1
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
2
|
Zhang X, Zhang Z, Zou X, Wang Y, Qi J, Han S, Xin J, Zheng Z, Wei L, Zhang T, Zhang S. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biol 2024; 11:1324561. [PMID: 38313000 PMCID: PMC10834758 DOI: 10.3389/fcell.2023.1324561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Xiaosong Zou
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Lin Wei
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
3
|
Lin SS, Ueng SWN, Chong KY, Chan YS, Tsai TT, Yuan LJ, Liu SJ, Yang CY, Hsiao HY, Hsueh YJ, Chen CA, Niu CC. Effects of Hyperbaric Oxygen Intervention on the Degenerated Intervertebral Disc: From Molecular Mechanisms to Animal Models. Cells 2023; 12:2111. [PMID: 37626921 PMCID: PMC10453512 DOI: 10.3390/cells12162111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNA (miRNA) 107 expression is downregulated but Wnt3a protein and β-catenin are upregulated in degenerated intervertebral disc (IVD). We investigated mir-107/Wnt3a-β-catenin signaling in vitro and in vivo following hyperbaric oxygen (HBO) intervention. Our results showed 96 miRNAs were upregulated and 66 downregulated in degenerated nucleus pulposus cells (NPCs) following HBO treatment. The 3' untranslated region (UTR) of the Wnt3a mRNA contained the "seed-matched-sequence" for miR-107. MiR-107 was upregulated and a marked suppression of Wnt3a was observed simultaneously in degenerated NPCs following HBO intervention. Knockdown of miR-107 upregulated Wnt3a expression in hyperoxic cells. HBO downregulated the protein expression of Wnt3a, phosphorylated LRP6, and cyclin D1. There was decreased TOP flash activity following HBO intervention, whereas the FOP flash activity was not affected. HBO decreased the nuclear translocation of β-catenin and decreased the secretion of MMP-3 and -9 in degenerated NPCs. Moreover, rabbit serum KS levels and the stained area for Wnt3a and β-catenin in repaired cartilage tended to be lower in the HBO group. We observed that HBO inhibits Wnt3a/β-catenin signaling-related pathways by upregulating miR-107 expression in degenerated NPCs. HBO may play a protective role against IVD degeneration and could be used as a future therapeutic treatment.
Collapse
Affiliation(s)
- Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Steve W. N. Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kowit-Yu Chong
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Sheng Chan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-Y.H.); (Y.-J.H.)
- Department of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Jen Hsueh
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-Y.H.); (Y.-J.H.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chung-An Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (S.-S.L.); (Y.-S.C.); (T.-T.T.); (C.-Y.Y.); (C.-A.C.)
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
5
|
The Effects of Hyperbaric Oxygenation on Oxidative Stress, Inflammation and Angiogenesis. Biomolecules 2021; 11:biom11081210. [PMID: 34439876 PMCID: PMC8394403 DOI: 10.3390/biom11081210] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is commonly used as treatment in several diseases, such as non-healing chronic wounds, late radiation injuries and carbon monoxide poisoning. Ongoing research into HBOT has shown that preconditioning for surgery is a potential new treatment application, which may reduce complication rates and hospital stay. In this review, the effect of HBOT on oxidative stress, inflammation and angiogenesis is investigated to better understand the potential mechanisms underlying preconditioning for surgery using HBOT. A systematic search was conducted to retrieve studies measuring markers of oxidative stress, inflammation, or angiogenesis in humans. Analysis of the included studies showed that HBOT-induced oxidative stress reduces the concentrations of pro-inflammatory acute phase proteins, interleukins and cytokines and increases growth factors and other pro-angiogenesis cytokines. Several articles only noted this surge after the first HBOT session or for a short duration after each session. The anti-inflammatory status following HBOT may be mediated by hyperoxia interfering with NF-κB and IκBα. Further research into the effect of HBOT on inflammation and angiogenesis is needed to determine the implications of these findings for clinical practice.
Collapse
|
6
|
Kang YM, Shin EJ, Lee BH, Yang JH, Lee HM, Moon SH. Hypoxia Regulates the Extracellular Matrix via Mitogen-Activated Protein Kinases Pathway in Cells Retrieved from the Human Intervertebral Disc. Yonsei Med J 2021; 62:734-742. [PMID: 34296551 PMCID: PMC8298873 DOI: 10.3349/ymj.2021.62.8.734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The present study aimed to identify the physiological characteristics of cells by investigating the change in gene expression and protein levels during extracellular matrix (ECM) synthesis in the intervertebral disc (IVD) under hypoxic conditions. MATERIALS AND METHODS To test the effect of oxygen on cell growth and ECM synthesis of chondrocyte-like cells, the cells from IVD were separated and cultured in two hypoxia-mimicking systems: chemical hypoxic conditions using deferoxamine (DFO), and physiological hypoxic conditions using a hypoxic chamber for 7 days. Chondrocyte like cells cultured without DFO and under the normal oxygen concentration (21% O₂ and 5% CO₂, 37°C) served as the controls. RESULTS Chondrocyte-like cells cultured in the presence of 6% oxygen demonstrated a 100% increase in cellular proliferation compared to the control. The cells treated with chemical hypoxic conditions demonstrated a dose-dependent increase in the mRNA expression of glucose transporter-1, GAPDH, aggrecan, and type II collagen on Day 1. When treated with 100 µM DFO, the cells showed a 50% increase in the levels of proteoglycan protein on Day 7. The cells treated with chemical hypoxic condition demonstrated increase in sulfated glycosaminoglycan (GAG) protein levels on Day 7. Moreover, the cells cultured in the presence of 6% oxygen showed a 120% increase in sulfated GAG levels on Day 7. CONCLUSION The oxygen concentration had an important role in the viability, proliferation, and maturation of chondrocyte-like cells in IVD. In addition, chondrocyte-like cells are sensitive to the concentration of oxygen.
Collapse
Affiliation(s)
- Young Mi Kang
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Ho Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Ho Yang
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hwan Mo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Hwan Moon
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Lin SS, Niu CC, Yuan LJ, Tsai TT, Lai PL, Chong KY, Wei KC, Huang CY, Lu ML, Yang CY, Ueng SWN. Mir-573 regulates cell proliferation and apoptosis by targeting Bax in human degenerative disc cells following hyperbaric oxygen treatment. J Orthop Surg Res 2021; 16:16. [PMID: 33413477 PMCID: PMC7789655 DOI: 10.1186/s13018-020-02114-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA (miRNA) plays a vital role in the intervertebral disc (IVD) degeneration. The expression level of miR-573 was downregulated whereas Bax was upregulated notably in human degenerative nucleus pulposus cells. In this study, we aimed to investigate the role of miR-573 in human degenerative nucleus pulposus (NP) cells following hyperbaric oxygen (HBO) treatment. Methods NP cells were separated from human degenerated IVD tissues. The control cells were maintained in 5% CO2/95% air and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The mRNA and protein levels of Bax were measured. The proliferation of NPCs was detected using MTT assay. The protein expression levels of Bax, cleaved caspase 9, cleaved caspase 3, pro-caspase 9, and pro-caspase 3 were examined. Results Bioinformatics analysis indicated that the 3′ untranslated region (UTR) of the Bax mRNA contained the “seed-matched-sequence” for hsa-miR-573, which was validated via reporter assays. MiR-573 was induced by HBO and simultaneous suppression of Bax was observed in NP cells. Knockdown of miR-573 resulted in upregulation of Bax expression in HBO-treated cells. In addition, overexpression of miR-573 by HBO increased cell proliferation and coupled with inhibition of cell apoptosis. The cleavage of pro-caspase 9 and pro-caspase 3 was suppressed while the levels of cleaved caspase 9 and caspase 3 were decreased in HBO-treated cells. Transfection with anti-miR-573 partly suppressed the effects of HBO. Conclusion Mir-573 regulates cell proliferation and apoptosis by targeting Bax in human degenerative NP cells following HBO treatment.
Collapse
Affiliation(s)
- Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kowit-Yu Chong
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosugery, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Meng-Ling Lu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Steve W N Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street, Linkou, Taoyuan, 333, Taiwan. .,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Han Z, Wang Q, Wu X, Wang J, Gao L, Guo R, Wu J. Comprehensive RNA expression profile of therapeutic adipose‑derived mesenchymal stem cells co‑cultured with degenerative nucleus pulposus cells. Mol Med Rep 2021; 23:185. [PMID: 33398382 PMCID: PMC7809910 DOI: 10.3892/mmr.2021.11824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Stem cell-based therapy is a promising alternative to conventional approaches to treating intervertebral disc degeneration (IDD). However, comprehensive understanding of stem cell-based therapy at the gene level is still lacking. In the present study, we identified the expression profiles of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) expressed within a co-culture system of adipose-derived mesenchymal stem cells (ASCs) and degenerative nucleus pulposus cells (NPCs) and explored the signaling pathways involved and their regulatory networks. Microarray analysis was used to compare ASCs co-cultured with degenerative NPCs to ASCs cultured alone, and the underlying regulatory pattern, including the signaling pathways and competing endogenous RNA (ceRNA) network, was analyzed with robust bioinformatics methods. The results showed that 360 lncRNAs and 1757 mRNAs were differentially expressed by ASCs, and the microarray results were confirmed by quantitative PCR. Moreover, 589 Gene Ontology terms were upregulated, whereas 661 terms were downregulated. A total of 299 signaling pathways were significantly altered. A Path-net and a Signal-net were built to show interactions among differentially expressed genes. An mRNA-lncRNA co-expression network was constructed to reveal the interplay among differentially expressed mRNAs and lncRNAs, whereas a ceRNA network was built to investigate their connections with microRNAs involved in IDD. To the best of our knowledge, this original and comprehensive exploration reveals differentially expressed lncRNAs and mRNAs of ASCs stimulated by degenerative NPCs, underscoring the regulation pattern within the co-culture system at the gene level. These data may further understanding of NPC-directed differentiation of ASCs and facilitate the application of ASCs in future treatments for IDD.
Collapse
Affiliation(s)
- Zhihua Han
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Qiugen Wang
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Xiaoming Wu
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Jiandong Wang
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Liang Gao
- Sino Euro Orthopaedics Network, Hamburg D-66421, Germany
| | - Ruipeng Guo
- Sino Euro Orthopaedics Network, Hamburg D-66421, Germany
| | - Jianhong Wu
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| |
Collapse
|
9
|
Das U. Bioactive lipids in intervertebral disc degeneration and its therapeutic implications. Biosci Rep 2019; 39:BSR20192117. [PMID: 31533969 PMCID: PMC6822496 DOI: 10.1042/bsr20192117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is not uncommon. It is estimated that approximately >60% of individuals above the age of 40 years suffer from IVD degeneration. Shan et al. showed that hyperglycemia can enhance apoptosis of anulus fibrosis cells in a JNK pathway and p38 mitogen-activated protein kinase (MAPK) pathway dependent fashion. Recent studies showed that IVD degeneration could be an inflammatory condition characterized by increased production of matrix metalloproteinases, TNF-α, nitric oxide, IL-6, IL-17, IL-9, and prostaglandin E2, and decreased formation of anti-inflammatory molecules such as lipoxin A4. This imbalance between pro- and anti-inflammatory molecules seem to activate JNK pathway and p38 MAPK pathway to induce apoptosis of anulus fibrosis and nucleus pulposus cells. The activation of production of PGE2 (due to activation of COX-2 pathway) seems to be dependent on p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner. These results imply that suppressing pro-inflammatory events in the disc by either augmenting anti-inflammatory events or suppressing production of pro-inflammatory molecules or both may form a logical step in the prevention and management of IVD degeneration.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA and BioScience Research Center and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
| |
Collapse
|
10
|
Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis 2019; 23:299-313. [PMID: 29705943 DOI: 10.1007/s10495-018-1455-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.
Collapse
|
11
|
Halbach JL, Prieto JM, Wang AW, Hawisher D, Cauvi DM, Reyes T, Okerblom J, Ramirez-Sanchez I, Villarreal F, Patel HH, Bickler SW, Perdrizet GA, De Maio A. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am J Physiol Regul Integr Comp Physiol 2019; 317:R160-R168. [PMID: 31091156 PMCID: PMC6692752 DOI: 10.1152/ajpregu.00083.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Sepsis is a major clinical challenge, with therapy limited to supportive interventions. Therefore, the search for novel remedial approaches is of great importance. We addressed whether hyperbaric oxygen therapy (HBOT) could improve the outcome of sepsis using an acute experimental mouse model. Sepsis was induced in male CD-1 mice by cecal ligation and puncture (CLP) tailored to result in 80-90% mortality within 72 h of the insult. After CLP, mice were randomized into two groups receiving HBOT or not at different times after the initial insult or subjected to multiple HBOT treatments. HBOT conditions were 98% oxygen pressurized to 2.4 atmospheres for 1 h. HBOT within 1 h after CLP resulted in 52% survival in comparison with mice that did not receive the treatment (13% survival). Multiple HBOT at 1 and 6 h or 1, 6, and 21 h displayed an increase in survival of >50%, but they were not significantly different from a single treatment after 1 h of CLP. Treatments at 6 or 21 h after CLP, excluding the 1 h of treatment, did not show any protective effect. Early HBO treatment did not modify bacterial counts after CLP, but it was associated with decreased expression of TNF-α, IL-6, and IL-10 expression in the liver within 3 h after CLP. The decrease of cytokine expression was reproduced in cultured macrophages after exposure to HBOT. Early HBOT could be of benefit in the treatment of sepsis, and the protective mechanism may be related to a reduction in the systemic inflammatory response.
Collapse
Affiliation(s)
- Jonathan L Halbach
- Department of Surgery, Naval Medical Center San Diego , San Diego, California
| | - James M Prieto
- Department of Surgery, Naval Medical Center San Diego , San Diego, California
| | - Andrew W Wang
- Department of Surgery, Naval Medical Center San Diego , San Diego, California
| | - Dennis Hawisher
- Division of Trauma, Critical Care, Burns, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego , La Jolla, California
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego , La Jolla, California
| | - Tony Reyes
- Univeristy of California San Diego Initiative for Maximizing Student Development Program, University of California San Diego , La Jolla, California
| | - Jonathan Okerblom
- Department of Anesthesiology, School of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego , La Jolla, California
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California San Diego , La Jolla, California
| | - Hemal H Patel
- Department of Anesthesiology, School of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Stephen W Bickler
- Division of Pediatric Surgery, Rady Children's Hospital , San Diego, California
| | - George A Perdrizet
- Department of Emergency Medicine, School of Medicine, University of California San Diego , La Jolla, California
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego , La Jolla, California
- Department of Neurosciences, School of Medicine, University of California San Diego , La Jolla, California
| |
Collapse
|
12
|
Thom SR, Bhopale VM, Yang M. Microparticle-induced vascular injury in mice following decompression is inhibited by hyperbaric oxygen: effects on microparticles and interleukin-1β. J Appl Physiol (1985) 2019; 126:1006-1014. [PMID: 30763157 DOI: 10.1152/japplphysiol.01109.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperbaric oxygen (HBO2) became a mainstay for treating decompression sickness (DCS) because bubbles are associated with the disorder. Inflammatory processes including production of circulating microparticles (MPs) have now been shown to occur with DCS, leading to questions regarding pathophysiology and the role for HBO2. We investigated effects of HBO2 on mice exposed to 790 kPa air pressure for 2 h, which triggers elevations of MPs ladened with interleukin (IL)-1β that cause diffuse vascular injuries. Exposure to 283 kPa O2 (HBO2) inhibited MP elevations at 2 h postdecompression by 50% when applied either prophylactically or as treatment after decompression, and the MP number remained suppressed for 13 h in the prophylactic group. Particle content of IL-1β at 2 h postdecompression was 139.3 ± 16.2 [means ± SE; n = 11, P < 0.05) pg/million MPs vs. 8.2 ± 1.0 ( n = 15) in control mice, whereas it was 31.5 ± 6.1 ( n = 6, not significant vs. control (NS)] in mice exposed to HBO2 prophylactically, and 16.6 ± 6.3 ( n = 7, NS) when HBO2 was administered postdecompression. IL-1β content in MPs was similar in HBO2-exposed mice at 13 h postdecompression. HBO2 also inhibited decompression-associated neutrophil activation and diffuse vascular leak. Immunoprecipitation studies demonstrated that HBO2 inhibits high-pressure-mediated neutrophil nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome oligomerization. Furthermore, MPs isolated from decompressed mice cause vascular injuries when injected into naïve mice, but if decompressed mice were exposed to HBO2 before MP harvest, vascular injuries were inhibited. We conclude that HBO2 impedes high-pressure/decompression-mediated inflammatory events by inhibiting inflammasome formation and IL-1β production. NEW & NOTEWORTHY High pressure/decompression causes vascular damage because it stimulates production of microparticles that contain high concentrations of interleukin-1β, and hyperbaric oxygen can prevent injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
13
|
Dejmek J, Kohoutová M, Kripnerová M, Čedíková M, Tůma Z, Babuška V, Bolek L, Kuncová J. Repeated exposure to hyperbaric hyperoxia affects mitochondrial functions of the lung fibroblasts. Physiol Res 2019; 67:S633-S643. [PMID: 30607970 DOI: 10.33549/physiolres.934046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy, i.e. breathing pure oxygen under increased environmental pressures serves as a treatment for diverse medical conditions. However, elevated oxygen concentration can be detrimental to central nervous system or lungs. Our study aimed to evaluate the effects of repeated exposure to HBO on mitochondrial respiration assessed by high-resolution respirometry (HRR), cell viability estimated by PrestoBlue® reaction, morphology analyzed by routine phase contrast and fluorescent microscopy, and superoxide dismutase (SOD) and citrate synthase (CS) activities using human lung fibroblasts. The cells were exposed to HBO for 2 h per day for 5 consecutive days. One day after the last exposure, HBO cells displayed significantly smaller area and perimeter, compromised viability and elevated SOD activity. No changes were detected in CS activity or quality of mitochondrial network. HRR revealed impaired mitochondrial oxygen consumption manifested by increased leak respiration, decreased activity of complex II and compromised ATP-related oxygen consumption when fatty acids were oxidized. Our findings document that in conditions mimicking chronic intermittent exposure to HBO, lung fibroblasts suffer from compromised mitochondrial respiration linked to complex II and impaired cellular growth in spite of increased antioxidant defense. Underlying mechanism of this HBO-induced mitochondrial dysfunction should be further explored.
Collapse
Affiliation(s)
- J Dejmek
- Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Resanovic I, Gluvic Z, Zaric B, Sudar-Milovanovic E, Jovanovic A, Milacic D, Isakovic R, Isenovic ER. Early Effects of Hyperbaric Oxygen on Inducible Nitric Oxide Synthase Activity/Expression in Lymphocytes of Type 1 Diabetes Patients: A Prospective Pilot Study. Int J Endocrinol 2019; 2019:2328505. [PMID: 30755771 PMCID: PMC6348926 DOI: 10.1155/2019/2328505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed at examining the early effects of hyperbaric oxygen therapy (HBOT) on inducible nitric oxide synthase (iNOS) activity/expression in lymphocytes of type 1 diabetes mellitus (T1DM) patients. A group of 19 patients (mean age: 63 ± 2.1) with T1DM and with the peripheral arterial disease were included in this study. Patients were exposed to 10 sessions of HBOT in the duration of 1 h to 100% oxygen inhalation at 2.4 ATA. Blood samples were collected for the plasma C-reactive protein (CRP), plasma free fatty acid (FFA), serum nitrite/nitrate, and serum arginase activity measurements. Expression of iNOS and phosphorylation of p65 subunit of nuclear factor-κB (NFκB-p65), extracellular-regulated kinases 1/2 (ERK1/2), and protein kinase B (Akt) were examined in lymphocyte lysates by Western blot. After exposure to HBOT, plasma CRP and FFA were significantly decreased (p < 0.001). Protein expression of iNOS and serum nitrite/nitrate levels were decreased (p < 0.01), while serum arginase activity was increased (p < 0.05) versus before exposure to HBOT. Increased phosphorylation of NFκB-p65 at Ser536 (p < 0.05) and decreased level of NFκB-p65 protein (p < 0.001) in lymphocytes of T1DM patients were observed after HBOT. Decreased phosphorylation of ERK1/2 (p < 0.05) and Akt (p < 0.05) was detected after HBOT. Our results indicate that exposure to HBO decreased iNOS activity/expression via decreasing phosphorylation of ERK1/2 and Akt followed by decreased activity of NFκB.
Collapse
Affiliation(s)
- Ivana Resanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Davorka Milacic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Radmilo Isakovic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
15
|
Harch PG, Fogarty EF. Hyperbaric oxygen therapy for Alzheimer's dementia with positron emission tomography imaging: a case report. Med Gas Res 2019; 8:181-184. [PMID: 30713673 PMCID: PMC6352566 DOI: 10.4103/2045-9912.248271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
A 58-year-old female was diagnosed with Alzheimer's dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient's symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5-38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient's symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD.
Collapse
Affiliation(s)
- Paul G Harch
- Department of Medicine, Section of Emergency and Hyperbaric Medicine, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Edward F Fogarty
- Department of Radiology, University of North Dakota School of Medicine and Health Sciences, Bismarck, ND, USA
| |
Collapse
|
16
|
Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells. Arthritis Res Ther 2018; 20:182. [PMID: 30115120 PMCID: PMC6097446 DOI: 10.1186/s13075-018-1677-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background Stem cell therapy is considered as a promising alternative to treat intervertebral disc degeneration (IDD). Extensive work had been done on identifying and comparing different types of candidate stem cells, both in vivo and in vitro. However, few studies have shed light on degenerative nucleus pulposus cells (NPCs), especially their biological behavior under the influence of exogenous stem cells, specifically the gene expression and regulation pattern. In the present study, we aimed to determine messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), which are differentially expressed during the co-culturing process with adipose-derived mesenchymal stem cells (ASCs) and to explore the involved signaling pathways and the regulatory networks. Methods We compared degenerative NPCs co-cultured with ASCs with those cultured solely using lncRNA-mRNA microarray analysis. Based on these data, we investigated the significantly regulated signaling pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Moreover, 23 micro RNAs (miRNAs), which were demonstrated to be involved in IDD were chosen; we investigated their theoretic regulatory importance associated with our microarray data. Results We found 632 lncRNAs and 1682 mRNAs were differentially expressed out of a total of 40,716 probes. We then confirmed the microarray data by real-time PCR. Furthermore, we demonstrated 197 upregulated, and 373 downregulated Gene Ontology terms and 176 significantly enriched pathways, such as the mitogen-activated protein kinase (MAPK) pathway. Also, a signal-net was constructed to reveal the interplay among differentially expressed genes. Meanwhile, a mRNA-lncRNA co-expression network was constructed for the significantly changed mRNAs and lncRNAs. Also, the competing endogenous RNA (ceRNA) network was built. Conclusion Our results present the first comprehensive identification of differentially expressed lncRNAs and mRNAs of degenerative NPCs, altered by co-culturing with ASCs, and outline the gene expression regulation pattern. These may provide valuable information for better understanding of stem cell therapy and potential candidate biomarkers for IDD treatment. Electronic supplementary material The online version of this article (10.1186/s13075-018-1677-x) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Sun H, Qi L, Wang S, Li X, Li C. Hydrogen sulfide is expressed in the human and the rat cultured nucleus pulposus cells and suppresses apoptosis induced by hypoxia. PLoS One 2018; 13:e0192556. [PMID: 29466396 PMCID: PMC5821346 DOI: 10.1371/journal.pone.0192556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Apoptosis plays pivotal role in the pathogenesis of degenerative disc diseases, which is the primary contributor to low back pain. Although the role of hydrogen sulfide (H2S) in cell apoptosis is well appreciated, the effects and mechanism that H2S regulates the program death of intervertebral disc cell are not yet elucidated. In this study, we utilized the nucleus pulposus (NP) from patients with lumbar disc herniation to investigate the relationship between endogenous H2S and NP cells apoptosis in human. Furthermore, we analyzed primary rat NP cells to study the effects of exogenous H2S on hypoxia induced cell apoptosis. Human NP samples were obtained from patients with lumbar disc herniation and were divided into uncontained and contained herniation groups. Using immunohistochemistry staining and sulphur-sensitive electrode, we detected the expression of cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE), as well as the production of endogenous H2S in human NP. Tunel staining showed increased apoptosis in NP from herniated disc; and there was significant correlation between H2S generation and apoptosis in human NP. CoCl2 was then used to induce hypoxia in cultured primary rat NP cells. Annexin V staining indicated that exogenous NaHS attenuated hypoxia induced apoptosis in rat NP cells. Furthermore, hypoxia significantly increased the levels of multiple apoptosis associated proteins (Fas, Cytochromes C, Caspase 9 and cleaved-Caspase-3) in cells, which were eliminated by NaHS. Our study demonstrates the presence of endogenous H2S in human intervertebral disc; and the endogenous H2S generation rate is associated with NP apoptosis in herniated disc. In vitro study showes exogenous H2S donor attenuates hypoxia induced apoptosis in primary rat NP cells. Thus, our work provides insights that H2S may have beneficial effects in treating degenerative disc diseases.
Collapse
Affiliation(s)
- Haolin Sun
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Longtao Qi
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Shijun Wang
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Xuwen Li
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Chunde Li
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Huang BR, Chen TS, Bau DT, Chuang IC, Tsai CF, Chang PC, Lu DY. EGFR is a pivotal regulator of thrombin-mediated inflammation in primary human nucleus pulposus culture. Sci Rep 2017; 7:8578. [PMID: 28819180 PMCID: PMC5561020 DOI: 10.1038/s41598-017-09122-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
We found that the coagulation and cytokine pathways were important mechanisms involve in the degeneration of intervertebral discs (IVD) using a microarray approach to analyze gene expression in different grades of specimens. Furthermore, using a cytokine/chemokine array, a significant increase in CXCL8 expression was observed in human nucleus pulposus (NP) cells after thrombin treatment. The enhancement of CXCL8 expression by thrombin was activated by the PAR1 receptor. Importantly, analysis of degenerated human NP tissue samples showed that EGFR expression positively correlated with the grade of tissue degeneration. In NP cells, thrombin caused an increase in phosphorylation of the EGFR at the Tyr1068, and treatment with the pharmacological EGFR inhibitor, AG1473 effectively blocked thrombin-enhanced CXCL8 production. Surprisingly, inhibition of STAT3 for 24 h decreased expression of EGFR. Treatment with thrombin also increased Akt and GSK3α/β activation; this activation was also blocked by EGFR inhibitor. Although c-Src, ERK, and FAK were activated by thrombin, only c-Src and ERK were involved in the STAT3/CXCL8 induction. Our findings indicate that stimulation of an inflammatory response in NP cells by thrombin is part of a specific pathophysiology that modulates the EGFR activation through activation of Src/ERK/STAT3 signaling.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
19
|
Anti-Inflammatory Effects of Hyperbaric Oxygenation during DSS-Induced Colitis in BALB/c Mice Include Changes in Gene Expression of HIF-1α, Proinflammatory Cytokines, and Antioxidative Enzymes. Mediators Inflamm 2016; 2016:7141430. [PMID: 27656047 PMCID: PMC5021505 DOI: 10.1155/2016/7141430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) and nitrogen species have an indispensable role in regulating cell signalling pathways, including transcriptional control via hypoxia inducible factor-1α (HIF-1α). Hyperbaric oxygenation treatment (HBO2) increases tissue oxygen content and leads to enhanced ROS production. In the present study DSS-induced colitis has been employed in BALB/c mice as an experimental model of gut mucosa inflammation to investigate the effects of HBO2 on HIF-1α, antioxidative enzyme, and proinflammatory cytokine genes during the colonic inflammation. Here we report that HBO2 significantly reduces severity of DSS-induced colitis, as evidenced by the clinical features, histological assessment, impaired immune cell expansion and mobilization, and reversal of IL-1β, IL-2, and IL-6 gene expression. Gene expression and antioxidative enzyme activity were changed by the HBO2 and the inflammatory microenvironment in the gut mucosa. Strong correlation of HIF-1α mRNA level to GPx1, SOD1, and IL-6 mRNA expression suggests involvement of HIF-1α in transcriptional regulation of these genes during colonic inflammation and HBO2. This is further confirmed by a strong correlation of HIF-1α with known target genes VEGF and PGK1. Results demonstrate that HBO2 has an anti-inflammatory effect in DSS-induced colitis in mice, and this effect is at least partly dependent on expression of HIF-1α and antioxidative genes.
Collapse
|
20
|
Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration. Biomaterials 2015; 82:34-47. [PMID: 26741882 DOI: 10.1016/j.biomaterials.2015.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022]
Abstract
Various scaffolds have been attempted for intervertebral disc regeneration, but their effectiveness was limited by loss of nutrients within the scaffolds. It has been suggested that the disc is not severely hypoxic and limited availability of oxygen results in disc degeneration. Therefore, a certain oxygen level might be beneficial for disc regeneration, which has not been given enough attention in previous studies. Here, we used perfluorotributylamine (PFTBA) for the first time as an oxygen regulator in alginate scaffold for disc regeneration in vitro and in vivo. We found that the characteristics of alginate were not affected by PFTBA and the oxygen level of the scaffold was regulated. Then, human nucleus pulposus (NP) cells were cultured in the PFTBA-enriched alginates. It was found that PFTBA could promote NP cell survival and proliferation. In addition, 2.5% PFTBA was capable of regulating extracellular matrix (ECM) to a disc-like tissue graft with little effect on the expression of NP cell markers. Finally, 2.5% PFTBA-enriched alginate was found to restore the disc height and the ECM in a mouse disc degeneration model, indicating its beneficial effect on alleviating disc degeneration. These findings highlight the promising application of PFTBA in further intervertebral disc regeneration.
Collapse
|
21
|
Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:276049. [PMID: 26421281 PMCID: PMC4569756 DOI: 10.1155/2015/276049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Abstract
Purpose. Adolescent idiopathic scoliosis (AIS), the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs) involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768) were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS.
Collapse
|
22
|
Ding W, Zhao C, Cao L, Zhang K, Sun W, Xie Y, Li H, Zhao J. Leptin induces terminal differentiation of rat annulus fibrosus cells via activation of MAPK signaling. Anat Rec (Hoboken) 2014; 296:1806-12. [PMID: 24249395 DOI: 10.1002/ar.22806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022]
Abstract
Both leptin and its receptor are expressed in rat annulus fibrosus (AF) cells. However, little is known about their role and mechanism during disc degeneration. The mitogen activating protein kinase (MAPK) pathway which mediates leptin-induced terminal differentiation of rat AF cells was analyzed using PCR, Western-blot and immunocytochemistry. It was found that leptin-induced AF cells terminal differentiation, which may be attributed to upregulated p38 and ERK1/2 phosphorylation, however, JNK phosphorylation was not observed. Specific inhibitors of p38 or ERK1/2, but not JNK, could inhibit the stimulative activity of leptin on collagen X and MMP-13 protein levels. This study, for the first time, shows that the MAPK pathway, especially p38 and ERK1/2 signaling, plays a distinct role in leptin-induced AF cells terminal differentiation.
Collapse
Affiliation(s)
- Wei Ding
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao J, Lu WF, Dai ZJ, Lin S, Zhao Y, Li S, Zhao NN, Wang XJ, Kang HF, Ma XB, Zhang WG. Induction of apoptosis by total flavonoids from Scutellaria barbata D. Don in human hepatocarcinoma MHCC97-H cells via the mitochondrial pathway. Tumour Biol 2014; 35:2549-2559. [PMID: 24222328 DOI: 10.1007/s13277-013-1336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/14/2013] [Indexed: 01/14/2023] Open
Abstract
Scutellaria barbata D. Don, a traditional Chinese medicine, reportedly possesses antitumor activity against a variety of tumors. In the present study, we investigated the cytotoxic effect of total flavonoids from S. barbata (TF-SB) on human hepatocarcinoma cells and the underlying molecular mechanisms regarding the effect were explored. TF-SB treatment significantly reduced the cell viability of human HCC MHCC97-H cells in a dose-dependent manner. Further flow cytometric analysis showed that the apoptosis rate of MHCC97-H cells increased and the mitochondrial membrane potential (∆ψm) of MHCC97-H cells decreased after TF-SB treatment. DNA ladder showed that TF-SB induced a significant increase in DNA fragmentation in MHCC97-H cells. Reverse transcription PCR and Western blot analysis revealed that the expression levels of Smac, Apaf-1, Cytochrome c, Caspase-9, and Caspase-3 were upregulated in a dose-dependent manner and after treatment with different concentrations of TF-SB for 48 h. These results suggest that TF-SB induces apoptosis in MHCC97-H cells through the mitochondrial pathway.
Collapse
Affiliation(s)
- Jie Gao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin SS, Ueng SW, Niu CC, Yuan LJ, Yang CY, Chen WJ, Lee MS, Chen JK. Effects of hyperbaric oxygen on the osteogenic differentiation of mesenchymal stem cells. BMC Musculoskelet Disord 2014; 15:56. [PMID: 24568330 PMCID: PMC3938030 DOI: 10.1186/1471-2474-15-56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 01/06/2023] Open
Abstract
Background Hyperbaric oxygenation was shown to increase bone healing in a rabbit model. However, little is known about the regulatory factors and molecular mechanism involved.We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is mediated via increases in the osteogenic differentiation of mesenchymal stem cells (MSCs) which are regulated by Wnt signaling. Methods The phenotypic characterization of the MSCs was analyzed by flow cytometric analysis. To investigate the effects of HBO on Wnt signaling and osteogenic differentiation of MSCs, mRNA and protein levels of Wnt3a, beta-catenin, GSK-3beta, Runx 2, as well as alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining were analyzed after HBO treatment. To investigate the effects of HBO on Wnt processing and secretion, the expression of Wntless and vacuolar ATPases were quantified after HBO treatment. Results Cells expressed MSC markers such as CD105, CD146, and STRO-1. The mRNA and protein levels of Wnt3a, β-catenin, and Runx 2 were up-regulated, while GSK-3β was down-regulated after HBO treatment. Western blot analysis showed an increased β-catenin translocation with a subsequent stimulation of the expression of target genes after HBO treatment. The above observation was confirmed by small interfering (si)RNA treatment. HBO significantly increased alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining of osteogenically differentiated MSCs. We further showed that HBO treatment increased the expression of Wntless, a retromer trafficking protein, and vacuolar ATPases to stimulate Wnt processing and secretion, and the effect was confirmed by siRNA treatment. Conclusions HBO treatment increased osteogenic differentiation of MSCs via regulating Wnt processing, secretion, and signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jan-Kan Chen
- Department of Physiology, College of medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, 333 Taoyuan, Taiwan.
| |
Collapse
|
25
|
Lin SS, Ueng SWN, Niu CC, Yuan LJ, Yang CY, Chen WJ, Lee MS, Chen JK. Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/β-catenin signaling--an in vitro and in vivo study. Stem Cell Res 2014; 12:260-74. [PMID: 24291646 DOI: 10.1016/j.scr.2013.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/09/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is increased via osteogenic differentiation of bone marrow stromal cells (BMSCs), which is regulated by Wnt3a/β-catenin signaling. Our in vitro data showed that HBO increased cell proliferation, Wnt3a production, LRP6 phosphorylation, and cyclin D1 expression in osteogenically differentiated BMSCs. The mRNA and protein levels of Wnt3a, β-catenin, and Runx2 were upregulated while those of GSK-3β were downregulated after HBO treatment. The relative density ratio (phospho-protein/protein) of Akt and GSK-3β was both up-regulated while that of β-catenin was down-regulated after HBO treatment. We next investigated whether HBO affects the accumulation of β-catenin. Our Western blot analysis showed increased levels of translocated β-catenin that stimulated the expression of target genes after HBO treatment. HBO increased TCF-dependent transcription, Runx2 promoter/Luc gene activity, and the expression of osteogenic markers of BMSCs, such as alkaline phosphatase activity, type I collagen, osteocalcin, calcium, and the intensity of Alizarin Red staining. HBO dose dependently increased the bone morphogenetic protein (BMP2) and osterix production. We further demonstrated that HBO increased the expression of vacuolar-ATPases, which stimulated Wnt3a secretion from BMSCs. Finally, we showed that the beneficial effects of HBO on bone formation were related to Wnt3a/β-catenin signaling in a rabbit model by histology, mechanical testing, and immunohistochemical assays. Accordingly, we concluded that HBO increased the osteogenic differentiation of BMSCs by regulating Wnt3a secretion and signaling.
Collapse
Affiliation(s)
- Song-Shu Lin
- Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Steve W N Ueng
- Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Chien Niu
- Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Jen Yuan
- Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Jer Chen
- Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mel S Lee
- Department of Orthopaedics, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Zhao B, Yu Q, Li H, Guo X, He X. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration. Int J Mol Med 2013; 33:43-50. [PMID: 24173697 PMCID: PMC3868557 DOI: 10.3892/ijmm.2013.1543] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. To characterize the differential miRNA expression profiles between IDD and spinal cord injury, specimens from 3 patients with IDD and 3 with spinal cord injury were selected for microarray analysis. Total RNA from these 6 specimens was extracted and subjected to global miRNA expression analysis using the Exiqon miRCURY™ LNA Array (v.16.0). The microarray data were then validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, bioinformatics analysis was performed to investigate the dysregulated miRNA target genes and signaling pathways involved. Among the miRNAs analyzed, 25 miRNAs were found to be upregulated and 26 were found to be downregulated in the IDD group compared with the spinal cord injury group. The qRT-PCR results validated the microarray data. Bioinformatics analysis indicated that the signaling pathways most likely to be controlled by these miRNAs were the phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR; ErbB) and Wnt pathways. Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | | | | | | | | |
Collapse
|
27
|
Wuertz K, Haglund L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J 2013; 3:175-84. [PMID: 24436868 PMCID: PMC3854585 DOI: 10.1055/s-0033-1347299] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/09/2013] [Indexed: 01/07/2023] Open
Abstract
Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in "diseased" intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain.
Collapse
Affiliation(s)
- Karin Wuertz
- Institute for Biomechanics, D-HEST, ETH Zurich, Zurich, Switzerland,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,AOSpine Research Network, Duebendorf, Switzerland,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland,Address for correspondence Dr. Karin Wuertz, PhD Institute for Biomechanics, D-HESTETH Zurich, Schafmattstrasse 30, HPP-O12, 8093 ZurichSwitzerland
| | - Lisbet Haglund
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,Orthopeadic Research Laboratory, Division of Orthopedic Surgery, McGill University, Montreal, Canada,Dr. Lisbet Haglund, PhD Orthopaedic Research Laboratory, Montreal General HospitalRoom C9.173, 1650 Cedar Avenue, Montreal, QCCanada H3G 1A4
| |
Collapse
|