1
|
Zhou K, Luo S, Wang Q, Fang S. The shared biomarkers and immune landscape in psoriatic arthritis and rheumatoid arthritis: Findings based on bioinformatics, machine learning and single-cell analysis. PLoS One 2024; 19:e0313344. [PMID: 39509434 PMCID: PMC11542839 DOI: 10.1371/journal.pone.0313344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Psoriatic arthritis (PsA) and rheumatoid arthritis (RA) are the most common types of inflammatory musculoskeletal disorders that share overlapping clinical features and complications. The aim of this study was to identify shared marker genes and mechanistic similarities between PsA and RA. METHODS We utilized datasets from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) and perform functional enrichment analyses. To identify the marker genes, we applied two machine learning algorithms: the least absolute shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE). Subsequently, we assessed the diagnostic capacity of the identified marker genes using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). A transcription factor (TF) network was constructed using data from JASPAR, HumanTFDB, and GTRD. We then employed CIBERSORT to analyze the abundance of immune infiltrates in PsA and RA, assessing the relationship between marker genes and immune cells. Additionally, cellular subpopulations were identified by analyzing single-cell sequencing data from RA, with T cells examined for trajectory and cellular communication using Monocle and CellChat, thereby exploring their linkage to marker genes. RESULTS A total of seven overlapping DEGs were identified between PsA and RA. Gene enrichment analysis revealed that these genes were associated with mitochondrial respiratory chain complex IV, Toll-like receptors, and NF-κB signaling pathways. Both machine learning algorithms identified Ribosomal Protein L22-like 1 (RPL22L1) and Lymphocyte Antigen 96 (LY96) as potential diagnostic markers for PsA and RA. These markers were validated using test sets and experimental approaches. Furthermore, GSEA analysis indicated that gap junctions may play a crucial role in the pathogenesis of both conditions. The TF network suggested a potential association between marker genes and core enrichment genes related to gap junctions. The application of CIBERSORT and single-cell RNA sequencing provided a comprehensive understanding of the role of marker genes in immune cell function. Our results indicated that RPL22L1 and LY96 are involved in T cell development and are associated with T cell communication with NK cells and monocytes. Notably, high expression of both RPL22L1 and LY96 was linked to enhanced VEGF signaling in T cells. CONCLUSION Our study identified RPL22L1 and LY96 as key biomarkers for PsA and RA. Further investigations demonstrated that these two marker genes are closely associated with gap junction function, T cell infiltration, differentiation, and VEGF signaling. Collectively, these findings provide new insights into the diagnosis and treatment of PsA and RA.
Collapse
Affiliation(s)
- Kaiyi Zhou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinxiao Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
3
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Perez-Sanchez C, Escudero-Contreras A, Cerdó T, Sánchez-Mendoza LM, Llamas-Urbano A, la Rosa IAD, Pérez-Rodriguez M, Muñoz-Barrera L, Del Carmen Abalos-Aguilera M, Barbarroja N, Calvo J, Ortega-Castro R, Ruiz-Vilchez D, Moreno JA, Burón MI, González-Reyes JA, Collantes-Estevez E, Lopez-Pedrera C, Villalba JM. Preclinical Characterization of Pharmacologic NAD + Boosting as a Promising Therapeutic Approach in Rheumatoid Arthritis. Arthritis Rheumatol 2023; 75:1749-1761. [PMID: 37094367 DOI: 10.1002/art.42528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE We analyzed NAD+ metabolism in patients with rheumatoid arthritis (RA), its association with disease activity and clinical outcomes of RA, and the therapeutic potential of pharmacologic NAD+ boosting. METHODS Our study included 253 participants. In the first cohort, comprising 153 RA patients and 56 healthy donors, we assessed NAD+ levels and NAD+ -related gene pathways. We analyzed 92 inflammatory molecules by proximity extension assay. In the second cohort, comprising 44 RA patients starting anti-tumor necrosis factor (anti-TNF) drugs, we evaluated changes in NAD+ levels and their association with clinical response after 3 months. Mechanistic studies were performed ex vivo on peripheral blood mononuclear cells (PBMCs) from patients with RA to test the beneficial effects of NAD+ boosters, such as nicotinamide and nicotinamide riboside. RESULTS Reduced NAD+ levels were found in RA samples, in line with altered activity and expression of genes involved in NAD+ consumption (sirtuins, poly[ADP-ribose] polymerase, CD38), transport (connexin 43), and biosynthesis (NAMPT, NMNATs). Unsupervised clustering analysis identified a group of RA patients with the highest inflammatory profile, the lowest NAD+ levels, and the highest disease activity (as shown by the Disease Activity Score in 28 joints). NAD+ levels were modulated by anti-TNF therapy in parallel with the clinical response. In vitro studies using PBMCs from RA patients showed that nicotinamide riboside and nicotinamide increased NAD+ levels via NAMPT and NMNAT and reduced their prooxidative, proapoptotic, and proinflammatory status. CONCLUSION RA patients display altered NAD+ metabolism, directly linked to their inflammatory and disease activity status, which was reverted by anti-TNF therapy. The preclinical beneficial effects of NAD+ boosters, as shown in leukocytes from RA patients, along with their proven clinical safety, might pave the way for the development of clinical trials using these compounds.
Collapse
Affiliation(s)
- Carlos Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, and Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain; Cobiomic Bioscience
| | | | - Tomás Cerdó
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Luz Marina Sánchez-Mendoza
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - Adrián Llamas-Urbano
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Miguel Pérez-Rodriguez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - Laura Muñoz-Barrera
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | | | - Nuria Barbarroja
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Jerusalem Calvo
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Rafaela Ortega-Castro
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Desiree Ruiz-Vilchez
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, and Laboratory GE-06, IMIBIC, Nephrology Service, Reina Sofia University Hospital, ceiA3, Córdoba, Spain
| | - María Isabel Burón
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - José Antonio González-Reyes
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - Eduardo Collantes-Estevez
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| |
Collapse
|
6
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [PMID: 36465186 PMCID: PMC9662276 DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 03/16/2025] Open
Abstract
Connexin43, which is the most highly expressed connexin subtype in the musculoskeletal system, exists in a variety of bone cells, synovial tissue, and cartilage tissue. Connexin43 has been suggested to be a key regulator of bone homeostasis. Studies have shown aberrant Connexin43 expression in musculoskeletal disorders, such as osteoporosis, osteoarthritis, and rheumatoid arthritis. During cellular activities, Connexin43 can participate in the formation of functionally specific gap junctions and hemichannels and can exert independent cellular regulatory and signaling functions through special C-termini. The critical role of Connexin43 in physiological development and disease progression has been gradually revealed. In this article, the function of Connexin43 in musculoskeletal tissues is summarized, revealing the potential role of Connexin43 as a key target in the treatment of related bone and muscle disorders and the need for further discovery.
Collapse
Affiliation(s)
- Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China.
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Chen Wang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Cheng T, Xu Z, Ma X. The role of astrocytes in neuropathic pain. Front Mol Neurosci 2022; 15:1007889. [PMID: 36204142 PMCID: PMC9530148 DOI: 10.3389/fnmol.2022.1007889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain, whose symptoms are characterized by spontaneous and irritation-induced painful sensations, is a condition that poses a global burden. Numerous neurotransmitters and other chemicals play a role in the emergence and maintenance of neuropathic pain, which is strongly correlated with common clinical challenges, such as chronic pain and depression. However, the mechanism underlying its occurrence and development has not yet been fully elucidated, thus rendering the use of traditional painkillers, such as non-steroidal anti-inflammatory medications and opioids, relatively ineffective in its treatment. Astrocytes, which are abundant and occupy the largest volume in the central nervous system, contribute to physiological and pathological situations. In recent years, an increasing number of researchers have claimed that astrocytes contribute indispensably to the occurrence and progression of neuropathic pain. The activation of reactive astrocytes involves a variety of signal transduction mechanisms and molecules. Signal molecules in cells, including intracellular kinases, channels, receptors, and transcription factors, tend to play a role in regulating post-injury pain once they exhibit pathological changes. In addition, astrocytes regulate neuropathic pain by releasing a series of mediators of different molecular weights, actively participating in the regulation of neurons and synapses, which are associated with the onset and general maintenance of neuropathic pain. This review summarizes the progress made in elucidating the mechanism underlying the involvement of astrocytes in neuropathic pain regulation.
Collapse
|
9
|
Xu S, Liu Y, Zhang D, Huang H, Li J, Wei J, Yang Y, Cui Y, Xie J, Zhou X. PDGF-AA promotes gap junction intercellular communication in chondrocytes via the PI3K/Akt pathway. Connect Tissue Res 2022; 63:544-558. [PMID: 35152816 DOI: 10.1080/03008207.2022.2036733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism. METHODS qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes. RESULTS Expression of PDGF-A mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation. CONCLUSION For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.
Collapse
Affiliation(s)
- Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongcan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Larrañaga-Vera A, Marco-Bonilla M, Largo R, Herrero-Beaumont G, Mediero A, Cronstein B. ATP transporters in the joints. Purinergic Signal 2021; 17:591-605. [PMID: 34392490 PMCID: PMC8677878 DOI: 10.1007/s11302-021-09810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and mediate cell-cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, and specifically OA and RA.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| | - Miguel Marco-Bonilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain.
| | - Bruce Cronstein
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
11
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
12
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
13
|
Gorabi AM, Kiaie N, Aslani S, Jamialahmadi T, Johnston TP, Sahebkar A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J Autoimmun 2020; 114:102529. [PMID: 32782117 DOI: 10.1016/j.jaut.2020.102529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
The identification of RNA interference (RNAi) has caused a growing interest in harnessing its potential in the treatment of different diseases. Modulation of dysregulated genes through targeting by RNAi represents a potential approach with which to alter the biological pathways at a post-transcriptional level, especially as it pertains to autoimmunity and malignancy. Short hairpin RNAs (shRNA), short interfering RNAs (siRNA), and microRNAs (miRNA) are mainly involved as effector mechanisms in the targeting of RNAi biological pathways. The manipulation and delivery of these molecules in an efficient way promotes the specificity and stability of RNAi-based systems, while minimizing the unwanted adverse reactions by the immune system and reducing cytotoxicity and off-target effects. Advances made to date in identifying the etiopathogenesis of autoimmune diseases has prompted the utilization of RNAi-based systems in vitro and in vivo. Future investigations aimed at deciphering the molecular basis of RNAi and optimizing the delivery of RNAi-based targeting systems will hopefully promote the applicability of such regulatory mechanisms and, ultimately, transfer the acquired knowledge from bench-to-bedside to ameliorate human diseases. In this review, we seek to clarify the potential of RNAi, with a focus on siRNAs, in designing therapeutics for potential treatment of human autoimmune disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
14
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
15
|
Eftekhari A, Vahed SZ, Kavetskyy T, Rameshrad M, Jafari S, Chodari L, Hosseiniyan SM, Derakhshankhah H, Ahmadian E, Ardalan M. Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. Int J Biol Macromol 2020; 148:475-482. [PMID: 31962072 DOI: 10.1016/j.ijbiomac.2020.01.168] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy as a deleterious complication of diabetes mellitus and an important cause of end-stage renal failure is characterized by changes in the molecular and cellular levels. Cell-cell communication via the gap and tight junctions are involved in the pathogenesis of diseases such as diabetes and kidney failure. Studying cell junctions including gap junctions, tight junctions, and anchoring junctions within the nephron can be used as an early sign of diabetic nephropathy. Furthermore, cell junctions may be an upcoming target by pharmacological methods to improve treatments of diabetic nephropathy and pave the way to introduce promising therapeutic strategies based on cell-cell communications effects and its translation into clinical studies for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine; The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
16
|
Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Front Pharmacol 2020; 11:212. [PMID: 32210810 PMCID: PMC7066501 DOI: 10.3389/fphar.2020.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and Transnational University of Limburg, Hasselt University, Hasselt, Belgium
| | - Ines Goetschalckx
- Protein Chemistry, Proteomics and Epigenetic Signaling Group, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Hoorelbeke
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Elke Decrock
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
17
|
Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol 2020; 105:219-229. [PMID: 31785013 DOI: 10.1113/ep087770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The ability of cells to communicate and synchronise their activity is essential for the maintenance of tissue structure, integrity and function. A family of membrane-bound proteins called connexins are largely responsible for mediating the local transfer of information between cells. Assembled in the cell membrane as a hexameric connexon, they either function as a conduit for paracrine signalling, forming a transmembrane hemi-channel, or, if aligned with connexons on neighbouring cells, form a continuous aqueous pore or gap junction, which allows for the direct transmission of metabolic and electrical signals. Regulation of connexin synthesis and activity is critical to cellular function, and a number of diseases are attributed to changes in the expression and/or function of these important proteins. A link between hyperglycaemia, connexin expression, altered nucleotide concentrations and impaired function highlights a potential role for connexin-mediated cell communication in complications of diabetes. In the diabetic kidney, glycaemic injury is the leading cause of end-stage renal failure, reflecting multiple aetiologies including glomerular hyperfiltration, albuminuria, increased deposition of extracellular matrix and tubulointerstitial fibrosis. Loss of connexin-mediated cell-to-cell communication in diabetic nephropathy may represent an early sign of disease progression, but our understanding of the process remains severely limited. This review focuses on recent evidence demonstrating that glucose-evoked changes in connexin-mediated cell communication and associated purinergic signalling may contribute to the pathogenesis of kidney disease in diabetes, highlighting the tantalising potential of targeting these proteins as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Bethany M Williams
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| |
Collapse
|
18
|
Huang Y, Mao Z, Zhang Z, Obata F, Yang X, Zhang X, Huang Y, Mitsui T, Fan J, Takeda M, Yao J. Connexin43 Contributes to Inflammasome Activation and Lipopolysaccharide-Initiated Acute Renal Injury via Modulation of Intracellular Oxidative Status. Antioxid Redox Signal 2019; 31:1194-1212. [PMID: 31319679 DOI: 10.1089/ars.2018.7636] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Inflammasome activation plays a pivotal role in many inflammatory diseases. Given that connexin (Cx) channels regulate numerous cellular events leading to inflammasome activation, we determined whether and how connexin affected inflammasome activation and inflammatory cell injury. Results: Exposure of mouse peritoneal macrophages (PMs) to lipopolysaccharide (LPS) plus ATP caused NLRP3 inflammasome activation, together with an increased connexin43 (Cx43). Inhibition of Cx43 blunted inflammasome activation. Consistently, PMs from the Cx43 heterozygous mouse (Cx43+/-) exhibited weak inflammasome activation, in comparison with those from the Cx43+/+ mouse. Further analysis revealed that inflammasome activation was preceded by an increased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 2 (NOX2), protein carbonylation, and mitogen-activated protein kinase (MAPK) activation. Suppression of ROS with antioxidant, downregulation of NOX2 with small interfering RNA (siRNA), or inhibition of NADPH oxidase or MAPKs with inhibitors blocked Cx43 elevation and inflammasome activation. Intriguingly, suppression of Cx43 also blunted NOX2 expression, protein carbonylation, p38 phosphorylation, and inflammasome activation. In a model of acute renal injury induced by LPS, the Cx43+/- mouse exhibited a significantly lower level of blood interleukin-1β (IL-1β), blood urea nitrogen, and urinary protein, together with milder renal pathological changes and renal expression of NLRP3 and NOX4, as compared with the Cx43+/+ mouse. Moreover, inhibition of gap junctions suppressed IL-1β- and tumor necrosis factor-α-induced expression of NOX4 in glomerular podocytes and tubular epithelial cells. Innovation and Conclusion: Our study indicates that Cx43 contributes to inflammasome activation and the progression of renal inflammatory cell injury through modulation of intracellular redox status. Cx43 could be a novel target for the treatment of certain inflammatory diseases.
Collapse
Affiliation(s)
- Yanru Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhimin Mao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhen Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Fumiko Obata
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiawen Yang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiling Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yong Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jian Yao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
19
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
20
|
Deng GC, Lu M, Zhao YY, Yuan Y, Chen G. Activated spinal astrocytes contribute to the later phase of carrageenan-induced prostatitis pain. J Neuroinflammation 2019; 16:189. [PMID: 31653262 PMCID: PMC6814979 DOI: 10.1186/s12974-019-1584-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background Prostatodynia is the main symptom of chronic prostatitis and the main reason that patients go to the hospital for treatment. Although a variety of factors, including inflammatory immune response, nervous system sensitization, and psychological factors, have been shown to play important roles in the induction and development of chronic pain in prostatitis, the underlying cause of chronic prostatodynia maintenance in prostatitis patients remains unclear. Methods A mouse model of chronic prostatitis induced by carrageenan injection was used. The von Frey test was used to measure pain behavior. The microglial and astrocyte activations were immunohistochemically demonstrated with antibodies against Iba1 and GFAP. The expression of cytokine or signaling pathway was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting. Results In this study, we provide several lines of evidence to demonstrate that activated spinal astrocytes contribute to the later phase (5 weeks after carrageenan injection) of carrageenan-induced prostatitis pain. First, activation of spinal astrocytes but not microglia was found in the spinal cord dorsal horn at 5 weeks. Second, intrathecal injection of the astroglial toxin L-2-Aminoadipate acid (L-AA) but not microglial inhibitor minocycline reduced mechanical allodynia at 5 weeks. Third, chronic prostatitis induced a profound and persistent upregulation of connexin-43 hemichannels in spinal astrocytes, and spinal injection of the connexin-43 inhibitor carbenoxolone (CBX) effectively reduced pain symptoms. Fourth, increased expression and release of chemokine C-X-C motif ligand 1 (CXCL1) in the spinal dorsal horn and intrathecal injection of a CXCL1 neutralizing antibody or the CXCR2 (a major receptor of CXCL1) antagonist SB225002 significantly reduced mechanical allodynia at 5 weeks. Conclusions In this study, we found that a novel mechanism of activated spinal astrocytes plays a crucial role in maintaining chronic prostatitis-induced persistent pain via connexin-43-regulated CXCL1 production and secretion.
Collapse
Affiliation(s)
- Guo-Chuang Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Lu
- Department of Urology, The Second Affiliated Hospital of Nantong University (The First People's Hospital of Nantong), Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
21
|
Fujii Y, Inoue H, Arai Y, Shimomura S, Nakagawa S, Kishida T, Tsuchida S, Kamada Y, Kaihara K, Shirai T, Terauchi R, Toyama S, Ikoma K, Mazda O, Mikami Y. Treadmill Running in Established Phase Arthritis Inhibits Joint Destruction in Rat Rheumatoid Arthritis Models. Int J Mol Sci 2019; 20:ijms20205100. [PMID: 31618828 PMCID: PMC6834114 DOI: 10.3390/ijms20205100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Exercise therapy inhibits joint destruction by suppressing pro-inflammatory cytokines. The efficacy of pharmacotherapy for rheumatoid arthritis differs depending on the phase of the disease, but that of exercise therapy for each phase is unknown. We assessed the differences in the efficacy of treadmill running on rheumatoid arthritis at various phases, using rat rheumatoid arthritis models. Rats with collagen-induced arthritis were used as rheumatoid arthritis models, and the phase after immunization was divided as pre-arthritis and established phases. Histologically, the groups with forced treadmill running in the established phase had significantly inhibited joint destruction compared with the other groups. The group with forced treadmill running in only the established phase had significantly better bone morphometry and reduced expression of connexin 43 and tumor necrosis factor α in the synovial membranes compared with the no treadmill group. Furthermore, few cells were positive for cathepsin K immunostaining in the groups with forced treadmill running in the established phase. Our results suggest that the efficacy of exercise therapy may differ depending on rheumatoid arthritis disease activity. Active exercise during phases of decreased disease activity may effectively inhibit arthritis and joint destruction.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental
- Arthritis, Rheumatoid/diagnostic imaging
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biomarkers
- Body Weight
- Bone Resorption/diagnostic imaging
- Bone Resorption/metabolism
- Cartilage, Articular/diagnostic imaging
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Connexin 43/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Inflammation Mediators/metabolism
- Physical Conditioning, Animal
- Rats
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroaki Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Seiji Shimomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yoichiro Kamada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kenta Kaihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shogo Toyama
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
22
|
Wang A, Xu C. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim Biophys Sin (Shanghai) 2019; 51:555-561. [PMID: 31056639 DOI: 10.1093/abbs/gmz038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is caused by the damage or dysfunction of the nervous system. In many neuropathic pain models, there is an increase in the number of gap junction (GJ) channels, especially the upregulation of the expression of connexin43 (Cx43), leading to the secretion of various types of cytokines and involvement in the formation of neuropathic pain. GJs are widely distributed in mammalian organs and tissues, and Cx43 is the most abundant connexin (Cx) in mammals. Astrocytes are the most abundant glial cell type in the central nervous system (CNS), which mainly express Cx43. More importantly, GJs play an important role in regulating cell metabolism, signaling, and function. Many existing literatures showed that Cx43 plays an important role in the nervous system, especially in the CNS under normal and pathological conditions. However, many internal mechanisms have not yet been thoroughly explored. In this review, we summarized the current understanding of the role and association of Cx and pannexin channels in neuropathic pain, especially after spinal cord injury, as well as some of our own insights and thoughts which suggest that Cx43 may become an emerging therapeutic target for future neuropathic pain, bringing new hope to patients.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
23
|
Lei J, Fu Y, Zhuang Y, Zhang K, Lu D. miR-382-3p suppressed IL-1β induced inflammatory response of chondrocytes via the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43. J Cell Physiol 2019; 234:23160-23168. [PMID: 31144313 DOI: 10.1002/jcp.28882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
miR-382-3p has been reported to be upregulated in synovial membrane in knee osteoarthritis (OA). Nevertheless, its role in OA remains largely unknown. The aim of this study was to investigate the specific function and mechanisms of miR-382-3p in the course of OA. In this study, human OA chondrocytes were pretreated with interleukin-1β (IL-1β) at 5 ng/ml for 12 hr to stimulate inflammatory response and matrix metalloproteinases (MMPs) expression in chondrocytes. Meanwhile, miR-382-3p was downregulated in IL-1β-stimulated chondrocytes. In addition, we found that miR-382-3p directly interacts with connexin 43 (CX43) and attenuates the increase of cytochrome c oxidase polypeptide II, inducible nitric oxide synthase, and MMP-1/13 that is induced by IL-1β. Furthermore, our observations indicated that miR-382-3p inhibited the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation primary response 88 (MyD88) and nuclear factor κB (NF-κB) in IL-1β-stimulated chondrocytes, while CX43 overexpression could partly reverse these decreases. In conclusion, miR-382-3p participated in OA may through the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43.
Collapse
Affiliation(s)
- Jinlai Lei
- Department of Orthopedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaansi, China
| | - Yahui Fu
- Department of Orthopedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaansi, China
| | - Yan Zhuang
- Department of Orthopedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaansi, China
| | - Kun Zhang
- Department of Orthopedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaansi, China
| | - Daigang Lu
- Department of Orthopedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaansi, China
| |
Collapse
|
24
|
Han S, Chen Y, Wang J, Zhang Q, Han B, Ge Y, Xiang Y, Liang R, Zhu X, You Y, Liao F. Anti-thrombosis Effects and Mechanisms by Xueshuantong Capsule Under Different Flow Conditions. Front Pharmacol 2019; 10:35. [PMID: 30792653 PMCID: PMC6374556 DOI: 10.3389/fphar.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Xueshuantong capsule (XST) is a patented traditional Chinese medicine used for the prevention and treatment of thrombosis. The molecular mechanism of anti-thrombotic effect of XST was investigated through the cross-talk among the platelets/leukocytes, endothelial cells (ECs), and flow shear stress. The Bioflux 1000 system was used to generate two levels of shear stress conditions: 0.1 and 0.9 Pa. Bioflux Metamorph microscopic imaging system was used to analyze the adhesion cell numbers. Protein expressions were detected by western blotting and flow cytometry. The flow-cytometry results showed that under 0.1 Pa flow, XST decreased ADP induced platelets CD62p surface expression in a concentration-dependent manner. Under 0.9 Pa flow, XST at a concentration of 0.15 g⋅L-1 reduced the platelets activation by 29.5%, and aspirin (ASA) showed no inhibitory effects. XST showed similar efficiency on monocytes adhesion both under 0.1 and 0.9 Pa flow conditions, and the inhibition rate was 30.2 and 28.3%, respectively. Under 0.9 Pa flow, the anti-adhesive effects of XST might be associated with the suppression of VE-cadherin and Cx43 in HUVECs. Blood flow not only acts as a drug transporter, but also exerts its effects to influence the pharmacodynamics of XST. Effects of XST on inhibiting platelets activation and suppressing platelets/leukocytes adhesion to injured ECs are not only concentration-dependent, but also shear stress-dependent. The mechanic forces combined with traditional Chinese medicine may be used as a precise treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuxian Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Han
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Yimeng Ge
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Yanhua Xiang
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Shen C, Chen JH, Lee Y, Hassan MM, Kim SJ, Choi EY, Hong ST, Park BH, Park JH. mTOR- and SGK-Mediated Connexin 43 Expression Participates in Lipopolysaccharide-Stimulated Macrophage Migration through the iNOS/Src/FAK Axis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2986-2997. [DOI: 10.4049/jimmunol.1700954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/12/2018] [Indexed: 01/08/2023]
|
27
|
Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model. Int J Mol Sci 2018; 19:ijms19061653. [PMID: 29865282 PMCID: PMC6032207 DOI: 10.3390/ijms19061653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
We analyzed the influence of treadmill running on rheumatoid arthritis (RA) joints using a collagen-induced arthritis (CIA) rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old), CIA group (induced CIA at 8-weeks-old), and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV) was significantly decreased in the CIA group. Marrow star volume (MSV), an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP) staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.
Collapse
|
28
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
29
|
Kavvadas P, Abed A, Poulain C, Authier F, Labéjof LP, Calmont A, Afieri C, Prakoura N, Dussaule JC, Chatziantoniou C, Chadjichristos CE. Decreased Expression of Connexin 43 Blunts the Progression of Experimental GN. J Am Soc Nephrol 2017; 28:2915-2930. [PMID: 28667079 DOI: 10.1681/asn.2016111211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/05/2017] [Indexed: 11/03/2022] Open
Abstract
GN refers to a variety of renal pathologies that often progress to ESRD, but the molecular mechanisms underlying this progression remain incompletely characterized. Here, we determined whether dysregulated expression of the gap junction protein connexin 43, which has been observed in the progression of renal disease, contributes to GN progression. Immunostaining revealed de novo expression of connexin 43 in damaged glomeruli in patients with glomerular diseases as well as in mice after induction of experimental GN. Notably, 2 weeks after the induction of GN with nephrotoxic serum, mice with a heterozygous deletion of the connexin 43 gene (connexin 43+/-) had proteinuria, BUN, and serum creatinine levels significantly lower than those of wild-type animals. Additionally, the connexin 43+/- mice showed less crescent formation, tubular dilation, monocyte infiltration, and interstitial renal fibrosis. Treatment of cultured podocytes with connexin 43-specific blocking peptides attenuated TGF-β-induced cytoskeletal and morphologic changes and apoptosis as did treatment with the purinergic blocker suramin. Finally, therapeutic treatment of GN mice with connexin 43-specific antisense oligodeoxynucleotide improved functional and structural renal parameters. These findings suggest that crosstalk between connexin 43 and purinergic signaling contributes to podocyte damage in GN. Given that this protein is highly induced in individuals with glomerular diseases, connexin 43 may be a novel target for therapeutic treatment of GN.
Collapse
Affiliation(s)
- Panagiotis Kavvadas
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Ahmed Abed
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Coralie Poulain
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,University René Descartes, Paris, France.,University Denis Diderot, Paris, France
| | - Florence Authier
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Lise-Paule Labéjof
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Amelie Calmont
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Carlo Afieri
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy; and
| | - Niki Prakoura
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France.,Department of Physiology, Saint Antoine Hospital, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Christos E Chadjichristos
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France; .,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| |
Collapse
|
30
|
Lin HC, Yang CJ, Kuan YD, Wang WK, Chang WW, Lee CH. The inhibition of indoleamine 2, 3-dioxygenase 1 by connexin 43. Int J Med Sci 2017; 14:1181-1188. [PMID: 29104473 PMCID: PMC5666550 DOI: 10.7150/ijms.20661] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
UNLABELLED Upregulation of connexin 43 (Cx43) showed potential in enhancing immune surveillance that was suppressed in the tumor microenvironment. The expression of indoleamine 2, 3-dioxygenase (IDO) is one of the crucial factors contributing to tumor immune tolerance by depletion of tryptophan and IDO-mediated tryptophan metabolites. Here, we aim to investigate the role of Cx43 in IDO production in murine tumor by using Cx43 inducers. Resveratrol (trans-3, 5, 4 '-trihydroxystilbene) is a natural plant-derived polyphenol possessing positive effect against cancer. Salmonella enterica serovar choleraesuis (S.C.) was proved to target and inhibit tumor growth. Both of them regulated Cx43 expression in tumor cells and led to either chemosensitizing or immune-activating. In this study, the correlation between Cx43 and IDO were determined by the treatment of resveratrol and S.C. Our data showed an increase in Cx43 while IDO protein and IDO-mediated inhibited effects on T cell decreased after tumor cells are given with resveratrol and S.C. TREATMENTS All of which could be inhibited once the expression of Cx43 was blocked. Cx43 involved in IDO regulation might be useful in developing IDO-targeted cancer immune therapy.
Collapse
Affiliation(s)
- Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Diao Kuan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 404, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
31
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|
32
|
Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 2016; 17 Suppl 1:19. [PMID: 27230612 PMCID: PMC4896274 DOI: 10.1186/s12860-016-0088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush Veterans Administration Medical Center Indiana, Indianapolis, IN, 46202, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A-5C1, Canada
| | - Joelle Amedee
- INSERM U1026, Tissue Bioengineering, Université Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
33
|
Pietrzak A, Grywalska E, Gerkowicz A, Krasowska D, Chodorowska G, Michalska-Jakubus M, Roliński J, Wawrzycki B, Radej S, Dybiec E, Wroński J, Sobczyńska-Tomaszewska A, Rudzki M, Hadj-Rabia S. Immune system disturbances in Clouston syndrome. Int J Dermatol 2015; 55:e241-9. [PMID: 26551294 DOI: 10.1111/ijd.13152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/20/2015] [Accepted: 07/10/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Clouston syndrome belongs to the family of ectodermal dysplasias. So far, a defective immune response has not been reported in Clouston syndrome. We report, for the first time, immunological particularities of a large multigenerational Polish family with Clouston syndrome. METHODS Five members of the same family with Clouston syndrome, aged 6-76 years, and 20 healthy volunteers, aged 19-73 years, were enrolled in the study. In all participants, the ability of neutrophils to phagocytize opsonized Escherichia coli was assessed. Granulocyte oxidative burst was determined quantitatively, and an isolation of peripheral blood mononuclear cells and the detection of lymphocyte subsets were performed. All patients with Clouston syndrome underwent microscopic assessment of hair shafts, x-rays of the skull and hand bones, extra- and intraoral examination, and panoramic x-rays. RESULTS Compared to the controls, all patients with Clouston syndrome presented with significantly reduced phagocytic activities of granulocytes and monocytes (P < 0.05). The percentages of granulocytes and monocytes being positive for oxidative burst were also significantly reduced in all patients with Clouston syndrome (P < 0.05). No disturbances in the percentages and absolute counts of T CD3+, T CD3+/CD4+, T CD3+/CD8+, natural killer, and B CD19+ cells were found. CONCLUSION Although this study expands knowledge about Clouston syndrome, it also raises many questions. The results provide evidence of significantly reduced phagocytic activity and oxidative bursts of cells playing crucial roles in a nonspecific immune response. Further studies are required to understand the underlying mechanism of the hereby described abnormalities.
Collapse
Affiliation(s)
- Aldona Pietrzak
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Gerkowicz
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Chodorowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | | | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Wawrzycki
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Sebastian Radej
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Ewa Dybiec
- Department of Pediatric Radiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Wroński
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | | | - Marcin Rudzki
- Department of Maxillofacial Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Smail Hadj-Rabia
- Department of Dermatology, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
34
|
Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis. Arch Rheumatol 2015; 31:55-63. [PMID: 29900991 DOI: 10.5606/archrheumatol.2016.5597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/23/2015] [Indexed: 12/21/2022] Open
Abstract
Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue.
Collapse
|
35
|
Helicobacter pylori VacA induces apoptosis by accumulation of connexin 43 in autophagic vesicles via a Rac1/ERK-dependent pathway. Cell Death Discov 2015; 1:15035. [PMID: 27551466 PMCID: PMC4979424 DOI: 10.1038/cddiscovery.2015.35] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) produces vacuolating cytotoxin (VacA), a potent protein toxin, which is associated with gastric inflammation and ulceration. Recent studies demonstrated that connexins (Cxs), which are responsible for intracellular communication at gap junctions (GJs) as well as cell homeostasis, participate in VacA-induced cell death. We now demonstrate in AZ-521 cells that VacA increased cytoplasmic Cx43, accompanied by LC3-II generation in a time- and dose-dependent manner without induction of Cx43 mRNA expression. Inhibition of VacA-induced Rac1 activity prevented ERK phosphorylation and the increase in Cx43. Suppression of ERK activity and addition of N-acetyl-cysteine inhibited VacA-dependent increase in Cx43 and LC3-II. DIDS, an anion-selective inhibitor, suppressed VacA-dependent increase in Cx43, suggesting that VacA channel activity was involved in this pathway. By confocal microscopy, Cx43 increased by VacA was predominately localized in cholesterol-rich, detergent-resistant membranes including GJs, and a fraction of Cx43 was incorporated in endocytotic vesicles and autophagolysosomes. Accumulation of Cx43 was also observed in gastric mucosa from H. pylori-infected patients compared with healthy controls, suggesting that the pathogen caused a similar effect in vivo. Our findings show that VacA-mediated effects on autophagy inhibits turnover of Cx43, resulting in increased levels in the cytoplasm, leading eventually to apoptotic cell death.
Collapse
|
36
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
37
|
Ginkgolide B Inhibits JAM-A, Cx43, and VE-Cadherin Expression and Reduces Monocyte Transmigration in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:907926. [PMID: 26246869 PMCID: PMC4515296 DOI: 10.1155/2015/907926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/21/2015] [Indexed: 12/02/2022]
Abstract
Aim. To investigate the effect of ginkgolide B on junction proteins and the reduction of monocyte migration in oxidized low-density lipoprotein- (ox-LDL-) treated endothelial cells. Methods. Human umbilical vein endothelial cells (HUVECs) were used in the present study. Immunofluorescence and Western blot were performed to determine the expression of junctional adhesion molecule-A (JAM-A), connexin 43 (Cx43), and vascular endothelial cadherin (VE-cadherin). Monocyte migration was detected by the Transwell assay. Results. ox-LDL stimulation increased JAM-A expression by 35%, Cx43 expression by 24%, and VE-cadherin expression by 37% in HUVECs. Ginkgolide B (0.2, 0.4, and 0.6 mg/mL) dose-dependently abolished the expression of these junction proteins. The monocyte transmigration experiments showed that the level of monocyte migration was sixfold higher in the ox-LDL-treated group than in the control group. Ginkgolide B (0.6 mg/mL) nearly completely abolished monocyte migration. Both ginkgolide B and LY294002 suppressed Akt phosphorylation and the expression of these junction proteins in ox-LDL-treated endothelial cells. These results suggest that the ginkgolide B-induced inhibition of junction protein expression is associated with blockade of the PI3K/Akt pathway. Conclusion. Ginkgolide B suppressed junction protein expression and reduced monocyte transmigration that was induced by ox-LDL. Ginkgolide B may improve vascular permeability in atherosclerosis.
Collapse
|
38
|
Gago-Fuentes R, Fernández-Puente P, Megias D, Carpintero-Fernández P, Mateos J, Acea B, Fonseca E, Blanco FJ, Mayan MD. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics 2015; 14:1831-45. [PMID: 25903580 DOI: 10.1074/mcp.m115.050211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Patricia Fernández-Puente
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Diego Megias
- ‖Confocal Microscopy Core Unit. Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Paula Carpintero-Fernández
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Jesus Mateos
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Benigno Acea
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Francisco Javier Blanco
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Maria Dolores Mayan
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain;
| |
Collapse
|
39
|
Casagrande D, Stains JP, Murthi AM. Identification of shoulder osteoarthritis biomarkers: comparison between shoulders with and without osteoarthritis. J Shoulder Elbow Surg 2015; 24:382-90. [PMID: 25595362 PMCID: PMC4331258 DOI: 10.1016/j.jse.2014.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND The biologic factors associated with shoulder osteoarthritis (OA) have not been elucidated. The purpose of this study was to investigate osteoarthritic biomarkers of the shoulder. To our knowledge, this is the first study to analyze shoulder cartilage for OA-associated genes and to examine human shoulder cartilage for a possible biomarker, connexin 43 (Cx43). MATERIALS AND METHODS Cartilage from 16 osteoarthritic and 10 nonosteoarthritic humeral heads was assessed for expression of the following genes by real-time polymerase chain reaction: types I, II, and X collagen; matrix metalloproteinases (MMPs); tissue inhibitors of MMP (TIMPs); interleukins; versican; cyclooxygenase 2 (Cox-2); inducible nitric oxide synthase (iNOS); tumor necrosis factor α (TNF-α); aggrecanase 2 (ADAMTS5); and Cx43. RESULTS In osteoarthritic shoulders, Cx43, Cox-2, versican, collagen type I, ADAMTS5, MMP-3, and TNF-α expressions were significantly increased compared with controls. TIMP-3 and iNOS trended toward significance, with robust expression in osteoarthritic shoulders and low expression in nonosteoarthritic shoulders. In osteoarthritic shoulders, gene expression of Cx43, ADAMTS5, collagen type I, Cox-2, versican, and TIMP-3 showed predominance (85-, 33-, 13-, 12-, 11.5-, and 3-fold increases, respectively) relative to nonosteoarthritic controls. Spearman correlation analysis showed significant correlations between Cx43 and collagen (types I, II, and X), MMP-9, TIMP-2 and TIMP-3, versican, Cox-2, iNOS, and ADAMTS5. CONCLUSIONS Certain genes are markedly upregulated in osteoarthritic shoulders compared with nonosteoarthritic shoulders, with Cx43, Cox-2, versican, collagen type I, ADAMTS5, MMP-3, and TNF-α expression being significantly increased. These genes might be useful biomarkers for examining shoulder OA. CLINICAL RELEVANCE Identification of osteoarthritic biomarkers can help us better understand shoulder OA and build the foundation for future research on disease progression and treatments.
Collapse
|
40
|
Hills CE, Price GW, Squires PE. Mind the gap: connexins and cell-cell communication in the diabetic kidney. Diabetologia 2015; 58:233-41. [PMID: 25358446 DOI: 10.1007/s00125-014-3427-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell-cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell-cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Claire E Hills
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK,
| | | | | |
Collapse
|
41
|
Connexin43 enhances the expression of osteoarthritis-associated genes in synovial fibroblasts in culture. BMC Musculoskelet Disord 2014; 15:425. [PMID: 25496568 PMCID: PMC4295231 DOI: 10.1186/1471-2474-15-425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/25/2014] [Indexed: 02/06/2023] Open
Abstract
Background Recent work has shown that the gap junction protein connexin43 (Cx43) is upregulated in cells of the joint during osteoarthritis (OA). Here we examined if the OA-associated increase in Cx43 expression impacts the function of synovial fibroblasts by contributing to the production of catabolic and inflammatory factors that exacerbate joint destruction in arthritic disease. Methods Using rabbit and human synovial fibroblast cell lines, we examined the effects of Cx43 overexpression and Cx43 siRNA-mediated knockdown on the gene expression of OA-associated matrix metalloproteinases (MMP1 and MMP13), aggrecanases (ADAMTS4 and ADAMTS5), and inflammatory factors (IL1, IL6 and PTGS2) by quantitative real time RT-PCR. We examined collagenase activity in conditioned media of cultured synovial cells following Cx43 overexpression. Lastly, we assessed the interplay between Cx43 and the NFκB cascade by western blotting and gene expression studies. Results Increasing Cx43 expression enhanced the gene expression of MMP1, MMP13, ADAMTS4, ADAMTS5, IL1, IL6 and PTGS2 and increased the secretion of collagenases into conditioned media of cultured synovial fibroblasts. Conversely, knockdown of Cx43 decreased expression of many of these catabolic and inflammatory genes. Modulation of Cx43 expression altered the phosphorylation of the NFκB subunit, p65, and inhibition of NFκB with chemical inhibitors blocked the effects of increased Cx43 expression on the mRNA levels of a subset of these catabolic and inflammatory genes. Conclusions Increasing or decreasing Cx43 expression alone was sufficient to alter the levels of catabolic and inflammatory genes expressed by synovial cells. The NFκB cascade mediated the effect of Cx43 on the expression of a subset of these OA-associated genes. As such, Cx43 may be involved in joint pathology during OA, and targeting Cx43 expression or function may be a viable therapeutic strategy to attenuate the catabolic and inflammatory environment of the joint during OA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-425) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014; 2014:742734. [PMID: 25301274 PMCID: PMC4180397 DOI: 10.1155/2014/742734] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.
Collapse
Affiliation(s)
- Pablo J. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Kenji F. Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Adam Aguirre
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360103 Valparaíso, Chile
| |
Collapse
|
43
|
Abed A, Toubas J, Kavvadas P, Authier F, Cathelin D, Alfieri C, Boffa JJ, Dussaule JC, Chatziantoniou C, Chadjichristos CE. Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice. Kidney Int 2014; 86:768-79. [PMID: 24850151 DOI: 10.1038/ki.2014.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/09/2022]
Abstract
Excessive recruitment of monocytes and progression of fibrosis are hallmarks of chronic kidney disease (CKD). Recently we reported that the expression of connexin 43 (Cx43) was upregulated in the kidney during experimental nephropathy. To investigate the role of Cx43 in the progression of CKD, we interbred RenTg mice, a genetic model of hypertension-induced CKD, with Cx43+/- mice. The renal cortex of 5-month-old RenTgCx43+/- mice showed a marked decrease of cell adhesion markers leading to reduced monocyte infiltration and interstitial renal fibrosis compared with their littermates. In addition, functional and histological parameters such as albuminuria and glomerulosclerosis were ameliorated in RenTgCx43+/- mice. Interestingly, treatment with Cx43 antisense produced remarkable improvement of renal function and structure in 1-year-old RenTg mice. Similar results were found in Cx43+/- or wild-type mice treated with Cx43 antisense after obstructive nephropathy. Furthermore, in these mice, Cx43 antisense attenuated E-cadherin downregulation and phosphorylation of the transcription factor Sp1 by the ERK pathway resulting in decreased transcription of type I collagen gene. Interestingly, Cx43-specific blocking peptide inhibited monocyte adhesion in activated endothelium and profibrotic pathways in tubular cells. Cx43 was highly increased in biopsies of patients with CKD. Thus, Cx43 may represent a new therapeutic target against the progression of CKD.
Collapse
Affiliation(s)
- Ahmed Abed
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Julie Toubas
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | | | | | | | | | - Jean-Jacques Boffa
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France [3] Department of Nephrology, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France [3] Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Christos Chatziantoniou
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Christos E Chadjichristos
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| |
Collapse
|
44
|
Inoue H, Arai Y, Kishida T, Shin-Ya M, Terauchi R, Nakagawa S, Saito M, Tsuchida S, Inoue A, Shirai T, Fujiwara H, Mazda O, Kubo T. Sonoporation-mediated transduction of siRNA ameliorated experimental arthritis using 3 MHz pulsed ultrasound. ULTRASONICS 2014; 54:874-881. [PMID: 24291002 DOI: 10.1016/j.ultras.2013.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 06/02/2023]
Abstract
The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm(2) (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20-23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis.
Collapse
Affiliation(s)
- Hiroaki Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Arai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuji Nakagawa
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masazumi Saito
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
45
|
Zhang J, O'Carroll SJ, Henare K, Ching LM, Ormonde S, Nicholson LFB, Danesh-Meyer HV, Green CR. Connexin hemichannel induced vascular leak suggests a new paradigm for cancer therapy. FEBS Lett 2014; 588:1365-71. [PMID: 24548560 DOI: 10.1016/j.febslet.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
It is 40 years since cancer growth was correlated with neovascularisation. Anti-angiogenic drugs remain at the forefront of cancer investigations but progress has been disappointing and unexpected toxicities are emerging. Gap junction channels are implicated in lesion spread following injury, with channel blockers shown to improve healing; in particular preventing vascular disruption and/or restoring vascular integrity. Here we briefly review connexin roles in vascular leak and endothelial cell death that occurs following acute wounds and during chronic disease, and how connexin channel regulation has been used to ameliorate vascular disruption. We then review chronic inflammatory disorders and trauma in the eye, concluding that vascular disruption under these conditions mimics that seen in tumours, and can be prevented with connexin hemichannel modulation. We apply this knowledge to tumour vessel biology, proposing that contrary to current opinion, these data suggest a need to protect, maintain and/or restore cancer vasculature. This may lead to reduced tumour hypoxia, promote the survival of normal cells, and enable improved therapeutic delivery or more effective radiation therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kimiora Henare
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Susan Ormonde
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
46
|
siRNA delivery via electropulsation: a review of the basic processes. Methods Mol Biol 2014; 1121:81-98. [PMID: 24510814 DOI: 10.1007/978-1-4614-9632-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.
Collapse
|