsible for approximately $1.1 billion in surgical costs to the US healthcare system. Although a genetic factor for AIS has been demonstrated for decades, with multiple potentially contributory loci identified across populations, treatment options have remained limited to bracing and surgery. METHODS The databases MEDLINE (via PubMed), Embase, Google Scholar, and Ovid MEDLINE will be searched and limited to articles in English. We will conduct title and abstract, full-text, and data extraction screening through Covidence, followed by data transfer to a custom REDCap database. Quality assessment will be confirmed by multiple reviewers. Studies containing variant-level data (i.e., GWAS, exome sequencing) for AIS subjects and controls will be considered. Outcomes of interest will include presence/absence of AIS, scoliosis curve severity, scoliosis curve progression, and presence/absence of nucleotide-level variants. Analyses will include odds ratios and relative risk assessments, and subgroup analysis (i.e., males vs. females, age groups) may be applied. Quality assessment tools will include GRADE and Q-Genie for genetic studies. DISCUSSION In this systematic review, we seek to evaluate the quality of genetic evidence for AIS to better inform research efforts, to ultimately improve the quality of patient care and diagnosis. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration #CRD42021243253.
Collapse
Affiliation(s)
- Elizabeth A. Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Patricia C. Heyn
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Center for Gait and Movement Analysis, Children’s Hospital Colorado, Aurora, CO USA
- Cochrane US University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Christi R. Piper
- Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Musculoskeletal Research Center, Children’s Hospital Colorado, Aurora, CO USA
| |
Collapse
|
11
|
Cheng T, Einarsdottir E, Kere J, Gerdhem P. Idiopathic scoliosis: a systematic review and meta-analysis of heritability. EFORT Open Rev 2022; 7:414-421. [PMID: 35638601 PMCID: PMC9257730 DOI: 10.1530/eor-22-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Tian Cheng
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Research Center, Helsinki, Finland
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Reconstructive Orthopaedics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Otomo N, Lu HF, Koido M, Kou I, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Ogura Y, Takahashi Y, Nakajima M, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Kaneko K, Inami S, Kochi Y, Chang WC, Matsumoto M, Watanabe K, Ikegawa S, Terao C. Polygenic Risk Score of Adolescent Idiopathic Scoliosis for Potential Clinical Use. J Bone Miner Res 2021; 36:1481-1491. [PMID: 34159637 DOI: 10.1002/jbmr.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common disease causing three-dimensional spinal deformity in as many as 3% of adolescents. Development of a method that can accurately predict the onset and progression of AIS is an immediate need for clinical practice. Because the heritability of AIS is estimated as high as 87.5% in twin studies, prediction of its onset and progression based on genetic data is a promising option. We show the usefulness of polygenic risk score (PRS) for the prediction of onset and progression of AIS. We used AIS genomewide association study (GWAS) data comprising 79,211 subjects in three cohorts and constructed a PRS based on association statistics in a discovery set including 31,999 female subjects. After calibration using a validation data set, we applied the PRS to a test data set. By integrating functional annotations showing heritability enrichment in the selection of variants, the PRS demonstrated an association with AIS susceptibility (p = 3.5 × 10-40 with area under the receiver-operating characteristic [AUROC] = 0.674, sensitivity = 0.644, and specificity = 0.622). The decile with the highest PRS showed an odds ratio of as high as 3.36 (p = 1.4 × 10-10 ) to develop AIS compared with the fifth in decile. The addition of a predictive model with only a single clinical parameter (body mass index) improved predictive ability for development of AIS (AUROC = 0.722, net reclassification improvement [NRI] 0.505 ± 0.054, p = 1.6 × 10-8 ), potentiating clinical use of the prediction model. Furthermore, we found the Cobb angle (CA), the severity measurement of AIS, to be a polygenic trait that showed a significant genetic correlation with AIS susceptibility (rg = 0.6, p = 3.0 × 10-4 ). The AIS PRS demonstrated a significant association with CA. These results indicate a shared polygenic architecture between onset and progression of AIS and the potential usefulness of PRS in clinical settings as a predictor to promote early intervention of AIS and avoid invasive surgery. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nao Otomo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hsing-Fang Lu
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Kazuki Takeda
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yoji Ogura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Shohei Minami
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Koki Uno
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | | | - Manabu Ito
- Department of Orthopedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopedic & Spine Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Takahiro Iida
- First Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopedic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Fujita Health University, Toyoake, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eijiro Okada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Katsuki Kono
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Kono Orthopaedic Clinic, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsutomu Akazawa
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Teppei Suzuki
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inami
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental and University, Tokyo, Japan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University-Wangfang Hospital, Taipei, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
13
|
Severity of Idiopathic Scoliosis Is Associated with Differential Methylation: An Epigenome-Wide Association Study of Monozygotic Twins with Idiopathic Scoliosis. Genes (Basel) 2021; 12:genes12081191. [PMID: 34440365 PMCID: PMC8391702 DOI: 10.3390/genes12081191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms may contribute to idiopathic scoliosis (IS). We identified 8 monozygotic twin pairs with IS, 6 discordant (Cobb angle difference > 10°) and 2 concordant (Cobb angle difference ≤ 2°). Genome-wide methylation in blood was measured with the Infinium HumanMethylation EPIC Beadchip. We tested for differences in methylation and methylation variability between discordant twins and tested the association between methylation and curve severity in all twins. Differentially methylated region (DMR) analyses identified gene promoter regions. Methylation at cg12959265 (chr. 7 DPY19L1) was less variable in cases (false discovery rate (FDR) = 0.0791). We identified four probes (false discovery rate, FDR < 0.10); cg02477677 (chr. 17, RARA gene), cg12922161 (chr. 2 LOC150622 gene), cg08826461 (chr. 2), and cg16382077 (chr. 7) associated with curve severity. We identified 57 DMRs where hyper- or hypo-methylation was consistent across the region and 28 DMRs with a consistent association with curve severity. Among DMRs, 21 were correlated with bone methylation. Prioritization of regions based on methylation concordance in bone identified promoter regions for WNT10A (WNT signaling), NPY (regulator of bone and energy homeostasis), and others predicted to be relevant for bone formation/remodeling. These regions may aid in understanding the complex interplay between genetics, environment, and IS.
Collapse
|
14
|
Tang NLS, Dobbs MB, Gurnett CA, Qiu Y, Lam TP, Cheng JCY, Hadley-Miller N. A Decade in Review after Idiopathic Scoliosis Was First Called a Complex Trait-A Tribute to the Late Dr. Yves Cotrel for His Support in Studies of Etiology of Scoliosis. Genes (Basel) 2021; 12:1033. [PMID: 34356049 PMCID: PMC8306836 DOI: 10.3390/genes12071033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development.
Collapse
Affiliation(s)
- Nelson L. S. Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Matthew B. Dobbs
- Dobbs Clubfoot Center, Paley Orthopedic and Spine Institute, West Palm Beach, FL 33401, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA;
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - T. P. Lam
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Jack C. Y. Cheng
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80012, USA;
| |
Collapse
|
15
|
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M, Rubio-Belmar PA, García-López E, Garzón MJ, Mena-Mollá S, Pallardó FV, Bas T, Viña JR, García-Giménez JL. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020; 140:115563. [PMID: 32768685 DOI: 10.1016/j.bone.2020.115563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.
Collapse
Affiliation(s)
| | | | | | - Pedro Antonio Rubio-Belmar
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - María José Garzón
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan R Viña
- INCLIVA Health Research Institute, Valencia, Spain; Department of Biochemistry, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
16
|
IS (Idiopathic Scoliosis) etiology: Multifactorial genetic research continues. A systematic review 1950 to 2017. J Orthop 2020; 21:421-426. [PMID: 32943828 DOI: 10.1016/j.jor.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022] Open
Abstract
Objective IS (idiopathic scoliosis) is a common spinal condition occurring in otherwise completely healthy adolescents. The root cause of IS remains unclear. This systematic review will focus on an update of genetic factors and IS etiology. Though it is generally accepted that the condition is not due to a single gene effect, etiology studies continue looking for a root cause including genetic variants. Though susceptibility from multiple genetic components is plausible based on known family history data, the literature remains unclear regarding multifactorial genetic influences. The objective of this study was to critically evaluate the evidence behind genetic causes (not single gene) of IS through a systematic review and strength-of-study analysis of existing genetic and genome-wide association studies (GWAS). We used the protocol of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Methods PubMed was searched for the terms IS, scoliotic, spinal curve, genetic, gene, etiology, polymorphisms. Articles were assessed for risk-of-bias. Level-of-evidence grading was completed via Oxford Centre for Evidence-Based Medicine criteria. The assessment scores factor strength of a study in determining a positive or negative association to a gene etiology. Results After screening of 36 eligible papers, 8 relevant studies met inclusion criteria at this time, 3 were in favor of a genetic factor for IS, whereas 5 studies were against it. Conclusion Based on the literature analyzed, there is moderate evidence with a low risk-of-bias that does not clarify a genetic cause of IS. The 2 studies in favor of a genetic etiology were completed in homogeneous populations, limiting their generalizability. Relying on a genetic etiology alone for IS may over simplify its multifactorial nature and limit appreciation of other influences.
Collapse
|
17
|
Wise CA, Sepich D, Ushiki A, Khanshour AM, Kidane YH, Makki N, Gurnett CA, Gray RS, Rios JJ, Ahituv N, Solnica-Krezel L. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res 2020; 8:13. [PMID: 32195011 PMCID: PMC7062733 DOI: 10.1038/s41413-020-0089-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility.
Collapse
Affiliation(s)
- Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Nadja Makki
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610 USA
| | - Christina A. Gurnett
- Departments of Neurology, Washington University School of Medicine, St Louis, MO 63110 USA
- Pediatrics, Washington University School of Medicine, St Louis, MO 63110 USA
- Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX 78723 USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
18
|
Genetic Variants of ABO and SOX6 are Associated With Adolescent Idiopathic Scoliosis in Chinese Han Population. Spine (Phila Pa 1976) 2019; 44:E1063-E1067. [PMID: 30994600 DOI: 10.1097/brs.0000000000003062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE The aim of this study was to determine whether variants of ABO, SOX6, and CDH13 are associated with the susceptibility of AIS in Chinese Han population. SUMMARY OF BACKGROUND DATA A recent large-scale genome-wide association study reported three novel loci in CDH13, ABO, and SOX6 genes associated with adolescent idiopathic scoliosis (AIS) in Japanese population. However, the association of these three genes with AIS in other populations remains obscure. METHODS The SNPs rs4513093, rs687621, and rs1455114 were genotyped in 1208 female patients and 2498 healthy controls. Samples for the expression analysis in paraspinal muscles were collected from 49 AIS and 33 congenital scoliosis (CS) patients during surgical interventions. Chi-square analysis was used to assess the difference regarding genotype and allele frequency between cases and controls. Tissue expressions of ABO, CDH13, and SOX6 were compared between AIS and CS patients by the Student t test. RESULTS SNPs rs4513093 of CDH13 and rs687621 of ABO were found to be significantly associated with AIS with an odds ratio of 0.8691 and 1.203, respectively. There was no significant association of rs1455114 with AIS. Moreover, AIS patients were found to have significantly increased expression of ABO. As for expression of CDH13 and SOX6, no remarkable difference was found between the two groups. CONCLUSION The association of CDH13 and ABO variants with AIS was successfully replicated in the Chinese Han population. More studies are warranted to explore the functional role of ABO in the development of AIS. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Jiang H, Yang Q, Liu Y, Guan Y, Zhan X, Xiao Z, Wei Q. Association between ladybird homeobox 1 gene polymorphisms and adolescent idiopathic scoliosis: A MOOSE-compliant meta-analysis. Medicine (Baltimore) 2019; 98:e16314. [PMID: 31277174 PMCID: PMC6635165 DOI: 10.1097/md.0000000000016314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Ladybird Homeobox 1 (LBX1) gene has been implicated in the etiology of adolescent idiopathic scoliosis (AIS). The association between LBX1 gene polymorphisms and AIS has been investigated in several studies. However, these findings have yield contradictory results rather than conclusive evidence.This study is to provide a meta-analysis of the published case-control studies on the association between LBX1 gene polymorphisms and AIS in Asian and Caucasian populations.This meta-analysis conformed to the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines. We conducted a literature research on PubMed, Embase, Web of Science, and Cochrane Library until February 10, 2018. We included all case-control or cohort studies about association between LBX1 gene polymorphisms and AIS. The Risk Of Bias In Non-randomised Studies-of Interventions and Critical Appraisal Skills Programme were used to evaluate the risk of bias and study quality. We assessed the strength of association by pooled odds ratios (ORs) and 95% confidence intervals (CIs) in all genetic models under a fixed-effect model or random-effect model. We further performed subgroup analysis by ethnicity and sex. Sensitivity analysis and publication bias were also undertaken.A total of 10 studies (11,411 cases and 26,609 controls) were included in this meta-analysis. The pooled results showed a statistically significant association between LBX1 gene polymorphisms and AIS (for rs11190870, T vs C, OR = 1.54, 95% CI = 1.48-1.61, P < .00001; for rs625039, G vs A, OR = 1.50, 95% CI: 1.38-1.62; P < .00001; for rs678741, G vs A, OR = 0.74, 95% CI: 0.63-0.86; P < .0001; for rs11598564, G vs A, OR = 1.41, 95% CI: 1.31-1.51; P < .0001). For stratified analyses by ethnicity and sex, robust significant associations were detected in Asian and Caucasian populations, and in women and men under all genetic models.T allele of rs11190870 and G alleles of rs625039 and rs11598564 represent risk factors for AIS, but G allele of rs678741 may play a protective role in the occurrence of AIS. Further research is needed to confirm this finding and to understand its implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingjun Wei
- Department of Orthopedics Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Khanshour AM, Kou I, Fan Y, Einarsdottir E, Makki N, Kidane YH, Kere J, Grauers A, Johnson TA, Paria N, Patel C, Singhania R, Kamiya N, Takeda K, Otomo N, Watanabe K, Luk KDK, Cheung KMC, Herring JA, Rios JJ, Ahituv N, Gerdhem P, Gurnett CA, Song YQ, Ikegawa S, Wise CA. Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci. Hum Mol Genet 2019; 27:3986-3998. [PMID: 30395268 DOI: 10.1093/hmg/ddy306] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common musculoskeletal disorder of childhood development. The genetic architecture of AIS is complex, and the great majority of risk factors are undiscovered. To identify new AIS susceptibility loci, we conducted the first genome-wide meta-analysis of AIS genome-wide association studies, including 7956 cases and 88 459 controls from 3 ancestral groups. Three novel loci that surpassed genome-wide significance were uncovered in intragenic regions of the CDH13 (P-value_rs4513093 = 1.7E-15), ABO (P-value_ rs687621 = 7.3E-10) and SOX6 (P-value_rs1455114 = 2.98E-08) genes. Restricting the analysis to females improved the associations at multiple loci, most notably with variants within CDH13 despite the reduction in sample size. Genome-wide gene-functional enrichment analysis identified significant perturbation of pathways involving cartilage and connective tissue development. Expression of both SOX6 and CDH13 was detected in cartilage chondrocytes and chromatin immunoprecipitation sequencing experiments in that tissue revealed multiple HeK27ac-positive peaks overlapping associated loci. Our results further define the genetic architecture of AIS and highlight the importance of vertebral cartilage development in its pathogenesis.
Collapse
Affiliation(s)
- Anas M Khanshour
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Ikuyo Kou
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, University of Helsinki, 00014 University of Helsinki, Finland.,Molecular Neurology Research Program, University of Helsinki, 00014 University of Helsinki, Finland.,Department of Biosciences & Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nadja Makki
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yared H Kidane
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Juha Kere
- Folkhälsan Institute of Genetics, University of Helsinki, 00014 University of Helsinki, Finland.,Molecular Neurology Research Program, University of Helsinki, 00014 University of Helsinki, Finland.,Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK.,Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden
| | - Anna Grauers
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden.,Department of Orthopedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden
| | - Todd A Johnson
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nandina Paria
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Chandreshkumar Patel
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richa Singhania
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | | | - Kazuki Takeda
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nao Otomo
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keith D K Luk
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - John A Herring
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan J Rios
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, K54 Huddinge, Stockholm, Sweden.,Department of Orthopedics, Karolinska University Hospital, K54 Huddinge, Stockholm, Sweden
| | - Christina A Gurnett
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory of Bone & Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Carol A Wise
- Sarah M. & Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Nada D, Julien C, Rompré PH, Akoume MY, Gorman KF, Samuels ME, Levy E, Kost J, Li D, Moreau A. Association of Circulating YKL-40 Levels and CHI3L1 Variants with the Risk of Spinal Deformity Progression in Adolescent Idiopathic Scoliosis. Sci Rep 2019; 9:5712. [PMID: 30952886 PMCID: PMC6450973 DOI: 10.1038/s41598-019-41191-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/01/2019] [Indexed: 12/03/2022] Open
Abstract
The cellular and molecular mechanisms underlying spinal deformity progression in adolescent idiopathic scoliosis (AIS) remain poorly understood. In this study, 804 French-Canadian patients and 278 age- and sex-matched controls were enrolled and genotyped for 12 single nucleotide polymorphisms (SNPs) in the chitinase 3-like 1 (CHI3L1) gene or its promoter. The plasma YKL-40 levels were determined by ELISA. We showed that elevation of circulating YKL-40 levels was correlated with a reduction of spinal deformity progression risk. We further identified significant associations of multiple CHI3L1 SNPs and their haplotypes with plasma YKL-40 levels and scoliosis severity as a function of their classification in a specific endophenotype. In the endophenotype FG3 group, we found that patients harboring the haplotype G-G-A-G-G-A (rs880633|rs1538372|rs4950881|rs10399805|rs6691378|rs946261), which presented in 48% of the cases, showed a positive correlation with the plasma YKL-40 levels (P = 7.6 × 10-6 and coefficient = 36). Conversely, the haplotype A-A-G-G-G-G, which presented in 15% of the analyzed subjects, showed a strong negative association with the plasma YKL-40 levels (P = 2 × 10-9 and coefficient = -9.56). We found that this haplotype showed the strongest association with AIS patients in endophenotype FG2 (P = 9.9 × 10-6 and coefficient = -13.53), who more often develop severe scoliosis compared to those classified in the other two endophenotypes. Of note, it showed stronger association in females (P = 1.6 × 10-7 and coefficient = -10.08) than males (P = 0.0021 and coefficient = -9.01). At the functional level, we showed that YKL-40 treatments rescued Gi-coupled receptor signalling dysfunction occurring in primary AIS osteoblasts. Collectively, our findings reveal a novel role for YKL-40 in AIS pathogenesis and a new molecular mechanism interfering with spinal deformity progression.
Collapse
Affiliation(s)
- Dina Nada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital, Research Center, Montreal, QC, Canada
- Program of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Cédric Julien
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital, Research Center, Montreal, QC, Canada
| | - Pierre H Rompré
- Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Marie-Yvonne Akoume
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital, Research Center, Montreal, QC, Canada
| | - Kristen F Gorman
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital, Research Center, Montreal, QC, Canada
- Department of Biological Sciences, California State University, Chico, CA, USA
| | - Mark E Samuels
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Emile Levy
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jason Kost
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, Vermont, USA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital, Research Center, Montreal, QC, Canada.
- Program of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
22
|
Le Berre M, Pradeau C, Brouillard A, Coget M, Massot C, Catanzariti JF. Do Adolescents With Idiopathic Scoliosis Have an Erroneous Perception of the Gravitational Vertical? Spine Deform 2019; 7:71-79. [PMID: 30587324 DOI: 10.1016/j.jspd.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/28/2018] [Accepted: 05/05/2018] [Indexed: 10/27/2022]
Abstract
STUDY DESIGN Multicenter, case-control study. OBJECTIVES Demonstrate altered perception of verticality in AIS compared with matched controls. SUMMARY OF BACKGROUND DATA The cause of adolescent idiopathic scoliosis (AIS) remains to be found. AIS is associated with neurosensorial anomalies, in particular, altered control of orthostatic posture. During kinetic activity, the upright posture, in humans, is determined in reference to the gravitational vertical (GV). We hypothesized that in AIS, there is a discordance in the perception of the GV and the true GV. In AIS, the longitudinal axis of the body would thus be misoriented because of an erroneous perception of the GV. METHODS Thirty adolescents with right thoracic AIS (age 14.23 ± 1.75 years; Cobb angle 31.97°± 12.83°) and 30 controls matched for age (13.93 ± 1.85 years), body mass index, Tanner stage, and handedness were compared for subjective visual vertical (SVV) measured in static and dynamic (optokinetic stimulation) conditions, and subjective postural vertical (SPV). RESULTS There was no difference in the two groups, AIS and controls, for SVV. The SPV was significantly different between the two groups (p = .00023). The SPV was shifted to the right for most of the AIS patients (2.13°± 2.22°) compared with controls (-0.08°±1.40°). There was a significant correlation between SPV and clinical frontal tilt in the AIS patients. CONCLUSION Our findings demonstrate that patients with right thoracic AIS have an erroneous perception of the GV. In most AIS patients, SPV was shifted to the right, with no alteration of the SVV. AIS might be the consequence of a reoriented longitudinal body axis aligned with an erroneous vertical reference. The underlying mechanism might involve dysfunction of trunk graviceptors. The primary or secondary nature of this dysfunction remains an open question.
Collapse
Affiliation(s)
- Morgane Le Berre
- Physical Medicine and Rehabilitation Department, Swynghedauw University Hospital Center, Lille, France
| | - Charles Pradeau
- Physical Medicine and Rehabilitation Department, Swynghedauw University Hospital Center, Lille, France
| | | | - Monique Coget
- Spine department, SSR pediatric center Marc Sautelet, Villeneuve-d'Ascq, France
| | - Caroline Massot
- Physical Medicine and Rehabilitation Department, Saint Philibert University Hospital Center, Lomme 59462, France
| | | |
Collapse
|
23
|
Ng SY, Bettany-Saltikov J, Cheung IYK, Chan KKY. The Role of Vitamin D in the Pathogenesis of Adolescent Idiopathic Scoliosis. Asian Spine J 2018; 12:1127-1145. [PMID: 30322242 PMCID: PMC6284127 DOI: 10.31616/asj.2018.12.6.1127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Several theories have been proposed to explain the etiology of adolescent idiopathic scoliosis (AIS) until present. However, limited data are available regarding the impact of vitamin D insufficiency or deficiency on scoliosis. Previous studies have shown that vitamin D deficiency and insufficiency are prevalent in adolescents, including AIS patients. A series of studies conducted in Hong Kong have shown that as many as 30% of these patients have osteopenia. The 25-hydroxyvitamin D3 level has been found to positively correlate with bone mineral density (BMD) in healthy adolescents and negatively with Cobb angle in AIS patients; therefore, vitamin D deficiency is believed to play a role in AIS pathogenesis. This study attempts to review the relevant literature on AIS etiology to examine the association of vitamin D and various current theories. Our review suggested that vitamin D deficiency is associated with several current etiological theories of AIS. We postulate that vitamin D deficiency and/or insufficiency affects AIS development by its effect on the regulation of fibrosis, postural control, and BMD. Subclinical deficiency of vitamin K2, a fat-soluble vitamin, is also prevalent in adolescents; therefore, it is possible that the high prevalence of vitamin D deficiency is related to decreased fat intake. Further studies are required to elucidate the possible role of vitamin D in the pathogenesis and clinical management of AIS.
Collapse
|
24
|
Kou I, Watanabe K, Takahashi Y, Momozawa Y, Khanshour A, Grauers A, Zhou H, Liu G, Fan YH, Takeda K, Ogura Y, Zhou T, Iwasaki Y, Kubo M, Wu Z, Matsumoto M, Einarsdottir E, Kere J, Huang D, Qiu G, Qiu Y, Wise CA, Song YQ, Wu N, Su P, Gerdhem P, Ikegawa S. A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci Rep 2018; 8:11575. [PMID: 30069010 PMCID: PMC6070519 DOI: 10.1038/s41598-018-29011-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common type of spinal deformity and has a significant genetic background. Genome-wide association studies (GWASs) identified several susceptibility loci associated with AIS. Among them is a locus on chromosome 6q24.1 that we identified by a GWAS in a Japanese cohort. The locus is represented by rs6570507 located within GPR126. To ensure the association of rs6570507 with AIS, we conducted a meta-analysis using eight cohorts from East Asia, Northern Europe and USA. The analysis included a total of 6,873 cases and 38,916 controls and yielded significant association (combined P = 2.95 × 10-20; odds ratio = 1.22), providing convincing evidence of the worldwide association between rs6570507 and AIS susceptibility. In silico analyses strongly suggested that GPR126 is a susceptibility gene at this locus.
Collapse
Affiliation(s)
- Ikuyo Kou
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Yohei Takahashi
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anas Khanshour
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Anna Grauers
- Department of Orthopaedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC) Karolinska Institutet, Stockholm, Sweden
| | - Hang Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan-Hui Fan
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Ogura
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taifeng Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhihong Wu
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, , Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, , Karolinska Institutet, Huddinge, Sweden.,Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC) Karolinska Institutet, Stockholm, Sweden.,Department of Orthopaedics, Karolinska University Hospital, Stockholm, Sweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.
| |
Collapse
|
25
|
Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology. G3-GENES GENOMES GENETICS 2018; 8:2663-2672. [PMID: 29930198 PMCID: PMC6071588 DOI: 10.1534/g3.118.200290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Idiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood. We used exome sequencing to study five multigenerational families with IS. Bioinformatic analyses identified unique and low frequency variants (minor allele frequency ≤5%) that were present in all sequenced members of the family. Across the five families, we identified a total of 270 variants with predicted functional consequences in 246 genes, and found that eight genes were shared by two families. We performed GO term enrichment analyses, with the hypothesis that certain functional annotations or pathways would be enriched in the 246 genes identified in our IS families. Using three complementary programs to complete these analyses, we identified enriched categories that include stereocilia and other actin-based cellular projections, cilia and other microtubule-based cellular projections, and the extracellular matrix (ECM). Our results suggest that there are multiple paths to IS and provide a foundation for future studies of IS pathogenesis.
Collapse
|
26
|
Fadzan M, Bettany-Saltikov J. Etiological Theories of Adolescent Idiopathic Scoliosis: Past and Present. Open Orthop J 2017; 11:1466-1489. [PMID: 29399224 PMCID: PMC5759107 DOI: 10.2174/1874325001711011466] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis is one of the most common spinal deformities, yet its cause is unknown. Various theories look to biomechanical, neuromuscular, genetic, and environmental origins, yet our understanding of scoliosis etiology is still limited. Determining the cause of a disease is crucial to developing the most effective treatment. Associations made with scoliosis do not necessarily point to causality, and it is difficult to determine whether said associations are primary (playing a role in development) or secondary (develop as a result of scoliosis). Scoliosis is a complex condition with highly variable expression, even among family members, and likely has many causes. These causes could be similar among homogenous groups of AIS patients, or they could be individual. Here, we review the most prevalent theories of scoliosis etiology and recent trends in research.
Collapse
Affiliation(s)
- Maja Fadzan
- Scoliosis 3DC, 3 Baldwin Green Common, Suite 204, Woburn, MA 01801, USA
| | | |
Collapse
|
27
|
Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. SCOLIOSIS AND SPINAL DISORDERS 2016; 11:45. [PMID: 27933320 PMCID: PMC5125035 DOI: 10.1186/s13013-016-0105-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/15/2016] [Indexed: 03/06/2023]
Abstract
Idiopathic scoliosis (IS), the most common spinal deformity, affects otherwise healthy children and adolescents during growth. The aetiology is still unknown, although genetic factors are believed to be important. The present review corroborates the understanding of IS as a complex disease with a polygenic background. Presumably IS can be due to a spectrum of genetic risk variants, ranging from very rare or even private to very common. The most promising candidate genes are highlighted.
Collapse
Affiliation(s)
- A Grauers
- Department of Orthopaedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden ; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - E Einarsdottir
- Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland ; Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - P Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden ; Department of Orthopaedics, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| |
Collapse
|
28
|
Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, Stokes IA, Weinstein SL, Burwell RG. Adolescent idiopathic scoliosis. Nat Rev Dis Primers 2015; 1:15030. [PMID: 27188385 DOI: 10.1038/nrdp.2015.30] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of structural spinal deformities that have a radiological lateral Cobb angle - a measure of spinal curvature - of ≥10(°). AIS affects between 1% and 4% of adolescents in the early stages of puberty and is more common in young women than in young men. The condition occurs in otherwise healthy individuals and currently has no recognizable cause. In the past few decades, considerable progress has been made towards understanding the clinical patterns and the three-dimensional pathoanatomy of AIS. Advances in biomechanics and technology and their clinical application, supported by limited evidence-based research, have led to improvements in the safety and outcomes of surgical and non-surgical treatments. However, the definite aetiology and aetiopathogenetic mechanisms that underlie AIS are still unclear. Thus, at present, both the prevention of AIS and the treatment of its direct underlying cause are not possible.
Collapse
Affiliation(s)
- Jack C Cheng
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Joint Scoliosis Research Centre of The Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Winnie C Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Aina J Danielsson
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthew B Dobbs
- Departments of Orthopaedic Surgery Neurology and Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Theodoros B Grivas
- Trauma and Orthopaedic Department, Tzaneio General Hospital of Piraeus, Athens, Greece
| | - Christina A Gurnett
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keith D Luk
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, Quebéc, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, Quebéc, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebéc, Canada
| | - Peter O Newton
- Department of Orthopedic Surgery, University of California, San Diego, California, USA.,Rady Children's Hospital, San Diego, California, USA
| | - Ian A Stokes
- Department of Orthopedics and Rehabilitation, University of Vermont, Burlington, Vermont, USA
| | - Stuart L Weinstein
- Department of Orthopedic Surgery, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals NHS Trust - Queen's Medical Centre Campus, Nottingham, UK
| |
Collapse
|
29
|
Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, Takahashi Y, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yonezawa I, Yanagida H, Taneichi H, Zhu Z, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Hosogane N, Okada E, Iida A, Nakajima M, Sudo A, Chiba K, Hiraki Y, Toyama Y, Qiu Y, Shukunami C, Kamatani Y, Kubo M, Matsumoto M, Ikegawa S. A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am J Hum Genet 2015. [PMID: 26211971 DOI: 10.1016/j.ajhg.2015.06.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity. We previously conducted a genome-wide association study (GWAS) and detected two loci associated with AIS. To identify additional loci, we extended our GWAS by increasing the number of cohorts (2,109 affected subjects and 11,140 control subjects in total) and conducting a whole-genome imputation. Through the extended GWAS and replication studies using independent Japanese and Chinese populations, we identified a susceptibility locus on chromosome 9p22.2 (p = 2.46 × 10(-13); odds ratio = 1.21). The most significantly associated SNPs were in intron 3 of BNC2, which encodes a zinc finger transcription factor, basonuclin-2. Expression quantitative trait loci data suggested that the associated SNPs have the potential to regulate the BNC2 transcriptional activity and that the susceptibility alleles increase BNC2 expression. We identified a functional SNP, rs10738445 in BNC2, whose susceptibility allele showed both higher binding to a transcription factor, YY1 (yin and yang 1), and higher BNC2 enhancer activity than the non-susceptibility allele. BNC2 overexpression produced body curvature in developing zebrafish in a gene-dosage-dependent manner. Our results suggest that increased BNC2 expression is implicated in the etiology of AIS.
Collapse
Affiliation(s)
- Yoji Ogura
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Shigenori Miura
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Leilei Xu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yohei Takahashi
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Katsuki Kono
- Department of Orthopaedic Surgery, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan
| | - Koki Uno
- Department of Orthopaedic Surgery, Kobe Medical Center, National Hospital Organization, Kobe 654-0155, Japan
| | - Manabu Ito
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Graduate School of Medicine, Hokkaido University, Sapporo 060-8648, Japan
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan
| | - Ikuho Yonezawa
- Department of Orthopaedic Surgery, School of Medicine, Juntendo University Tokyo 113-8431, Japan
| | - Haruhisa Yanagida
- Department of Orthopaedic Surgery, Fukuoka Children's Hospital, Fukuoka 810-0063, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya 460-0001, Japan
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, Kobe Medical Center, National Hospital Organization, Kobe 654-0155, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Graduate School of Medicine, Hokkaido University, Sapporo 060-8648, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Naobumi Hosogane
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Eijiro Okada
- Department of Orthopaedic Surgery, Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Aritoshi Iida
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Masahiro Nakajima
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Sciences, RIKEN, Tokyo 108-8639, Japan.
| |
Collapse
|
30
|
Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, Kou I, Takahashi A, Matsumoto M, Kamiya N, Murphy KK, Cornelia R, Herring JA, Burns D, Ahituv N, Ikegawa S, Gordon D, Wise CA. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun 2015; 6:6452. [PMID: 25784220 PMCID: PMC4365504 DOI: 10.1038/ncomms7452] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
Idiopathic scoliosis (IS) is a common paediatric musculoskeletal disease that displays a strong female bias. By performing a genome-wide association study (GWAS) of 3,102 individuals, we identify significant associations with 20p11.22 SNPs for females (P=6.89 × 10−9) but not males (P=0.71). This association with IS is also found in independent female cohorts from the United States of America and Japan (overall P=2.15 × 10−10, OR=1.30 (rs6137473)). Unexpectedly, the 20p11.22 IS risk alleles were previously associated with protection from early-onset alopecia, another sexually dimorphic condition. The 174-kb associated locus is distal to PAX1, which encodes paired box 1, a transcription factor involved in spine development. We identify a sequence in the associated locus with enhancer activity in zebrafish somitic muscle and spinal cord, an activity that is abolished by IS-associated SNPs. We thus identify a sexually dimorphic IS susceptibility locus, and propose the first functionally defined candidate mutations in an enhancer that may regulate expression in specific spinal cells. Girls are tenfold more likely than boys to require surgical treatment for idiopathic scoliosis, a common paediatric skeletal disorder. Here, Sharma et al. identify the first sexually dimorphic idiopathic scoliosis risk locus, and demonstrate that it may play a role in the regulation of spinal cells.
Collapse
Affiliation(s)
- Swarkar Sharma
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Douglas Londono
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Xiaochong Gao
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Dongping Zhang
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Kristen Mauldin
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 108-8345, Japan
| | - Nobuhiro Kamiya
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | - Karl K Murphy
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Reuel Cornelia
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | | | | | - John A Herring
- 1] Department of Orthopaedics, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA [2] Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Dennis Burns
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94143, USA
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Derek Gordon
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Carol A Wise
- 1] Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Research Department, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA [2] Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [3] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [4] McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
31
|
Chettier R, Nelson L, Ogilvie JW, Albertsen HM, Ward K. Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One 2015; 10:e0117708. [PMID: 25675428 PMCID: PMC4326419 DOI: 10.1371/journal.pone.0117708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a clinically significant disorder with high heritability that affects 2–4% of the population. Genome-wide association studies have identified LBX1 as a strong susceptibility locus for AIS in Asian and Caucasian populations. Here we further dissect the genetic association with AIS in a Caucasian population. To identify genetic markers associated with AIS we employed a genome-wide association study (GWAS) design comparing 620 female Caucasian patients who developed idiopathic scoliosis during adolescence with 1,287 ethnically matched females who had normal spinal curves by skeletal maturity. The genomic region around LBX1 was imputed and haplotypes investigated for genetic signals under different inheritance models. The strongest signal was identified upstream of LBX1 (rs11190878, Ptrend = 4.18×10-9, OR = 0.63[0.54–0.74]). None of the remaining SNPs pass the genome-wide significance threshold. We found rs11190870, downstream of LBX1 and previously associated with AIS in Asian populations, to be in modest linkage disequilibrium (LD) with rs11190878 (r2 = 0.40, D' = 0.81). Haplotype analysis shows that rs11190870 and rs11190878 track a single risk factor that resides on the ancestral haplotype and is shared across ethnic groups. We identify six haplotypes at the LBX1 locus including two strongly associated haplotypes; a recessive risk haplotype (TTA, Controlfreq = 0.52, P = 1.25×10-9, OR = 1.56), and a co-dominant protective haplotype (CCG, Controlfreq = 0.28, P = 2.75×10-7, OR = 0.65). Together the association signals from LBX1 explain 1.4% of phenotypic variance. Our results identify two clinically relevant haplotypes in the LBX1-region with opposite effects on AIS risk. The study demonstrates the utility of haplotypes over un-phased SNPs for individualized risk assessment by more strongly delineating individuals at risk for AIS without compromising the effect size.
Collapse
Affiliation(s)
- Rakesh Chettier
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
| | - Lesa Nelson
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
| | - James W. Ogilvie
- Lucina Foundation, Salt Lake City, Utah, 84109, United States of America
| | - Hans M. Albertsen
- Juneau Biosciences, LLC., Salt Lake City, Utah, 84109, United States of America
| | - Kenneth Ward
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
- Juneau Biosciences, LLC., Salt Lake City, Utah, 84109, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wong C. Mechanism of right thoracic adolescent idiopathic scoliosis at risk for progression; a unifying pathway of development by normal growth and imbalance. SCOLIOSIS 2015; 10:2. [PMID: 25657814 PMCID: PMC4318446 DOI: 10.1186/s13013-015-0030-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022]
Abstract
Adolescent idiopathic scoliosis is regarded as a multifactorial disease and none of the many suggested causal etiologies have yet prevailed. I will suggest that adolescent idiopathic scoliosis has one common denominator, namely that initial curve development is mediated through one common normal physiological pathway of thoracic rotational instability. This is a consequence of gender specific natural growth of the passive structural components of thoracic spinal tissues for the adolescent female. This causes an unbalanced mechanical situation, which progresses if the paravertebral muscles cannot maintain spinal alignment. The alteration in the coronal plane with the lateral curve deformity is an uncoupling effect due to a culmination of a secondary, temporary sagittal plane thoracic flattening and of a primary, temporary transverse plane rotational instability for the adolescent female. Treatment of adolescent idiopathic scoliosis should address this physiological pathway and the overall treatment strategy is early intervention with strengthening of thoracic rotational stability for small curve adolescent idiopathic scoliosis.
Collapse
|
33
|
Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3-GENES GENOMES GENETICS 2014; 5:167-74. [PMID: 25504735 PMCID: PMC4321025 DOI: 10.1534/g3.114.015669] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic scoliosis occurs in 3% of individuals and has an unknown etiology. The objective of this study was to identify rare variants that contribute to the etiology of idiopathic scoliosis by using exome sequencing in a multigenerational family with idiopathic scoliosis. Exome sequencing was completed for three members of this multigenerational family with idiopathic scoliosis, resulting in the identification of a variant in the HSPG2 gene as a potential contributor to the phenotype. The HSPG2 gene was sequenced in a separate cohort of 100 unrelated individuals affected with idiopathic scoliosis and also was examined in an independent idiopathic scoliosis population. The exome sequencing and subsequent bioinformatics filtering resulted in 16 potentially damaging and rare coding variants. One of these variants, p.Asn786Ser, is located in the HSPG2 gene. The variant p.Asn786Ser also is overrepresented in a larger cohort of idiopathic scoliosis cases compared with a control population (P = 0.024). Furthermore, we identified additional rare HSPG2 variants that are predicted to be damaging in two independent cohorts of individuals with idiopathic scoliosis. The HSPG2 gene encodes for a ubiquitous multifunctional protein within the extracellular matrix in which loss of function mutation are known to result in a musculoskeletal phenotype in both mouse and humans. Based on these results, we conclude that rare variants in the HSPG2 gene potentially contribute to the idiopathic scoliosis phenotype in a subset of patients with idiopathic scoliosis. Further studies must be completed to confirm the effect of the HSPG2 gene on the idiopathic scoliosis phenotype.
Collapse
|
34
|
Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, Takahashi A, Matsumoto M, Herring JA, Lam TP, Wang X, Tam EMS, Song YQ, Fan YH, Chan D, Cheah KSE, Qiu X, Jiang H, Huang D, Su P, Sham P, Cheung KMC, Luk KDK, Gordon D, Qiu Y, Cheng J, Tang N, Ikegawa S, Wise CA. A meta-analysis identifies adolescent idiopathic scoliosis association withLBX1locus in multiple ethnic groups. J Med Genet 2014; 51:401-6. [DOI: 10.1136/jmedgenet-2013-102067] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Paria N, Copley LA, Herring JA, Kim HKW, Richards BS, Sucato DJ, Rios JJ, Wise CA. The impact of large-scale genomic methods in orthopaedic disorders: insights from genome-wide association studies. J Bone Joint Surg Am 2014; 96:e38. [PMID: 24599210 DOI: 10.2106/jbjs.m.00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nandina Paria
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - Lawson A Copley
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - John A Herring
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - Harry K W Kim
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - B Stephens Richards
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - Daniel J Sucato
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - Jonathan J Rios
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research (N.P., H.K.W.K., J.J.R., and C.A.W.) and Department of Orthopaedics (L.A.C., J.A.H., B.S.R., and D.J.S.), Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, TX 75219. E-
| |
Collapse
|
36
|
Yee A, Song YQ, Chan D, Cheung KMC. Understanding the Basis of Genetic Studies: Adolescent Idiopathic Scoliosis as an Example. Spine Deform 2014; 2:1-9. [PMID: 27927437 DOI: 10.1016/j.jspd.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/24/2013] [Accepted: 09/01/2013] [Indexed: 12/31/2022]
Abstract
STUDY DESIGN A review of the general concepts of genetics studies with specific reference to adolescent idiopathic scoliosis (AIS). OBJECTIVES To equip the average spine surgeon with the vocabulary and understanding needed to understand the genetics of scoliosis and the approaches used to identify risk genes. SUMMARY OF BACKGROUND DATA Adolescent idiopathic scoliosis is a multifactorial disease. Increasing evidence from families and monozygotic twins suggests the involvement of genetic factors. An estimation of heritability also indicates a strong influence of genetics on the disease. Increasing focus has been placed on identifying genes and genetic variants associated with AIS. REVIEW This is a review of genes and genetic variations, the phenotype definition of AIS in genetics studies, concepts and approaches to identifying associated genes, and the evaluation of results. Different types of genetic variations are present in the genome. These variations may modulate the expression or function of protein products, which in turn alter individuals' susceptibility to disease. Identifying the variants related to AIS requires an objective and clearly defined phenotype, among which the Cobb angle is commonly used. The phenotype helps classify subjects into cases and controls. By selecting candidate genes of growth factors and hormonal receptors, which are speculated to be involved in the mechanism of disease, the variants within these genes were compared between cases and controls to identify any differences. Another approach was to use large families and inspect the co-segregation of variants and phenotypes. Recently, arrays covering the variants of the whole genome were developed and assist in high-throughput screening for associated genes. CONCLUSIONS Genetic factors have an important role in AIS. Deciphering the genes and genetic variants associated with AIS can improve our understanding of the mechanisms of the disease, as well as assist in designing treatment methods and preventive measures.
Collapse
Affiliation(s)
- Anita Yee
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Danny Chan
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, 5/F Professorial Block, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
37
|
Grauers A, Danielsson A, Karlsson M, Ohlin A, Gerdhem P. Family history and its association to curve size and treatment in 1,463 patients with idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:2421-6. [PMID: 23801015 DOI: 10.1007/s00586-013-2860-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To study family history in relation to curve severity, gender, age at diagnosis and treatment in idiopathic scoliosis. METHODS A self-assessment questionnaire on family history of scoliosis was administered to 1,463 untreated, brace or surgically treated idiopathic scoliosis patients. RESULTS Out of the 1,463 patients, 51 % had one or more relatives with scoliosis. There was no significant difference between females and males, nor between juvenile and adolescent study participants in this respect (p = 0.939 and 0.110, respectively). There was a significant difference in maximum curve size between patients with one or more relatives with scoliosis (median 35°, interquartile range 25) and patients without any relative with scoliosis (median 32°, interquartile range 23) (p = 0.022). When stratifying patients according to treatment (observation, brace treatment or surgery), we found that it was more common to have a relative with scoliosis among the treated patients (p = 0.011). The OR for being treated was 1.32 (95% CI 1.06-1.64) when the patient had a relative with scoliosis, compared to not having. CONCLUSIONS Larger curve sizes were found in patients with a family history of scoliosis than in the ones without. No relation between family history and gender or between family history and age at onset of idiopathic scoliosis was found. Although the presence of a family history of scoliosis may not be a strong prognostic risk factor, it indicates that these patients are at higher risk of developing a more severe curve.
Collapse
Affiliation(s)
- Anna Grauers
- Department of Orthopaedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden,
| | | | | | | | | |
Collapse
|
38
|
Burwell RG, Dangerfield PH, Moulton A, Grivas TB, Cheng JC. Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. SCOLIOSIS 2013; 8:4. [PMID: 23448588 PMCID: PMC3608974 DOI: 10.1186/1748-7161-8-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 01/01/2023]
Abstract
This paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility. Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression. Twin studies and observations of family aggregation have revealed significant genetic contributions to idiopathic scoliosis, that place AIS among other common disease or complex traits with a high heritability interpreted by the genetic variant hypothesis of disease. We summarize etiopathogenetic knowledge of AIS as theories of pathogenesis including recent multiple concepts, and blood tests for AIS based on predictive biomarkers and genetic variants that signify disease risk. There is increasing evidence for the possibility of an underlying neurological disorder for AIS, research which holds promise. Like brain research, most AIS workers focus on their own corner and there is a need for greater integration of research effort. Epigenetics, a relatively recent field, evaluates factors concerned with gene expression in relation to environment, disease, normal development and aging, with a complex regulation across the genome during the first decade of life. Research on the role of environmental factors, epigenetics and chronic non-communicable diseases (NCDs) including adiposity, after a slow start, has exploded in the last decade. Not so for AIS research and the environment where, except for monozygotic twin studies, there are only sporadic reports to suggest that environmental factors are at work in etiology. Here, we examine epigenetic concepts as they may relate to human development, normal life history phases and AIS pathogenesis. Although AIS is not regarded as an NCD, like them, it is associated with whole organism metabolic phenomena, including lower body mass index, lower circulating leptin levels and other systemic disorders. Some epigenetic research applied to Silver-Russell syndrome and adiposity is examined, from which suggestions are made for consideration of AIS epigenetic research, cross-sectional and longitudinal. The word scoliogeny is suggested to include etiology, pathogenesis and pathomechanism.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Derby Road, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|