1
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Lin X, Wang H, Li X. Mobilization of endothelial progenitor cells promotes angiogenesis after full thickness excision by AMD3100 combined with G-CSF in diabetic mice by SDF-1/CXCR4 axis. Diab Vasc Dis Res 2021; 18:14791641211002473. [PMID: 33779350 PMCID: PMC8481732 DOI: 10.1177/14791641211002473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of the present study was to investigate the effect of the mobilization of EPCs by AMD3100 combined with G-CSF on wound healing in diabetic mice. METHODS The full-thickness excisional wounds model of diabetic mice (db/db) was examined by hematoxylin and eosin staining, immunohistochemical staining, and western blotting to compare the wound healing and neovascularization among the combination, AMD3100 alone, G-CSF alone, and control groups. RESULTS The wounds reached the complete closure in the combination, AMD3100 alone, G-CSF alone, and control groups on days 17, 20, 21, 21 after surgery, respectively. In addition, the combination group promoted the inflammatory cell recruitment and glandular formation. On day 10 from injury, the protein expression of CD31 in the combination group was significantly higher compared with the other three groups (p < 0.001). The level of SDF-1 protein remained high in the combined group until on day 10 after surgery (p < 0.001). CONCLUSION The mobilization of endogenous EPCs by AMD3100 combine with G-CSF is able to enhance the complete healing of full-thickness wounds and neovascularization in db/db mice may by SDF-1/CXCR4 axis. These findings provided a novel method and indication of duration of mobilization on diabetic wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Wang
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Li
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
4
|
Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12:339-350. [PMID: 32547682 PMCID: PMC7280866 DOI: 10.4252/wjsc.v12.i5.339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.
Collapse
Affiliation(s)
- Guo-Ping Xu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiang-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| | - Er-Man Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
5
|
Li L, Liu W, Zhao Y, Ma P, Zha S, Chen P, Lu H, Jiang X, Wan S, Luo J, Dai Q, Hu J, Utomo YKS, Han X, Yang Z, Yang L, He Q. Dual-Peptide-Functionalized Nanofibrous Scaffolds Recruit Host Endothelial Progenitor Cells for Vasculogenesis to Repair Calvarial Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3474-3493. [PMID: 31874023 DOI: 10.1021/acsami.9b21434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vasculogenesis (de novo formation of vessels) induced by endothelial progenitor cells (EPCs) is requisite for vascularized bone regeneration. However, there exist few available options for promoting vasculogenesis within artificial bone grafts except for exogenous EPC transplantation, which suffers from the source of EPC, safety, cost, and time concerns in clinical applications. This study aimed at endogenous EPC recruitment for vascularized bone regeneration by using a bioinspired EPC-induced graft. The EPC-induced graft was created by immobilizing two bioactive peptides, WKYMVm and YIGSR, on the surface of poly(ε-caprolactone) (PCL)/poliglecaprone (PGC) nanofibrous scaffolds via a polyglycolic acid (PGA)-binding peptide sequence. Remarkable immobilization efficacy of WKYMVm and YIGSR peptides and their sustained release (over 14 days) from scaffolds were observed. In vivo and in vitro studies showed robust recruitment of EPCs, which subsequently contributed to early vasculogenesis and ultimate bone regeneration. The dual-peptide-functionalized nanofibrous scaffolds proposed in this study provide a promising therapeutic strategy for vasculogenesis in bone defect repair.
Collapse
Affiliation(s)
- Li Li
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
- Orthopedic Department , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450001 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Pingping Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Shenfang Zha
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Peixin Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Xiaorui Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Shuang Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Qijie Dai
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Junxian Hu
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Yohanes Kristo Sugiarto Utomo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Xinyun Han
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| | - Zhengwei Yang
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Qingyi He
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Orthopedic Department , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450001 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
6
|
Yellowley CE, Toupadakis CA, Vapniarsky N, Wong A. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear. PLoS One 2019; 14:e0222462. [PMID: 31513647 PMCID: PMC6742462 DOI: 10.1371/journal.pone.0222462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Migration of cells from both local and systemic sources is essential for the inflammatory and regenerative processes that occur during normal wound healing. CXCL12 is considered a critical regulator of CXCR4-positive cell migration during tissue regeneration. In this study, we investigated the expression of Cxcl12 and Cxcr4 during healing of a murine full thickness ear wound. We also investigated the expression of angiopoietin-like 4, which has been shown to participate in wound angiogenesis and reepithelialization. At time points up to 48hrs, complete blood counts were performed using automated hematology analysis, and the numbers of circulating stem and progenitor cells quantified using flow cytometry. Expression of both Cxcr4 and Angptl4 was significantly elevated within 3 days of wounding, and both were strongly expressed in cells of the epidermis. ANGPTL4 protein expression remained elevated in the epithelium through day 14. Cxcl12 expression was increased significantly at day 3, and remained elevated through day 21. Faint Cxcl12 staining was detectable in the epithelium at day 1, and thereafter staining was faint and more generalized. There were significantly fewer circulating total white blood cells and lymphocytes 1hr following ear punching. Similarly, there was a significant early (1hr) reduction in the number of circulating endothelial progenitor cells. Further studies are warranted to investigate whether ANGPTL4 and CXCL12/CXCR4 interact or synergize to facilitate cell recruitment and migration, and to potentiate reepithelialization and wound healing.
Collapse
Affiliation(s)
- Clare E Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Chrisoula A Toupadakis
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
7
|
Meeson R, Sanghani-Keri A, Coathup M, Blunn G. CXCR4 Antagonism to Treat Delayed Fracture Healing. Tissue Eng Part A 2019; 25:1242-1250. [PMID: 30612520 PMCID: PMC6864747 DOI: 10.1089/ten.tea.2018.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A significant number of fractures develop nonunion. Stem cell homing is regulated through stromal cell-derived factor 1 (SDF1) and its receptor CXCR4. Stem/progenitor cell populations can be endogenously mobilized by administering growth factors with a pharmacological antagonist of CXCR4, AMD3100, which may be a means to improve fracture healing. A 1.5 mm femoral osteotomy in Wistar rats was stabilized with an external fixator. Rats were pretreated with phosphate buffered saline [PBS(P)], vascular endothelial growth factor [VEGF(V)], insulin-like growth factor-1 [IGF1(I)], or granulocyte colony stimulating factor [GCSF(G)] before AMD3100. A control group (C) did not receive growth factors or AMD3100. Bone formation after 5 weeks was analyzed. Group P had a significant increase in total bone volume (BV) (p = 0.01) and group I in percentage bone in the fracture gap (p = 0.035). Group G showed a decrease in BV. All treated groups had an increase in trabecular thickness. Histology showed decreased cartilage tissue associated with increased bone in groups with improved healing, and increased fibrous tissue in poorly performing groups. Antagonism of SDF1-CXCR4 axis can boost impaired fracture healing. AMD3100 given alone was the most effective means to boost healing, whereas pretreatment with GCSF reduced healing. AMD3100 is likely mobilizing stem cells into the blood stream that home to the fracture site enhancing healing.
Collapse
Affiliation(s)
- Richard Meeson
- Division of Surgery, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,Department of Clinical Services and Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Anita Sanghani-Keri
- Division of Surgery, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| | - Melanie Coathup
- Division of Surgery, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,University of Central Florida, Orlando, Florida
| | - Gordon Blunn
- Division of Surgery, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
8
|
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1241-1251. [PMID: 30813005 DOI: 10.1016/j.msec.2019.01.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Studies have demonstrated that scaffolds, a component of bone tissue engineering, play an indispensable role in bone repair. However, these scaffolds involving ex-vivo cultivated cells seeded have disadvantages in clinical practice, such as limited autologous cells, time-consuming cell expansion procedures, low survival rate and immune-rejection issues. To overcome these disadvantages, recent focus has been placed on the design of functionalized cell-free scaffolds, instead of cell-seeded scaffolds, that can reduplicate the natural self-healing events of bone fractures, such as inflammation, cell recruitment, vascularization, and osteogenic differentiation. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of functionalized cell-free scaffolds for bone repair. In this review, the self-healing processes were highlighted, and approaches for the functionalization were summarized. Also, ongoing efforts and breakthroughs in the field of functionalization for bone defect repair were discussed. Finally, a brief summery and new perspectives for functionalization strategies were presented to provide guidelines for further efforts in the design of bioinspired cell-free scaffolds.
Collapse
Affiliation(s)
- Li Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Qingyi He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Cheng Q, Lin S, Bi B, Jiang X, Shi H, Fan Y, Lin W, Zhu Y, Yang F. Bone Marrow-derived Endothelial Progenitor Cells Are Associated with Bone Mass and Strength. J Rheumatol 2018; 45:1696-1704. [PMID: 30173148 DOI: 10.3899/jrheum.171226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood vessels of bone are thought to influence osteogenesis of bone. No clinical studies have determined whether angiogenesis is related to bone mass and gene expression of growth factors. We compared bone marrow endothelial progenitor cells (EPC), which control angiogenesis of bone in postmenopausal women incurring fragility fracture, with osteoporosis or traumatic fracture with normal bone mass (COM). METHODS Bone specimens were obtained from age-matched women with osteoporosis or COM. Mononuclear cells were isolated and EPC were detected by flow cytometry. The expression levels of specific genes were measured. Bone mineral density (BMD) was determined, and serum markers of bone turnover also were measured. Differences between OP and COM were assessed with Student t test or Mann-Whitney U test, and correlations were determined using Spearman's correlation. RESULTS Compared with COM, patients with OP had significantly lower levels of serum osteocalcin, procollagen type-1 N-terminal propeptide, and 25-hydroxy vitamin D, as well as decreased BMD of total hip and femoral neck and fewer bone marrow EPC. Expression levels of vascular endothelial growth factor, angiopoietin-1 (Ang-1), angiopoietin 2 (Ang-2), and the osteoblast-specific genes runt-related transcription factor 2 (RUNX2) and osterix in bone were significantly lower in OP than in COM. We determined that mature EPC were correlated positively with BMD of the femoral neck and total hip, gene expression of Ang-1, RUNX2, and CD31, and negatively with gene expression of receptor activator of nuclear factor-κB ligand and Ang-2. CONCLUSION Our results demonstrate correlations of bone marrow EPC with bone mass and gene expression of growth factors, which support a hypothesis of crosstalk between angiogenesis and osteogenesis in bone health.
Collapse
Affiliation(s)
- Qun Cheng
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China. .,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article.
| | - Shangjin Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Bo Bi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Xin Jiang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Hongli Shi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yongqian Fan
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Weilong Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yuefeng Zhu
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Fengjian Yang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| |
Collapse
|
11
|
Wang GS, Shen YS, Chou WY, Tang CH, Yeh HI, Wang LY, Yen JY, Huang TY, Liu SC, Yang CY, Lin TY, Chen C, Wang SW. Senescence Induces Dysfunctions in Endothelial Progenitor Cells and Osteoblasts by Interfering Translational Machinery and Bioenergetic Homeostasis. Int J Mol Sci 2018; 19:ijms19071997. [PMID: 29987212 PMCID: PMC6073720 DOI: 10.3390/ijms19071997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Age-related bone diseases are partly caused by impaired bone integrity, which are closely related to osteoblasts’ activity and angiogenesis. Endothelial progenitor cells (EPCs) are the initiators of angiogenesis and found to have senescent-induced dysfunctions. The aim of this study is to investigate the effects of senescence in EPCs on osteogenesis and angiogenesis. Human primary EPCs and a murine osteoblast cell line (MC3T3-E1) are utilized in this study. The senescence of EPCs are induced by serial passages. When co-cultured with senescent EPCs, the osteoblasts demonstrate weakened alkaline phosphatase (ALP) activity and mineral deposition. On the other hand, osteoblast-induced migration decreases in senescent EPCs. As for the intracellular alterations of senescent EPCs, the activation of Akt/mTOR/p70S6K pathway, MnSOD and catalase are diminished. In contrast, the level of reactive oxygen species are significantly higher in senescent EPCs. Furthermore, senescent EPCs has decreased level intracellular ATP level and coupling efficiency for oxidative phosphorylation while the non-mitochondrial respiration and glycolysis are elevated. The senescence of EPCs impairs the functions of both osteoblasts and EPCs, suggesting EPCs’ role in the pathophysiology of age-related bone diseases. Targeting the alterations found in this study could be potential treatments.
Collapse
Affiliation(s)
- Guo-Shou Wang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Yung-Shuen Shen
- Holistic Education Center, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Wen-Yi Chou
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital Medical Center, Kaohsiung 833, Taiwan.
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan.
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Juei-Yu Yen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Te-Yang Huang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Shih-Chia Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Chen-Yu Yang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Ting-Yi Lin
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chi Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Department of Education and Research, Taipei City Hospital Renai Branch, Taipei 106, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact 2018; 286:45-51. [DOI: 10.1016/j.cbi.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
|
13
|
Zhao B, Zhao Z, Sun X, Zhang Y, Guo Y, Tian P, Ma J, Ma X. Effect of micro strain stress on proliferation of endothelial progenitor cells in vitro by the MAPK-ERK1/2 signaling pathway. Biochem Biophys Res Commun 2017; 492:206-211. [DOI: 10.1016/j.bbrc.2017.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
14
|
Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A. CD34 + cells seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. J Biomed Mater Res B Appl Biomater 2017; 106:1505-1516. [PMID: 28730696 DOI: 10.1002/jbm.b.33956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/29/2017] [Accepted: 07/04/2017] [Indexed: 11/10/2022]
Abstract
Bone tissue engineering (BTE) holds promise for managing the clinical problem of large bone defects. However, clinical adoption of BTE is limited due to limited vascularization of constructs, which could be circumvented by pre-cultivation of osteogenic and endothelial derived cells in natural-based polymer scaffolds. However, until now not many studies compared the effect of mono- and cocultures pre-seeded in collagen before implantation. We utilized a mouse calvarial defect model and compared five groups of collagen scaffolds: a negative control of a collagen scaffold alone, a positive control treated with BMP-7, monocultures of either human osteoblasts (hOBs) or CD34+ cells, and a coculture of hOB and CD34+ cells. Each pre-seeded collagen scaffold was implanted in mice. After 6 weeks mice were sacrificed and their skulls prepared for volumetric and histologic analysis. We found that a monoculture of CD34+ cells and a coculture of hOB and CD34+ cells pre-cultured in the collagen scaffold increased bone regeneration to a similar extend. In these groups, greater amounts of new bone were found compared with hOB monocultures. Interestingly, monoculture of CD34+ cells demonstrated better fracture healing than monoculture of hOBs, emphasizing the possible role of angiogenesis. Our results are promising regarding a cellular based collagen BTE construct, but more work is needed to understand the complex interaction between the osteogenic and endothelial cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1505-1516, 2018.
Collapse
Affiliation(s)
- Jens Hertweck
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, Biomatics, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Patrick C Schottel
- Department of Orthopedics and Rehabilitation, University of Vermont Medical Center, Burlington, Vermont
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
16
|
Herrmann M, Verrier S, Alini M. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair. Front Bioeng Biotechnol 2015; 3:79. [PMID: 26082926 PMCID: PMC4451737 DOI: 10.3389/fbioe.2015.00079] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/16/2015] [Indexed: 12/17/2022] Open
Abstract
The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) - CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions.
Collapse
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos , Davos , Switzerland
| |
Collapse
|
17
|
Ritz U, Spies V, Mehling I, Gruszka D, Rommens PM, Hofmann A. Mobilization of CD34+-progenitor cells in patients with severe trauma. PLoS One 2014; 9:e97369. [PMID: 24826895 PMCID: PMC4020858 DOI: 10.1371/journal.pone.0097369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 01/31/2023] Open
Abstract
Circulating CD34+ progenitor cells () gained importance in the field of regenerative medicine due to their potential to home in on injury sites and differentiate into cells of both endothelial and osteogenic lineages. In this study, we analyzed the mobilization kinetics and the numbers of CD34+, CD31+, CD45+, and CD133+ cells in twenty polytrauma patients (n = 13 male, n = 7 female, mean age 46.5±17.2 years, mean injury severity score (ISS) 35.8±12.5 points). In addition, the endothelial differentiation capacity of enriched CD34+cells was assessed by analyzing DiI-ac-LDL/lectin uptake, the expression of endothelial markers, and the morphological characteristics of these cells in Matrigel and spheroid cultures. We found that on days 1, 3, and 7 after a major trauma, the number of CD34+cells increased from 6- up to 12-fold (p<0.0001) over the number of CD34+cells from a control population of healthy, age-matched volunteers. The numbers of CD31+ cells were consistently higher on days 1 (1.4-fold, p<0.01) and 7 (1.3-fold, p<0.01), whereas the numbers of CD133+ cell did not change during the time course of investigation. Expression of endothelial marker molecules in CD34+cells was significantly induced in the polytrauma patients. In addition, we show that the CD34+ cell levels in severely injured patients were not correlated with clinical parameters, such as the ISS score, the acute physiology and chronic health evaluation II score (APACHE II), as well as the sequential organ failure assessment score (SOFA-2). Our results clearly indicate that pro-angiogenic cells are systemically mobilized after polytrauma and that their numbers are sufficient for the development of novel therapeutic models in regenerative medicine.
Collapse
Affiliation(s)
- Ulrike Ritz
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Volker Spies
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Isabella Mehling
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Dominik Gruszka
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Pol Maria Rommens
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Alexander Hofmann
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
- * E-mail:
| |
Collapse
|
18
|
Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:190-9. [PMID: 24372338 DOI: 10.1089/ten.teb.2013.0511] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Failures in fracture healing after conventional autologous and allogenic bone grafting are mainly due to poor vascularization. To meet the clinical demand, recent attentions in the regeneration and repair of bone have been focused on the use of stem cells such as bone marrow mesenchymal stem cells and circulating skeletal stem cells. Circulating stem cells are currently paid a lot of attention due to their ease of clinical setting and high potential for osteogenesis and angiogenesis. In this report, we focus on the first proof-of-principle experiments demonstrating the collaborative characteristics of circulating CD34(+) cells, known as endothelial and hematopoietic progenitor cell-rich population, which are capable to differentiate into both endothelial cells and osteoblasts. Transplantation of circulating CD34(+) cells provides a favorable environment for fracture healing via angiogenesis/vasculogenesis and osteogenesis, finally leading to functional recovery from fracture. Based on a series of basic studies, we performed a phase 1/2 clinical trial of autologous CD34(+) cell transplantation in patients with tibial or femoral nonunions and reported the safety and efficacy of this novel therapy. In this review, the current concepts and strategies in circulating CD34(+) cell-based therapy and its potential applications for bone repair will be highlighted.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Philippart P, Meuleman N, Stamatopoulos B, Najar M, Pieters K, De Bruyn C, Bron D, Lagneaux L. In vivo production of mesenchymal stromal cells after injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor in the bone marrow of healthy volunteers. Tissue Eng Part A 2013; 20:160-70. [PMID: 23924315 DOI: 10.1089/ten.tea.2013.0244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autologous mesenchymal stromal cell (MSC)-based therapies offer one of the most promising and safe methods for regeneration or reconstruction of tissues and organs. Routine procedures to obtain adequate amount of autologous stem cells need their expansion through culture, with risks of contamination and cell differentiation, leading to the loss of cell ability for therapies. We suggest the use of human bone marrow (BM) as a physiological bioreactor to produce autologous MSC by injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor (rhsTF) in iliac crest. A trial on 13 healthy volunteers showed the feasibility and harmlessness of the procedure. The phenotype and cellularity of BM cells were not modified, on day 3 after injection. Endothelial progenitor cells (EPC) were mobilized to the bloodstream, without stimulation of hematopoietic stem cells (HSC). MSC level in BM increased with a specific commitment to preosteoblastic cell population both in vivo and in vitro. This self-stimulation system of BM seems thus to be a promising feasible process 3 days before clinical cell therapy applications.
Collapse
Affiliation(s)
- Pierre Philippart
- 1 Department of Stomatology and Maxillo-Facial Surgery, HIS Site Bracops , Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yueyi C, Xiaoguang H, Jingying W, Quansheng S, Jie T, Xin F, Yingsheng X, Chunli S. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials 2013; 34:9373-80. [PMID: 24016857 DOI: 10.1016/j.biomaterials.2013.08.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/19/2013] [Indexed: 12/22/2022]
Abstract
Local statins implant has been shown to promote bone healing, the underlying mechanisms are unclear. The purpose of this study was to test the effect of local simvastatin implant on bone defect healing; to evaluate the mobilization, migration, and homing of bone marrow-derived mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs) induced by simvastatin. We found that local simvastatin implant increased bone formation by 51.8% (week 6) and 64.8% (week 12) compared with polyglycolic acid controls (P < 0.01), as verified by X-ray, CT, and histology. Simvastatin increased migration capacity of BMSCs and EPCs in vitro (P < 0.05). Local simvastatin implant increased mobilization of EPCs to the peripheral blood by 127% revealed by FACS analysis (P < 0.01), and increased osteogenic BMSCs to the peripheral blood dramatically revealed by Alizarin Red-S staining for mineralized nodules formation. Pre-transplanted GFP-transfected BMSCs as a tracing cell and bioluminescence imaging revealed that local simvastatin implant recruited GFP-labeled BMSC. Also, local simvastatin implant induced the HIF-1α and BMP-2 expression. In conclusion, local simvastatin implantation promotes bone defect healing, where the underlying mechanism appears to involve the higher expression of HIF-1α and BMP-2, thus recruit autogenous osteogenic and angiogenetic stem cells to the bone defect area implanted with simvastatin.
Collapse
Affiliation(s)
- Cui Yueyi
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marei MK, Nagy NB, Saad MS, Zaky SH, Elbackly RM, Eweida AM, Alkhodary MA. Strategy for a Biomimetic Paradigm in Dental and Craniofacial Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Toupadakis CA, Granick JL, Sagy M, Wong A, Ghassemi E, Chung DJ, Borjesson DL, Yellowley CE. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy 2013; 15:1136-47. [PMID: 23831362 DOI: 10.1016/j.jcyt.2013.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/26/2013] [Accepted: 05/08/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Delivery of bone marrow-derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing. METHODS A transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro-computed tomography. RESULTS AMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84. CONCLUSIONS Our data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Chrisoula A Toupadakis
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|