1
|
Dumitru ML. Brain asymmetry is globally different in males and females: exploring cortical volume, area, thickness, and mean curvature. Cereb Cortex 2023; 33:11623-11633. [PMID: 37851852 PMCID: PMC10724869 DOI: 10.1093/cercor/bhad396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Brain asymmetry is a cornerstone in the development of higher-level cognition, but it is unclear whether and how it differs in males and females. Asymmetry has been investigated using the laterality index, which compares homologous regions as pairwise weighted differences between the left and the right hemisphere. However, if asymmetry differences between males and females are global instead of pairwise, involving proportions between multiple brain areas, novel methodological tools are needed to evaluate them. Here, we used the Amsterdam Open MRI collection to investigate sexual dimorphism in brain asymmetry by comparing laterality index with the distance index, which is a global measure of differences within and across hemispheres, and with the subtraction index, which compares pairwise raw values in the left and right hemisphere. Machine learning models, robustness tests, and group analyses of cortical volume, area, thickness, and mean curvature revealed that, of the three indices, distance index was the most successful biomarker of sexual dimorphism. These findings suggest that left-right asymmetry in males and females involves global coherence rather than pairwise contrasts. Further studies are needed to investigate the biological basis of local and global asymmetry based on growth patterns under genetic, hormonal, and environmental factors.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020 Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Postboks 7807, 5020 Bergen, Norway
| |
Collapse
|
2
|
Ballout N, Boullier A, Darwiche W, Ait-Mohand K, Trécherel E, Gallégo T, Gomila C, Yaker L, Gennero I, Kovensky J, Ausseil J, Toumieux S. DP2, a Carbohydrate Derivative, Enhances In Vitro Osteoblast Mineralisation. Pharmaceuticals (Basel) 2023; 16:1512. [PMID: 38004380 PMCID: PMC10674337 DOI: 10.3390/ph16111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Bone fracture healing is a complex biological process involving four phases coordinated over time: hematoma formation, granulation tissue formation, bony callus formation, and bone remodelling. Bone fractures represent a significant health problem, particularly among the elderly population and patients with comorbidities. Therapeutic strategies proposed to treat such fractures include the use of autografts, allografts, and tissue engineering strategies. It has been shown that bone morphogenetic protein 2 (BMP-2) has a therapeutic potential to enhance fracture healing. Despite the clinical efficacy of BMP-2 in osteoinduction and bone repair, adverse side effects and complications have been reported. Therefore, in this in vitro study, we propose the use of a disaccharide compound (DP2) to improve the mineralisation process. We first evaluated the effect of DP2 on primary human osteoblasts (HOb), and then investigated the mechanisms involved. Our findings showed that (i) DP2 improved osteoblast differentiation by inducing alkaline phosphatase activity, osteopontin, and osteocalcin expression; (ii) DP2 induced earlier in vitro mineralisation in HOb cells compared to BMP-2 mainly by earlier activation of Runx2; and (iii) DP2 is internalized in HOb cells and activates the protein kinase C signalling pathway. Consequently, DP2 is a potential therapeutical candidate molecule for bone fracture repair.
Collapse
Affiliation(s)
- Nissrine Ballout
- Société d’Accélération du Transfert de Technologie-Nord, 59800 Lille, France; (N.B.)
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM UMR1291, CNRS UMR5051, University of Toulouse III, 31024 Toulouse, France
- Service de Biochimie, Institut Fédératif de Biologie, CHU Toulouse, 31024 Toulouse, France
| | - Agnès Boullier
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires, UR7517, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054 Amiens, France (E.T.)
- Laboratory of Biochemistry, CHU Amiens-Picardie, 80054 Amiens, France
| | - Walaa Darwiche
- Société d’Accélération du Transfert de Technologie-Nord, 59800 Lille, France; (N.B.)
| | - Katia Ait-Mohand
- Laboratoire de Glycochimie et des Agroressources d’Amiens, UR 7378, CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Eric Trécherel
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires, UR7517, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054 Amiens, France (E.T.)
| | - Théo Gallégo
- Société d’Accélération du Transfert de Technologie-Nord, 59800 Lille, France; (N.B.)
| | - Cathy Gomila
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires, UR7517, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054 Amiens, France (E.T.)
| | - Linda Yaker
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires, UR7517, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054 Amiens, France (E.T.)
| | - Isabelle Gennero
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM UMR1291, CNRS UMR5051, University of Toulouse III, 31024 Toulouse, France
- Service de Biochimie, Institut Fédératif de Biologie, CHU Toulouse, 31024 Toulouse, France
| | - José Kovensky
- Laboratoire de Glycochimie et des Agroressources d’Amiens, UR 7378, CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Jérôme Ausseil
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM UMR1291, CNRS UMR5051, University of Toulouse III, 31024 Toulouse, France
- Service de Biochimie, Institut Fédératif de Biologie, CHU Toulouse, 31024 Toulouse, France
| | - Sylvestre Toumieux
- Laboratoire de Glycochimie et des Agroressources d’Amiens, UR 7378, CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
3
|
Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D. Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients. Bioengineering (Basel) 2023; 10:1187. [PMID: 37892917 PMCID: PMC10604230 DOI: 10.3390/bioengineering10101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types-bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)-highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions.
Collapse
Affiliation(s)
- Max Baron
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Philip Drohat
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Brooke Crawford
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Guo R, Zhuang H, Chen X, Ben Y, Fan M, Wang Y, Zheng P. Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. J Tissue Eng 2023; 14:20417314231187956. [PMID: 37483459 PMCID: PMC10359656 DOI: 10.1177/20417314231187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Yan CP, Wang XK, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li YL. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front Cell Dev Biol 2022; 10:883228. [PMID: 35669516 PMCID: PMC9164109 DOI: 10.3389/fcell.2022.883228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Bone defects are a global public health problem. However, the available methods for inducing bone regeneration are limited. The application of traditional Chinese herbs for bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol similar to estrogen, that promotes protein synthesis in cells; however, its function in bone regeneration remains unclear. In this study, we investigated the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells were used to test the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-ecdysterone influenced the expression of osteogenesis-related genes, and the bone regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction, the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could upregulate the expression of osteoblastic-related genes, and promoted ALP activity and the formation of calcium nodules. We also determined that β-ecdysterone increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/Osterix signaling pathway and by enrichment biological processes. For in vivo experiments, a femoral condyle defect model was constructed by drilling a bone defect measuring 3 mm in diameter and 4 mm in depth in the femoral condyle of 8-week-old Sprague Dawley male rats. This model was used to further assess the bone regenerative functions of β-ecdysterone. The results of micro-computed tomography showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone volume, bone surface, and bone mineral density at each observation time point. Immunohistochemistry confirmed that the β-ecdysterone also increased the expression of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4 and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has revealed a new direction of osteogenic differentiation and has provided novel therapeutic strategies for treating bone defects.
Collapse
Affiliation(s)
- Cai-Ping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xing-Kuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
7
|
Quinlan NJ, Hobson TE, Mortensen AJ, Tomasevich KM, Adeyemi T, Maak TG, Aoki SK. Tibial Spine Repair in the Pediatric Population: Outcomes and Subsequent Injury Rates. Arthrosc Sports Med Rehabil 2021; 3:e1011-e1023. [PMID: 34430880 PMCID: PMC8365202 DOI: 10.1016/j.asmr.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose To evaluate short- to mid-term outcomes after arthroscopic operative fixation of tibial spine fractures in pediatric patients, to determine the incidence of further ipsilateral and contralateral knee injuries, and to describe associated meniscal pathology and intraoperative findings at the time of tibial spine repair. Methods All patients under age 18 with a tibial spine fracture treated arthroscopically at 1 institution by 2 surgeons from 2008 through 2019 were identified by Current Procedural Terminology codes. Patients at least 1 year from their date of surgery were contacted to complete a questionnaire, which included the International Knee Documentation Committee (IKDC) form. Questions pertained to knee function, pain, and further injury or surgery on either knee. Patient charts, preoperative imaging, and operative reports were reviewed to determine demographic information, tibial spine fracture type, concomitant injuries, and intraoperative details. Results Sixty-six of 97 eligible patients (68%) completed questionnaires. Average age at initial surgery was 10.7 years (range, 4-17). Mean follow-up was 5.8 years (range, 1.0-11.9). Average IKDC score at follow-up was 91.4 (range, 62.1-100). Patients reported their knee as 92% of “normal” (range, 40-100). Thirty-five (53%) currently participate in sport; 6 (9%) remain limited because of instability and residual pain. Regarding pain on a visual analog scale, 94%, 95%, and 83% of patients reported less than a 3 at rest, with daily activity, and with sport, respectively. Seven patients (11%) had subsequent ACL rupture. Six patients (9%) underwent ACL reconstruction 3.1 years (range, 0.9-7) after initial repair. Fourteen patients (21%) required at least 1 additional procedure. Regarding the contralateral knee, there were no ACL or tibial spine injuries. Sixty-one (92%) patients were both satisfied and would definitely undergo the procedure again. Conclusions Although many pediatric patients demonstrate excellent results after tibial spine repair at mean 5.8 years follow-up, 10.6% sustained an ipsilateral ACL rupture, and 21% required an additional procedure. No patient had a contralateral tibial spine or ACL injury. This is helpful when counseling patients regarding injury risk when returning to activity after tibial spine repair. Level of Evidence Level IV, therapeutic case series.
Collapse
Affiliation(s)
- Noah J Quinlan
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Taylor E Hobson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | | | | | - Temitope Adeyemi
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Travis G Maak
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Stephen K Aoki
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Wang X, Li Z, Wang C, Bai H, Wang Z, Liu Y, Bao Y, Ren M, Liu H, Wang J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol 2021; 9:654087. [PMID: 34150725 PMCID: PMC8209549 DOI: 10.3389/fbioe.2021.654087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The growth plate (GP) is a cartilaginous region situated between the epiphysis and metaphysis at the end of the immature long bone, which is susceptible to mechanical damage because of its vulnerable structure. Due to the limited regeneration ability of the GP, current clinical treatment strategies (e.g., bone bridge resection and fat engraftment) always result in bone bridge formation, which will cause length discrepancy and angular deformity, thus making satisfactory outcomes difficult to achieve. The introduction of cartilage repair theory and cartilage tissue engineering technology may encourage novel therapeutic approaches for GP repair using tissue engineered GPs, including biocompatible scaffolds incorporated with appropriate seed cells and growth factors. In this review, we summarize the physiological structure of GPs, the pathological process, and repair phases of GP injuries, placing greater emphasis on advanced tissue engineering strategies for GP repair. Furthermore, we also propose that three-dimensional printing technology will play a significant role in this field in the future given its advantage of bionic replication of complex structures. We predict that tissue engineering strategies will offer a significant alternative to the management of GP injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yirui Bao
- Department of Orthopedics, Chinese PLA 965 Hospital, Jilin, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
9
|
Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes. J Orthop Surg Res 2020; 15:186. [PMID: 32448307 PMCID: PMC7245805 DOI: 10.1186/s13018-020-01705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although it is known that diabetes interferes with fracture healing, the mechanisms remain poorly understood. The aim of this study was to investigate the correlation of BMP-6 and BMP-9 with the impairment in fracture healing in diabetes, by analyses of the difference in size and calcification of the callus, mechanical endurance, and expressing BMP-6 and BMP-9 in the callus, using a clinical related diabetic rodent model. METHODS We evaluated femur fracture healing by quantification of size and calcification of the callus by X-ray, histological and histochemical images, loading capacity of the fractured bone, and amount of BMP-6 in the callus and the bones using Western blot assay. RESULTS Significant upregulation of BMP-6 in the callus and the fractured bones of both non-diabetic and the diabetic animals was observed, at the end of the second and the fourth weeks after fracture. However, significantly lower levels of BMP-6 at 35 kDa with smaller sizes of calcified callus and poor loading capacity of the healing bones were detected in the diabetic animals, compared to the non-diabetic controls. The impairment of the maturation procedure of BMP-6 (35 kDa) from precursors may be underlying the downregulation of the BMP-6 in diabetic animals. CONCLUSIONS It could be concluded that the delayed fracture healing in the diabetic animals is correlated with deficiency of BMP-6 (35 kDa), which may be caused by impairment of maturation procedure of BMP-6 from precursors to functioning format. This is a primary study but an important step to explore the molecular pathogenesis of impairment of fracture healing in diabetes and to molecular therapeutic approach for the impairment of fracture healing.
Collapse
|
10
|
Lu XD, Han WX, Liu YX. Suppression of miR-451a accelerates osteogenic differentiation and inhibits bone loss via Bmp6 signaling during osteoporosis. Biomed Pharmacother 2019; 120:109378. [PMID: 31541885 DOI: 10.1016/j.biopha.2019.109378] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022] Open
Abstract
Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (μCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.
Collapse
Affiliation(s)
- Xiang-Dong Lu
- Department of Orthopedics, The Second Hospital of Shan Xi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Wen-Xing Han
- Department of Orthopedics Dept. Unit 6, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xiong Liu
- Departmentof Spinal Surgery, Affiliated Hospital of Yan'anUniversity, Yan'anCity, Shaanxi Province, 716000, China.
| |
Collapse
|
11
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
12
|
Strauss FJ, Di Summa F, Stähli A, Matos L, Vaca F, Schuldt G, Gruber R. TGF-β activity in acid bone lysate adsorbs to titanium surface. Clin Implant Dent Relat Res 2019; 21:336-343. [PMID: 30817088 PMCID: PMC6593995 DOI: 10.1111/cid.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Objectives Osteoblasts lay down new bone on implant surfaces. The underlying cellular mechanism and the spatio‐temporal mode of action, however, remain unclear. It can be proposed that growth factors released upon acidification by osteoclasts adsorb to the implant surface and control the early stages of osseointegration. Methods To simulate bone lysis by osteoclasts, titanium discs were exposed to acid bone lysate (ABL) followed by vigorous washing and seeding of oral fibroblasts. The expression of TGF‐β target genes interleukin 11 (IL11) and NADPH oxidase 4 (NOX4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 ELISA. TGF‐β signaling activation was assessed via Smad2/3 immunofluorescence. The impact of ABL on osteogenic differentiation was determined with murine ST2 mesenchymal stromal cells. Results We report here that ABL‐conditioned titanium discs, independent of turned or rough surface, increased the expression of IL11 and NOX4. This increase was blocked by the TGF‐β receptor 1 antagonist SB431542. Further support for the TGF‐β signaling activation came from the translocation of Smad2/3 into the nucleus of oral fibroblasts. Moreover, titanium discs exposed to ABL decreased alkaline phosphatase and osteopontin in ST2 cells. Conclusions These in vitro findings suggest that titanium can adsorb TGF‐β from ABLs. The data provide a strong impetus for studies on the protein adsorption on implant surfaces in vitro and in vivo, specifically for growth factors including bone‐derived TGF‐β during successful and failed osseointegration.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Francesca Di Summa
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Luiza Matos
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Vaca
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Guenther Schuldt
- Department of Periodontics, University of Southern Santa Catarina, Grande Florianopolis, Brazil
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Iaquinta MR, Mazzoni E, Manfrini M, D'Agostino A, Trevisiol L, Nocini R, Trombelli L, Barbanti-Brodano G, Martini F, Tognon M. Innovative Biomaterials for Bone Regrowth. Int J Mol Sci 2019; 20:E618. [PMID: 30709008 PMCID: PMC6387157 DOI: 10.3390/ijms20030618] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
The regenerative medicine, a new discipline that merges biological sciences and the fundamental of engineering to develop biological substitutes, has greatly benefited from recent advances in the material engineering and the role of stem cells in tissue regeneration. Regenerative medicine strategies, involving the combination of biomaterials/scaffolds, cells, and bioactive agents, have been of great interest especially for the repair of damaged bone and bone regrowth. In the last few years, the life expectancy of our population has progressively increased. Aging has highlighted the need for intervention on human bone with biocompatible materials that show high performance for the regeneration of the bone, efficiently and in a short time. In this review, the different aspects of tissue engineering applied to bone engineering were taken into consideration. The first part of this review introduces the bone cellular biology/molecular genetics. Data on biomaterials, stem cells, and specific growth factors for the bone regrowth are reported in this review.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marco Manfrini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | | | - Riccardo Nocini
- Department of Surgery, University of Verona, 37129 Verona, Italy.
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
14
|
Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol 2018; 6:105. [PMID: 30109228 PMCID: PMC6079270 DOI: 10.3389/fbioe.2018.00105] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Bone fractures and segmental bone defects are a significant source of patient morbidity and place a staggering economic burden on the healthcare system. The annual cost of treating bone defects in the US has been estimated to be $5 billion, while enormous costs are spent on bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. Autologous bone grafts represent the gold standard for the treatment of bone defects. However, they are associated with variable clinical outcomes, postsurgical morbidity, especially at the donor site, and increased surgical costs. In an effort to circumvent these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone repair. This review focuses on the recent advances in bone tissue engineering (BTE), specifically looking at its role in treating delayed fracture healing (non-unions) and the resulting segmental bone defects. Herein we discuss: (1) the processes of endochondral and intramembranous bone formation; (2) the role of stem cells, looking specifically at mesenchymal (MSC), embryonic (ESC), and induced pluripotent (iPSC) stem cells as viable building blocks to engineer bone implants; (3) the biomaterials used to direct tissue growth, with a focus on ceramic, biodegradable polymers, and composite materials; (4) the growth factors and molecular signals used to induce differentiation of stem cells into the osteoblastic lineage, which ultimately leads to active bone formation; and (5) the mechanical stimulation protocols used to maintain the integrity of the bone repair and their role in successful cell engraftment. Finally, a couple clinical scenarios are presented (non-unions and avascular necrosis—AVN), to illustrate how novel cell-based therapy approaches can be used. A thorough understanding of tissue engineering and cell-based therapies may allow for better incorporation of these potential therapeutic approaches in bone defects allowing for proper bone repair and regeneration.
Collapse
Affiliation(s)
- Jose R Perez
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Deborah J Li
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
15
|
Roselló-Díez A, Madisen L, Bastide S, Zeng H, Joyner AL. Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth in developing mice. PLoS Biol 2018; 16:e2005086. [PMID: 29944650 PMCID: PMC6019387 DOI: 10.1371/journal.pbio.2005086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 01/12/2023] Open
Abstract
Catch-up growth after insults to growing organs is paramount to achieving robust body proportions. In fly larvae, injury to individual tissues is followed by local and systemic compensatory mechanisms that allow the damaged tissue to regain normal proportions with other tissues. In vertebrates, local catch-up growth has been described after transient reduction of bone growth, but the underlying cellular responses are controversial. We developed an approach to study catch-up growth in foetal mice in which mosaic expression of the cell cycle suppressor p21 is induced in the cartilage cells (chondrocytes) that drive long-bone elongation. By specifically targeting p21 expression to left hindlimb chondrocytes, the right limb serves as an internal control. Unexpectedly, left-right limb symmetry remained normal, revealing deployment of compensatory mechanisms. Above a certain threshold of insult, an orchestrated response was triggered involving local enhancement of bone growth and systemic growth reduction that ensured that body proportions were maintained. The local response entailed hyperproliferation of spared left limb chondrocytes that was associated with reduced chondrocyte density. The systemic effect involved impaired placental function and IGF signalling, revealing bone-placenta communication. Therefore, vertebrates, like invertebrates, can mount coordinated local and systemic responses to developmental insults that ensure that normal body proportions are maintained.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Sébastien Bastide
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| |
Collapse
|
16
|
Yuan C, Cai J. Time-series expression profile analysis of fracture healing in young and old mice. Mol Med Rep 2017; 16:4529-4536. [PMID: 28849124 PMCID: PMC5647013 DOI: 10.3892/mmr.2017.7198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Bone fracture healing is a complex process, which is associated with several factors, including age and osteoporosis. Certain genes and biological processes that may contribute to fracture healing, have been identified following developments in systems biology and molecular biology technologies, which may benefit the treatment of bone fractures. The present study identified key genes, which may be important in fracture healing through bioinformatics analysis of gene microarray datasets from the Gene Expression Omnibus. Gene clusters, which were consistently up/downregulated through time following a fracture in young (6-week-old) mice and old (8-month-old retired breeders) mice were obtained via soft clustering of differentially expressed genes (DEGs) between samples at 1 and 3 days, 1 and 5 days, and 3 and 5 days post-fracture in the two age groups, based on the Mfuzz package of R. Functional enrichment analysis of gene clusters using the Database for Annotation, Visualization and Integrated Discovery indicated that biological processes and pathways, including those associated with bone development, skeletal system development, amino sugar and nucleotide sugar metabolism, were significantly enriched in these up/downregulated genes. Of note, a total of 207 overlapped consistently upregulated genes were obtained between the two age groups, whereas no overlap was identified between the two lists of consistently downregulated genes. The overlapped genes were found to be associated with the biological processes of blood vessel development, vasculature development and skeletal system development, compared with all genes in the clusters. In addition, certain genes, including epidermal growth factor-like domain multiple 6 (EGFL6), kazal-type serine peptidase inhibitor domain 1 (KAZALD1), olfactomedin 2B (OLFM2B), collagen type III α1 (COL3A1), collagen type II α1 (COL2A1), von Willebrand factor A domain-containing 1 (VWA1), elastin microfibril interfacer 1 (EMILIN1) and aggrecan (ACAN), of the extracellular matrix organization, a process performed at the cellular level and resulting in the assembly and arrangement of constituent parts, were confirmed to be associated with fracture healing via reverse transcription-quantitative polymerase chain reaction analysis. The present study identified certain genes and biological processes/pathways, which may be associated with fracture healing and may assist in fundamental investigations and treatment in the future.
Collapse
Affiliation(s)
- Chun Yuan
- Department of Orthopedics, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Jinfang Cai
- Department of Orthopedics, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
17
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
18
|
Chung R, Xian CJ. Recent research on the growth plate: Mechanisms for growth plate injury repair and potential cell-based therapies for regeneration. J Mol Endocrinol 2014; 53:T45-61. [PMID: 25114207 DOI: 10.1530/jme-14-0062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injuries to the growth plate cartilage often lead to bony repair, resulting in bone growth defects such as limb length discrepancy and angulation deformity in children. Currently utilised corrective surgeries are highly invasive and limited in their effectiveness, and there are no known biological therapies to induce cartilage regeneration and prevent the undesirable bony repair. In the last 2 decades, studies have investigated the cellular and molecular events that lead to bony repair at the injured growth plate including the identification of the four phases of injury repair responses (inflammatory, fibrogenic, osteogenic and remodelling), the important role of inflammatory cytokine tumour necrosis factor alpha in regulating downstream repair responses, the role of chemotactic and mitogenic platelet-derived growth factor in the fibrogenic response, the involvement and roles of bone morphogenic protein and Wnt/B-catenin signalling pathways, as well as vascular endothelial growth factor-based angiogenesis during the osteogenic response. These new findings could potentially lead to identification of new targets for developing a future biological therapy. In addition, recent advances in cartilage tissue engineering highlight the promising potential for utilising multipotent mesenchymal stem cells (MSCs) for inducing regeneration of injured growth plate cartilage. This review aims to summarise current understanding of the mechanisms for growth plate injury repair and discuss some progress, potential and challenges of MSC-based therapies to induce growth plate cartilage regeneration in combination with chemotactic and chondrogenic growth factors and supporting scaffolds.
Collapse
Affiliation(s)
- Rosa Chung
- School of Pharmacy and Medical SciencesSansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical SciencesSansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
| |
Collapse
|