1
|
Nourmahnad A, Javad Shariyate M, Khak M, Grinstaff MW, Nazarian A, Rodriguez EK. Relaxin as a treatment for musculoskeletal fibrosis: What we know and future directions. Biochem Pharmacol 2024; 225:116273. [PMID: 38729446 PMCID: PMC11179965 DOI: 10.1016/j.bcp.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fibrotic changes in musculoskeletal diseases arise from the abnormal buildup of fibrotic tissue around the joints, leading to limited mobility, compromised joint function, and diminished quality of life. Relaxin (RLX) attenuates fibrosis by accelerating collagen degradation and inhibiting excessive extracellular matrix (ECM) production. Further, RLX disrupts myofibroblast activation by modulating the TGF-β/Smads signaling pathways, which reduces connective tissue fibrosis. However, the mechanisms and effects of RLX in musculoskeletal pathologies are emerging as increasing research focuses on relaxin's impact on skin, ligaments, tendons, cartilage, joint capsules, connective tissues, and muscles. This review delineates the actions of relaxin within the musculoskeletal system and the challenges to its clinical application. Relaxin shows significant potential in both in vivo and in vitro studies for broadly managing musculoskeletal fibrosis; however, challenges such as short biological half-life and sex-specific responses may pose hurdles for clinical use.
Collapse
Affiliation(s)
| | - Mohammad Javad Shariyate
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammad Khak
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lenzi LGS, Gomes dos Santos JB, Cavalheiro RP, Mendes A, Kobayashi EY, Nader HB, Faloppa F. Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren's Disease. Int J Mol Sci 2024; 25:7192. [PMID: 39000302 PMCID: PMC11241189 DOI: 10.3390/ijms25137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Guilherme S. Lenzi
- Department of Orthopaedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04038-032, SP, Brazil; (L.G.S.L.); (J.B.G.d.S.); (F.F.)
| | - João Baptista Gomes dos Santos
- Department of Orthopaedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04038-032, SP, Brazil; (L.G.S.L.); (J.B.G.d.S.); (F.F.)
| | - Renan P. Cavalheiro
- Molecular Biology Program, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04024-002, SP, Brazil; (R.P.C.); (A.M.); (E.Y.K.)
- Faculdade de Medicina ABC, Centro Universitário, Santo André 09060-870, SP, Brazil
| | - Aline Mendes
- Molecular Biology Program, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04024-002, SP, Brazil; (R.P.C.); (A.M.); (E.Y.K.)
| | - Elsa Y. Kobayashi
- Molecular Biology Program, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04024-002, SP, Brazil; (R.P.C.); (A.M.); (E.Y.K.)
| | - Helena B. Nader
- Molecular Biology Program, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04024-002, SP, Brazil; (R.P.C.); (A.M.); (E.Y.K.)
| | - Flavio Faloppa
- Department of Orthopaedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04038-032, SP, Brazil; (L.G.S.L.); (J.B.G.d.S.); (F.F.)
| |
Collapse
|
3
|
Berger GK, Rockov ZA, Byrne C, Trentacosta NE, Stone MA. The role of relaxin in anterior cruciate ligament injuries: a systematic review. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3319-3326. [PMID: 37300589 DOI: 10.1007/s00590-023-03618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) tears are exceedingly common among the athletic population and are seen with higher incidence in females. Observational studies have noted peak ACL tear rates in the luteal phase of the menstrual cycle, a time in which the hormone relaxin peaks in serum concentration. METHODS A systematic review of the literature was performed. Inclusion criteria specified all prospective and retrospective studies which included the role of relaxin in the pathogenesis of ACL tears. RESULTS Six studies met inclusion criteria yielding 189 subjects from clinical studies and 51 in vitro samples. Included studies found that ACL samples exhibit selective relaxin binding. When pre-treated with estrogen prior to relaxin exposure, female ACL tissue samples exhibit increased expression of collagen degrading receptors. CONCLUSION Relaxin displays binding specificity to the female ACL and increased serum concentrations are correlated with increased ACL tear rates in female athletes. Further research is needed in this area. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- Garrett K Berger
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA, 92037, USA.
| | - Zachary A Rockov
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Connor Byrne
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natasha E Trentacosta
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael A Stone
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Effect of nanoparticle-mediated delivery of SFRP4 siRNA for treating Dupuytren disease. Gene Ther 2023; 30:31-40. [PMID: 35347304 DOI: 10.1038/s41434-022-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Dupuytren disease (DD) is a progressive fibrous proliferative disease. It invades the palmar aponeurosis and extends to the finger fascia, eventually leading to flexion contracture of the metacarpophalangeal or interphalangeal joint. At present, surgical resection and the local injection of collagenase are the main methods for the treatment of DD, but postoperative complications and high recurrence rates often occur. Bioinformatics analysis showed that the increased expression of SFRP4 protein was closely related to the incidence of DD. Persistent and effective inhibition of SFRP4 expression may be a promising treatment for DD. We prepared SFRP4 siRNA/nanoparticle complexes (si-SFRP4) and negative siRNA/nanoparticle complexes (NC) and applied them in vitro and in vivo. Flow cytometry analysis showed that si-SFRP4 could be successfully transfected into DD cells. MTT and EdU staining assays showed that the OD values and percentage of EdU-positive cells in the si-SFRP4 group were significantly lower than those in the NC group. Scratch tests showed that the wound healing rate of the si-SFRP4 group was lower than that of the NC group, and the difference was statistically significant. The expression of SFRP4 and α-SMA protein in the si-SFRP4 group significantly decreased in both DD cells and xenografts. Compared with the NC group, the xenograft quality of the si-SFRP4 group was significantly reduced. Masson's trichrome staining showed that the collagen and fibrous cells in the si-SFRP4 group were more uniform, slender, parallel and regular. The above experimental results suggest that the proliferation and metabolism of palmar aponeurosis cells and the quality of metacarpal fascia xenografts were both significantly decreased. We speculated that nanoparticle-mediated SFRP4 siRNA can be used as a potential new method for the treatment of DD.
Collapse
|
5
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
6
|
Wang C, Chi Q, Sha Y, Xu K, Xu C, Chen C, Huang W, Chen P, Chen P, Yang L, Sung KLP. Mechanical injury and IL-1β regulated LOXs and MMP-1, 2, 3 expression in ACL fibroblasts co-cultured with synoviocytes. Biotechnol Lett 2020; 42:1567-1579. [DOI: 10.1007/s10529-020-02870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
|
7
|
Park TH, Kim D, Lee YS, Kim SY. A meta-analysis to identify novel diagnostic and therapeutic targets for Dupuytren's disease. Wound Repair Regen 2019; 28:202-210. [PMID: 31688987 DOI: 10.1111/wrr.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/20/2023]
Abstract
The aim of this study was to determine novel candidate genes for Dupuytren's disease by performing a meta-analysis. We identified 261 genes (111 up-regulated and 150 down-regulated) that were consistently expressed differentially in Dupuytren's disease across the studies. We performed functional enrichment on total sets of the identified 261 genes and confirmed that most of the genes were closely related to common processes of diseases in general. From the integrated studies of the gene-correlation network and the protein-protein interaction network, we identified three functional modules in the gene co-expression network and four hub gene clusters in the protein-protein interaction network that shared the same genes and represented similar biological functions, implying that the seven groups identified in the systematic analysis of these two networks might be involved in the pathogenesis of Dupuytren's disease. This work demonstrates potential in developing experimental and clinical strategies for understanding and treating Dupuytren's disease.
Collapse
Affiliation(s)
- Tae Hwan Park
- Department of Plastic and Reconstructive Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea.,KCRN Research, Germantown, Maryland, 20874
| | - Dongha Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Young-Seok Lee
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
8
|
Hong J, Yun CO. Relaxin gene therapy: A promising new treatment option for various diseases with aberrant fibrosis or irregular angiogenesis. Mol Cell Endocrinol 2019; 487:80-84. [PMID: 30641100 DOI: 10.1016/j.mce.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Relaxin (RLX) is an insulin-like polypeptide hormone that was initially introduced for its pregnancy-related function. Subsequent studies revealed that RLX possesses anti-fibrotic functions in tumors and nonreproductive tissues, such as skin, lungs, and others. This aspect of the RLX has been explored for the treatment of various illnesses, such as cardiac fibrosis, liver fibrosis, and solid tumors. With gene therapy coming into age with increasing number of products being approved by regulatory bodies in Europe and United States, we aim to discuss how RLX have been utilized in scope of gene therapy for treatment of various illnesses.
Collapse
Affiliation(s)
- JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Republic of Korea.
| |
Collapse
|
9
|
Ko JH, Kang YM, Yang JH, Kim JS, Lee WJ, Kim SH, Yang IH, Moon SH. Regulation of MMP and TIMP expression in synovial fibroblasts from knee osteoarthritis with flexion contracture using adenovirus-mediated relaxin gene therapy. Knee 2019; 26:317-329. [PMID: 30770167 DOI: 10.1016/j.knee.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this study was to investigate the effects of relaxin (RLN) expression on fibrosis inhibition in synovial fibroblasts. MATERIALS AND METHODS Tissue cells from patients with knee osteoarthritis and >30° flexion contractures were utilised. Synovial fibroblasts were activated by TGF-β1 (two nanograms per millilitre) and then exposed to Ad-RLN as a therapeutic gene, adenovirus-lacZ construct as a marker gene, and SB505124 as an inhibitor for TGF-β1 signal for 48 h. The mRNA expression levels of collagens and MMPs were analysed by reverse transcription-polymerase chain reaction. Also, fibronectin, phosphorylation of Smad2 and ERK1/2, alpha smooth muscle actin, TIMP-1, TIMP-2, MMP-1 and MMP-13 levels were estimated using western blotting, and the total collagen synthesis was assayed. RESULTS Ad-RLN-transduced synovial fibroblasts demonstrated 17%, 13%, and 48% reduction in collagen I, III and IV mRNA expression levels, respectively, and a 40% decrease in MMP-3, MMP-8, 20% decrease in MMP-9, MMP-13 mRNA expression, compared to non-Ad-RLN-transduced cells. In protein expression, Ad-RLN-transduced synovial fibroblasts demonstrated 46% increase in MMP-1, 5% decrease in MMP-2, 51% increase in MMP-9, and 22% increase in MMP-13, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts showed a 25% decrease in TIMP-1 and 65% decrease in TIMP-2 protein expression at 48h, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts demonstrated a 45% inhibition of fibronectin in protein expression level and 38% decrease in total collagen synthesis at 48h, compared to non-Ad-RLN-transduced cells. CONCLUSION Relaxin expression exerted anti-fibrogenic effects on synovial fibroblasts from patients with knee osteoarthritis and flexion contractures. Therefore, relaxin could be an alternative therapeutic agent during the initial stage of osteoarthritis with flexion contracture by exerting its anti-fibrogenic effects.
Collapse
Affiliation(s)
- Jae Han Ko
- Department of Orthopaedic Surgery, Yonsei Barun Orthopaedic Surgery Clinic, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Young Mi Kang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ji Sup Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Won Jai Lee
- Department of Plastic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ick Hwan Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seong Hwan Moon
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Kang YM, Lee HM, Moon SH, Kang H, Choi YR. Relaxin Modulates the Expression of MMPs and TIMPs in Fibroblasts of Patients with Carpal Tunnel Syndrome. Yonsei Med J 2017; 58:415-422. [PMID: 28120574 PMCID: PMC5290023 DOI: 10.3349/ymj.2017.58.2.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the anti-fibrotic effect of relaxin in subsynovial fibroblasts activated by transforming growth factor beta (TGF-β). MATERIALS AND METHODS To test the anti-fibrotic effect of an adenovirus-relaxin construct (Ad-RLN) on subsynovial fibroblasts in vitro, cells from subsynovial connective tissue of patients with carpal tunnel syndrome were activated with TGF-β1 and exposed to Ad-RLN (as a therapeutic gene) or adenovirus-lacZ construct (as a marker gene) for four hours. Subsynovial fibroblast cultures without adenoviral exposure served as controls. RESULTS We observed induction of gene expressions of collagen I, III and IV, as well as the abatement of alpha-smooth muscle actin (a-SMA) synthesis, Smad2 phosphorylation, and fibronectin at the protein level, in comparison to controls. In addition, protein expressions of matrix metalloproteinase (MMP) I was significantly induced, whereas the protein expressions of tissue inhibitor of metalloproteinases (TIMP) I and IV were reduced due to relaxin expression. CONCLUSION RLN prevents excessive synthesis of extracellular matrix by reducing the expressions of its components, such as fibronectin, a-SMA, and phosphorylated Smad2, by increasing the expression of MMPs; and by decreasing the expression of TIMPs.
Collapse
Affiliation(s)
- Young Mi Kang
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hwan Mo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Hwan Moon
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Kang
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Rak Choi
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Cimini D, Corte KD, Finamore R, Andreozzi L, Stellavato A, Pirozzi AVA, Ferrara F, Formisano R, De Rosa M, Chino M, Lista L, Lombardi A, Pavone V, Schiraldi C. Production of human pro-relaxin H2 in the yeast Pichia pastoris. BMC Biotechnol 2017; 17:4. [PMID: 28088197 PMCID: PMC5237503 DOI: 10.1186/s12896-016-0319-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Initially known as the reproductive hormone, relaxin was shown to possess other therapeutically useful properties that include extracellular matrix remodeling, anti-inflammatory, anti-ischemic and angiogenic effects. All these findings make relaxin a potential drug for diverse medical applications. Its precursor, pro-relaxin, is an 18 kDa protein, that shows activity in in vitro assays. Since extraction of relaxin from animal tissues raises several issues, prokaryotes and eukaryotes were both used as expression systems for recombinant relaxin production. Most productive results were obtained when using Escherichia coli as a host for human relaxin expression. However, in such host, relaxin precipitated in the form of inclusion bodies and, therefore, required several expensive recovery steps as cell lysis, refolding and reduction. Results To overcome the issues related to prokaryotic expression here we report the production and purification of secreted human pro-relaxin H2 by using the methylotrophic yeast Pichia pastoris as expression host. The methanol inducible promoter AOX1 was used to drive expression of the native and histidine tagged forms of pro-relaxin H2 in dual phase fed-batch experiments on the 22 L scale. Both protein forms presented the correct structure, as determined by mass spectrometry and western blotting analyses, and demonstrated to be biologically active in immune enzymatic assays. The presence of the tag allowed to simplify pro-relaxin purification obtaining higher purity. Conclusions This work presents a strategy for microbial production of recombinant human pro-relaxin H2 in Pichia pastoris that allowed the obtainment of biologically active pro-hormone, with a final concentration in the fermentation broth ranging between 10 and 14 mg/L of product, as determined by densitometric analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| | - K Della Corte
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - L Andreozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A Stellavato
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A V A Pirozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - F Ferrara
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Formisano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M De Rosa
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - L Lista
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - A Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - V Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
12
|
Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C. Hormone receptor expression in human fascial tissue. Eur J Histochem 2016; 60:2710. [PMID: 28076930 PMCID: PMC5134680 DOI: 10.4081/ejh.2016.2710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors.
Collapse
Affiliation(s)
- C Fede
- University of Padua, Department of Neuroscience.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim JK, Lee JI, Paik YH, Yun CO, Chang HY, Lee SY, Lee KS. A single adenovirus-mediated relaxin delivery attenuates established liver fibrosis in rats. J Gene Med 2016; 18:16-26. [DOI: 10.1002/jgm.2872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Yong-Han Paik
- Department of Internal Medicine Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Republic of Korea
| | - Hye Young Chang
- Medical Research Centre, Gangnam Severance Hospital; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Su Yeon Lee
- Medical Research Centre, Gangnam Severance Hospital; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Kwan Sik Lee
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
14
|
Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS. ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J Athl Train 2015; 50:1076-93. [PMID: 26340613 PMCID: PMC4641546 DOI: 10.4085/1062-6050-50.10.06] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sandra J. Shultz
- Department of Kinesiology, University of North Carolina at Greensboro
| | - Randy J. Schmitz
- Department of Kinesiology, University of North Carolina at Greensboro
| | - Anne Benjaminse
- The Department of Human Movement Sciences, University of Groningen, and The School of Sports Studies, Hanze University, Groningen, The Netherlands
| | - Malcolm Collins
- Department of Human Biology, University of Cape Town, South Africa
| | - Kevin Ford
- Human Biomechanics and Physiology Laboratory, Department of Physical Therapy, High Point University, NC
| | - Anthony S. Kulas
- Department of Health Education and Promotion, Eastern Carolina University, Greenville, NC
| |
Collapse
|
15
|
Fujisawa C, Castellot JJ. Matrix production and remodeling as therapeutic targets for uterine leiomyoma. J Cell Commun Signal 2014; 8:179-94. [PMID: 25012731 DOI: 10.1007/s12079-014-0234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Uterine leiomyoma, commonly known as fibroids, is a benign neoplasm of smooth muscle in women. The incidence of clinically symptomatic fibroids in reproductive-age women is approximately 20 %, with nearly 80 % of black women suffering from this condition. Symptoms include severe pain and hemorrhage; fibroids are also a major cause of infertility or sub-fertility in women. Uterine leiomyoma consist of hyperplastic smooth muscle cells and an excess deposition of extracellular matrix, specifically collagen, fibronectin, and sulfated proteoglycans. Extracellular matrix components interact and signal through integrin-β1 on the surface of uterine leiomyoma smooth muscle cells, provide growth factor storage, and act as co-receptors for growth factor-receptor binding. ECM and growth factor signaling through integrin-β1 and growth factor receptors significantly increases cell proliferation and ECM deposition in uterine leiomyoma. Growth factors TGF-β, IGF, PDGF, FGF and EGF are all shown to promote uterine leiomyoma progression and signal through multiple pathways to increase the expression of genes encoding matrix or matrix-modifying proteins. Decreasing integrin expression, reducing growth factor action and inhibiting ECM action on uterine leiomyoma smooth muscle cells are important opportunities to treat uterine leiomyoma without use of the current surgical procedures. Both natural compounds and chemicals are shown to decrease fibrosis and uterine leiomyoma progression, but further analysis is needed to make inroads in treating this common women's health issue.
Collapse
Affiliation(s)
- Caitlin Fujisawa
- Public Heath and Professional Degrees Program, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | |
Collapse
|