1
|
Zhang H, Yan W, Wang J, Xie S, Tao WA, Lee CW, Zhang X, Zhang G, Liu Y, Wei D, Hu J, Liu H, Liu F, Nie Y, Chen X, Xu H, Xia J, Wang S. Surface functionalization of exosomes for chondrocyte-targeted siRNA delivery and cartilage regeneration. J Control Release 2024; 369:493-505. [PMID: 38582335 DOI: 10.1016/j.jconrel.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative cartilage disease, but no effective treatment is currently available to ameliorate the dysregulation of cartilage catabolism. Cartilage degeneration is closely related to the change in the physiology of chondrocytes: for example, chondrocytes of the OA patients overexpress matrix metallopeptidase 13 (MMP13), a.k.a. collagenase 3, which damages the extracellular matrix (ECM) of the cartilage and deteriorate the disease progression. Inhibiting MMP13 has shown to be beneficial for OA treatments, but delivering therapeutics to the chondrocytes embedded in the dense cartilage is a challenge. Here, we engineered the exosome surface with the cartilage affinity peptide (CAP) through lipid insertion to give chondrocyte-targeting exosomes, CAP-Exo, which was then loaded with siRNA against MMP13 (siMMP13) in the interior to give CAP-Exo/siMMP13. Intra-articular administration of CAP-Exo/siMMP13 reduced the MMP13 level and increased collagen COL2A1 and proteoglycan in cartilage in a rat model of anterior cruciate ligament transection (ACLT)-induced OA. Proteomic analysis showed that CAP-Exo/siMMP13 treatment restored the altered protein levels in the IL-1β-treated chondrocytes. Taken together, a facile exosome engineering method enabled targeted delivery of siRNA to chondrocytes and chondrocyte-specific silencing of MMP13 to attenuate cartilage degeneration.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; EVLiXiR Biotech Inc., Nanjing 210032, Jiangsu, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jinhui Wang
- Xiamen Children's Hospital, Xiamen, Fujian, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Guiyuan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yufeng Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Dong Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China..
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Kondreddy V, Banerjee R, Devi BLAP, Muralidharan K, Piramanayagam S. Inhibition of the MALT1-LPCAT3 axis protects cartilage degeneration and osteoarthritis. Cell Commun Signal 2024; 22:189. [PMID: 38519981 PMCID: PMC10960471 DOI: 10.1186/s12964-024-01547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1β-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1β-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1β-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | - Rajkumar Banerjee
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - B L A Prabhavathi Devi
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Kathirvel Muralidharan
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Selvakumar Piramanayagam
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
3
|
DeJulius CR, Walton BL, Colazo JM, d'Arcy R, Francini N, Brunger JM, Duvall CL. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol 2024; 20:81-100. [PMID: 38253889 PMCID: PMC11129836 DOI: 10.1038/s41584-023-01067-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease that substantially impairs the quality of life of affected individuals. The underlying mechanisms of OA are diverse and are becoming increasingly understood at the systemic, tissue, cellular and gene levels. However, the pharmacological therapies available remain limited, owing to drug delivery barriers, and consist mainly of broadly immunosuppressive regimens, such as corticosteroids, that provide only short-term palliative benefits and do not alter disease progression. Engineered RNA-based and cell-based therapies developed with synthetic chemistry and biology tools provide promise for future OA treatments with durable, efficacious mechanisms of action that can specifically target the underlying drivers of pathology. This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies, including small interfering RNA for gene silencing, microRNA and anti-microRNA for multi-gene regulation, mRNA for gene supplementation, and RNA-guided gene-editing platforms such as CRISPR-Cas9. Various cell-engineering strategies are also examined that potentiate disease-dependent, spatiotemporally regulated production of therapeutic molecules, and a conceptual framework is presented for their application as OA treatments. In summary, this Review highlights modern genetic medicines that have been clinically approved for other diseases, in addition to emerging genome and cellular engineering approaches, with the goal of emphasizing their potential as transformative OA treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard d'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Durongbhan P, Silva MO, Li Z, Ansari N, Kour RYN, Davey CE, Stok KS. A microCT imaging protocol for reproducible and efficient quantitative morphometric analysis (QMA) of joint structures of the in situ mouse tibio-femoral joint. Bone 2023; 166:116606. [PMID: 36368467 DOI: 10.1016/j.bone.2022.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Micro-computed tomography (microCT) offers a three-dimensional (3D), high-resolution technique for the visualisation and analysis of bone microstructure. Using contrast-enhanced microCT, this capability has been expanded in recent studies to include cartilage morphometry and whole joint measures, known together as quantitative morphometric analysis (QMA). However, one of the main challenges in quantitative analysis of joint images is sensitivity to joint pose and alignment, which may influence measures related to both joint space and joint biomechanics. Thus, this study proposes a novel microCT imaging protocol for reproducible and efficient QMA of in situ mouse tibio-femoral joint. This work consists of two parts: an in situ diffusion kinetics study for a known cationic iodinated contrast agent (CA4+) for QMA of the cartilage, and a joint positioning and image processing workflow for whole joint QMA. In the diffusion kinetics study, 8 mice were injected at both of their tibio-femoral joints with distinct CA4+ concentrations and diffusion times. The mice were scanned at different time points after injection, and evaluated using attenuation and cartilage QMA measures. Results show that cartilage segmentation and QMA could be performed for CA4+ solution at a concentration of 48 mg/ml, and that reliable measurement and quantification of cartilage were achieved after 5 min of diffusion following contrast agent injection. We established the joint positioning and image processing workflow by developing a novel positioning device to control joint pose during scanning, and a spherical harmonics-based image processing workflow to ensure consistent alignment during image processing. Both legs of seven mice were scanned 10 times, 5 prior to receiving CA4+ and 5 after, and evaluated using whole joint QMA parameters. Joint QMA evaluation of the workflow showed excellent reproducibility; intraclass correlation coefficients ranged from 0.794 to 0.930, confirming that the imaging protocol enables reproducible and efficient QMA of joint structures in preclinical models, and that contrast agent injection did not cause significant alteration to the measured parameters.
Collapse
Affiliation(s)
- Pholpat Durongbhan
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Mateus O Silva
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Zihui Li
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Niloufar Ansari
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - R Y Nigel Kour
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia; Department of Mechanical Engineering, The University of Melbourne, Parkville, Australia.
| | - Catherine E Davey
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Hosokawa H, Akagi R, Watanabe S, Horii M, Shinohara M, Mikami Y, Toguchi K, Kimura S, Yamaguchi S, Ohtori S, Sasho T. Nuclear receptor subfamily 1 group D member 1 in the pathology of obesity-induced osteoarthritis progression. J Orthop Res 2022; 41:930-941. [PMID: 36102152 DOI: 10.1002/jor.25440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Mechanical overload and chemical factors are both related to obesity-induced progression of knee osteoarthritis. The circadian rhythm is related to the development of metabolic syndrome and the progression of osteoarthritis, and the core clock genes nuclear receptor subfamily 1 group D member 1 (NR1D1) and brain and muscle arnt-like protein 1 (BMAL1) are dysregulated in cartilage from patients with osteoarthritis. Here, we focused on NR1D1 and investigated osteoarthritis-related changes and gene expression in a mouse model of diet-induced obesity. A high-fat diet was provided to C57BL6/J mice, and changes in body weight, blood lipids, and gene expression were investigated. Destabilization of the medial meniscus or sham surgery was performed on mice fed a high-fat diet or normal diet, and histological osteoarthritis-related changes and NR1D1 expression were investigated. The effects of the NR1D1 agonist SR9009 were also assessed. Mice fed a high-fat diet developed significant obesity and dyslipidemia. Nr1d1 and Bmal1 gene expression levels decreased in the liver and knee joints. Moreover, increased osteoarthritis progression and decreased NR1D1 protein expression were observed in high-fat diet-fed mice after surgical osteoarthritis induction. SR9009 decreased the progression of obesity, dyslipidemia, and osteoarthritis. Overall, obesity and dyslipidemia induced by the high-fat diet led to osteoarthritis progression and decreased NR1D1 expression. Thus, NR1D1 may play an important role in obesity-induced osteoarthritis.
Collapse
Affiliation(s)
- Hiroaki Hosokawa
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Ryuichiro Akagi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Shotaro Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Manato Horii
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Shinohara
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Yukio Mikami
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Kaoru Toguchi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Kimura
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamaguchi
- Graduate School of Global and Transdisciplinary Studies, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Sasho
- Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Di Francesco M, Fragassi A, Pannuzzo M, Ferreira M, Brahmachari S, Decuzzi P. Management of osteoarthritis: From drug molecules to nano/micromedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1780. [PMID: 35253405 PMCID: PMC9285805 DOI: 10.1002/wnan.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)‐1β, IL‐6, tumor necrosis factor (TNF)‐α; catabolic enzymes, such as matrix metalloproteinases (MMPs)‐1, ‐3, and ‐13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra‐articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Agnese Fragassi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
7
|
Ball HC, Alejo AL, Kronk T, Alejo AM, Safadi FF. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life (Basel) 2022; 12:582. [PMID: 35455072 PMCID: PMC9030470 DOI: 10.3390/life12040582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.
Collapse
Affiliation(s)
- Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Trinity Kronk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- GPN Therapeutics, Inc., REDI Zone, Rootstown, OH 44272, USA
| | - Amanda M. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Orthopaedic Surgery, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
8
|
He K, Huang X, Shan R, Yang X, Song R, Xie F, Huang G. Intra-articular Injection of Lornoxicam and MicroRNA-140 Co-loaded Cationic Liposomes Enhanced the Therapeutic Treatment of Experimental Osteoarthritis. AAPS PharmSciTech 2021; 23:9. [PMID: 34859319 DOI: 10.1208/s12249-021-02149-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a chronic joint disease characterized by chronic inflammation, progressive destruction of articular cartilage, and subchondral bone sclerosis. When compared to individual treatment, the combined administration of genes and small-molecule drugs for osteoarthritis may not only provide superior inflammation control and pain relief, but may also repair cartilage damage. Here, cationic liposomes (CL) were used to deliver small hydrophobic drugs and microRNA into chondrocytes to treat osteoarthritis. Lornoxicam cationic liposomes (Lnxc-CL) were prepared by film dispersion, and loaded with microRNA-140 (miR-140) by electrostatic interaction to obtain cationic liposomes co-loaded with lornoxicam and miR-140 (Lnxc-CL/miR-140). The prepared Lnxc-CL/miR-140 had a particle size of 286.6 ± 7.3 nm, polydispersity index (PDI) of 0.261 ± 0.029 and zeta potential of 26.5 ± 0.5 mV and protected miR-140 from RNase degradation for 24 h. Lnxc-CL/miR-140 was evaluated for its ability to regulate gene expression in chondrocytes in vitro and to provide in vivo therapeutic effects for knee osteoarthritis in rats. The results of in vitro uptake experiments and polymerase chain reaction (PCR) analysis showed that Lnxc-CL/miR-140 efficiently delivered miR-140 into chondrocytes and up-regulated the expression of miR-140 and COL2A1 mRNA. Pharmacodynamics studies demonstrated that Lnxc-CL/miR-140 effectively treated osteoarthritis by eliminating joint inflammation and repairing damaged cartilage cells, with superior therapeutic effects compared to Lnxc or miR-140 alone. Overall, the findings of this study support the co-delivery of Lnxc and miR-140 with cationic liposomes as a potential new therapeutic strategy for the treatment of osteoarthritis.
Collapse
|
9
|
Bedingfield SK, Colazo JM, Di Francesco M, Yu F, Liu DD, Di Francesco V, Himmel LE, Gupta MK, Cho H, Hasty KA, Decuzzi P, Duvall CL. Top-Down Fabricated microPlates for Prolonged, Intra-articular Matrix Metalloproteinase 13 siRNA Nanocarrier Delivery to Reduce Post-traumatic Osteoarthritis. ACS NANO 2021; 15:14475-14491. [PMID: 34409835 PMCID: PMC9074946 DOI: 10.1021/acsnano.1c04005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) associated with joint injury triggers a degenerative cycle of matrix destruction and inflammatory signaling, leading to pain and loss of function. Here, prolonged RNA interference (RNAi) of matrix metalloproteinase 13 (MMP13) is tested as a PTOA disease modifying therapy. MMP13 is upregulated in PTOA and degrades the key cartilage structural protein type II collagen. Short interfering RNA (siRNA) loaded nanoparticles (siNPs) were encapsulated in shape-defined poly(lactic-co-glycolic acid) (PLGA) based microPlates (μPLs) to formulate siNP-μPLs that maintained siNPs in the joint significantly longer than delivery of free siNPs. Treatment with siNP-μPLs against MMP13 (siMMP13-μPLs) in a mechanical load-induced mouse model of PTOA maintained potent (65-75%) MMP13 gene expression knockdown and reduced MMP13 protein production in joint tissues throughout a 28-day study. MMP13 silencing reduced PTOA articular cartilage degradation/fibrillation, meniscal deterioration, synovial hyperplasia, osteophytes, and pro-inflammatory gene expression, supporting the therapeutic potential of long-lasting siMMP13-μPL therapy for PTOA.
Collapse
Affiliation(s)
- Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Danielle D. Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Lauren E. Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Karen A. Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
10
|
Cui SB, Wang TX, Liu ZW, Yan JY, Zhang K. Zinc finger protein A20 regulates the development and progression of osteoarthritis by affecting the activity of NF-κB p65. Immunopharmacol Immunotoxicol 2021; 43:713-723. [PMID: 34463587 DOI: 10.1080/08923973.2021.1970764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVE To investigate the role of Zinc finger protein A20 in osteoarthritis (OA) by regulating NF-κB p65. METHODS A20, MMP1, MMP13 and IL-1β expressions in human OA cartilage samples were detected by qRT-PCR. IL-1β-induced chondrocyte was treated with A20 lentivirus activation particle, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor) with/without A20 siRNA. IL-6, TNF-α, and PGE2 levels were measured by ELISA, and NO production by Greiss reaction. Destabilization of the medial meniscus (DMM) surgery was used to construct the OA models, followed by injection of A20 adenovirus. MMP1 and MMP13 expression was measured by immunohistochemistry. The mRNA and protein expression were performed by qRT-PCR and western blotting, respectively. RESULTS A20 was down-regulated in human OA cartilage samples, and negatively correlated with the expressions of MMP1, MMP13 and IL-1β. The IL-1β-induced chondrocyte manifested decreased A20 with increased NF-κB p65 activity. A20 overexpression suppressed the NF-κB p65 activity in IL-1β-induced chondrocyte. Furthermore, PDTC decreased IL-1β-induced chondrocyte apoptosis with the upregulated COL1A1, COL2A1, COL10A1 and ACAN, as well as the down-regulated MMP1, MMP13, COX2, iNOS, IL-6, TNF-α, NO and PGE2, which was reversed by A20 siRNA. In vivo, OA mice gained higher OARSI score and Mankin's score, exhibited up-regulations of MMP1 and MMP13, and decreased NF-κB p65 activity, which was improved after injection of A20 adenovirus. CONCLUSION A20 was reduced in OA cartilage samples, and its overexpression, by suppressing the activity of NF-κB p65, could improve IL-1β-induced chondrocyte degradation and apoptosis in vitro, as well as mitigate the inflammation in OA mice.
Collapse
Affiliation(s)
- Shu-Bei Cui
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| | - Tao-Xia Wang
- Department of Nephrology, Affiliated Hospital of Hebei University of Technology, Handan, China
| | - Zhen-Wu Liu
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| | - Ji-Ying Yan
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| | - Kai Zhang
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| |
Collapse
|
11
|
Hu Q, Ecker M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22041742. [PMID: 33572320 PMCID: PMC7916132 DOI: 10.3390/ijms22041742] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by the destruction of articular cartilage and chronic inflammation of surrounding tissues. Matrix metalloproteinase-13 (MMP-13) is the primary MMP involved in cartilage degradation through its particular ability to cleave type II collagen. Hence, it is an attractive target for the treatment of OA. However, the detailed molecular mechanisms of OA initiation and progression remain elusive, and, currently, there are no interventions available to restore degraded cartilage. This review fully illustrates the involvement of MMP-13 in the initiation and progression of OA through the regulation of MMP-13 activity at the molecular and epigenetic levels, as well as the strategies that have been employed against MMP-13. The aim of this review is to identify MMP-13 as an attractive target for inhibitor development in the treatment of OA.
Collapse
|
12
|
Bian F, Ruan G, Xu J, Wang K, Wu J, Ren J, Chang B, Ding C. Associations of serum citrate levels with knee structural changes and cartilage enzymes in patients with knee osteoarthritis. Int J Rheum Dis 2020; 23:435-442. [PMID: 31957331 DOI: 10.1111/1756-185x.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate cross-sectional associations between serum levels of citrate and knee structural changes and cartilage enzymes in patients with knee osteoarthritis (OA). METHOD A total of 137 subjects with symptomatic knee OA (mean age 55.0 years, range 34-74, 84% female) were included. Knee radiography was used to assess knee osteophytes, joint space narrowing (JSN) and radiographic OA assessed by Kellgren-Lawrence (K-L) grading system. T2-weighted fat-suppressed fast spin echo magnetic resonance imaging (MRI) was used to determine knee cartilage defects, bone marrow lesions (BMLs) and infrapatellar fat pad (IPFP) signal intensity alternations. Colorimetric fluorescence was used to measure the serum levels of citrate. Enzyme-linked immunosorbent assay was used to measure the serum cartilage enzymes including matrix metalloproteinase (MMP)-3 and MMP-13. RESULTS After adjustment for potential confounders (age, sex, body mass index), serum citrate was negatively associated with knee osteophytes at the femoral site, cartilage defects at medial femoral site, total cartilage defects, and total BMLs (odds ratio [OR] 0.17-0.30, all P < .05). Meanwhile, serum citrate was negatively associated with IPFP signal intensity alteration (OR 0.30, P = .05) in multivariable analyses. Serum citrate was significantly and negatively associated with MMP-13 (β -3106.37, P < .05) after adjustment for potential confounders. However, citrate was not significantly associated with MMP-3 in patients with knee OA. CONCLUSION Serum citrate was negatively associated with knee structural changes including femoral osteophytes, cartilage defects, and BMLs and also serum MMP-13 in patients with knee OA, suggesting that low serum citrate may be a potential indicator for advanced knee OA.
Collapse
Affiliation(s)
- Fuqin Bian
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangfeng Ruan
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang Wang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Wu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiale Ren
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingru Chang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changhai Ding
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
14
|
Nakagawa R, Akagi R, Yamaguchi S, Enomoto T, Sato Y, Kimura S, Ogawa Y, Sadamasu A, Ohtori S, Sasho T. Single vs. repeated matrix metalloproteinase-13 knockdown with intra-articular short interfering RNA administration in a murine osteoarthritis model. Connect Tissue Res 2019; 60:335-343. [PMID: 30345823 DOI: 10.1080/03008207.2018.1539082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Our aims were 1) to estimate the duration of short interfering RNA (siRNA) effect on matrix metalloproteinase-13 (Mmp-13) levels by a single intra-articular injection using a mouse knee osteoarthritis (OA) model and 2) to test whether repeated injections results in any additional suppressive effect on cartilage degradation compared to a single injection. Materials and Methods: OA was induced in 9 weeks old male C57BL/6 mice by destabilization of medial meniscus (DMM). Chemically modified siRNA targeted for Mmp-13 was injected into the knee joint at 1 week post-DMM surgery. Control group of knees received that for non-targeted genes. Synovial tissue was collected to measure Mmp-13 expression levels by quantitative polymerase chain reaction (qPCR) at 2, 3, and 6 weeks after surgery in each group. To test the effect of multiple injections, we created four experiment groups according to the number of injections. Histological assessment of articular cartilage was performed at 8 weeks post-DMM surgery. Results: In the Mmp-13 siRNA-treated group, expression levels of Mmp-13 mRNA were decreased by 40% compared to the control group at 2 weeks after surgery (p = 0.04), before returning to baseline at 3 weeks after surgery. A significant improvement in the histological score was observed in all Mmp-13 siRNA-treated groups compared to the control group (p < 0.05). However, no significant differences were seen between the single and multiple injection group. Conclusions: Our results suggested that the duration of siRNA effect in the knee joint lasts for at least 1 week, and that no further benefit is achieved by multiple injections.
Collapse
Affiliation(s)
- Ryosuke Nakagawa
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Ryuichiro Akagi
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Satoshi Yamaguchi
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Takahiro Enomoto
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Yusuke Sato
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Seiji Kimura
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Yuya Ogawa
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Aya Sadamasu
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Seiji Ohtori
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan
| | - Takahisa Sasho
- a Department of Orthopaedic Surgery , Graduate School of Medical and Sciences, Chiba University , Chiba , Japan.,b Musculoskeletal Disease and Pain , Center for Preventive Medical Sciences, Chiba University , Chiba , Japan
| |
Collapse
|
15
|
Ruan G, Xu J, Wang K, Wu J, Zhu Q, Ren J, Bian F, Chang B, Bai X, Han W, Ding C. Associations between knee structural measures, circulating inflammatory factors and MMP13 in patients with knee osteoarthritis. Osteoarthritis Cartilage 2018; 26:1063-1069. [PMID: 29753949 DOI: 10.1016/j.joca.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/25/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate cross-sectional associations between serum level of Matrix metalloproteinase (MMP)13 and knee structural measures and circulating inflammatory factors in patients with symptomatic knee osteoarthritis (OA). DESIGN A total of 149 subjects with symptomatic knee OA were included. Magnetic resonance imaging was used to measure infrapatellar fat pad (IPFP) volume, IPFP signal intensity alternation, cartilage volume and cartilage defects. Knee radiography was used to assess radiographic OA using the Kellgren-Lawrence (K-L) grading system. Enzyme-linked immunosorbent assay was used to measure the serum levels of inflammatory factors and MMP13. RESULTS In multivariable analyses, serum MMP13 was negatively associated with cartilage volume at patellar site (β: -32.94 mm3 per 10 ng/ml, P < 0.05), and positively associated with cartilage defect at medial femoral site (OR: 1.13 per 10 ng/ml, P < 0.05). Also, MMP13 was positively associated with K-L grading and IPFP signal intensity alteration (OR: 1.14 and 1.15 per 10 ng/ml, respectively, both P < 0.05), and negatively associated with IPFP volume (β: -0.34 cm3 per 10 ng/ml, P < 0.05). Furthermore, serum level of adiponectin was negatively associated serum MMP13 quartiles (OR: 0.66 per 10 μg/ml, P < 0.05), and serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-8 and IL-18 were positively associated with serum MMP13 quartiles (ORs: 1.01-1.18 per 10 pg/ml, all P < 0.05). CONCLUSIONS Serum level of MMP13 was associated with knee structural abnormalities as well as serum inflammatory factors. These suggest that systemic MMP13 may play a role in knee OA, and could be regulated by inflammatory factors.
Collapse
Affiliation(s)
- G Ruan
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - J Xu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - K Wang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - J Wu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Q Zhu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - J Ren
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - F Bian
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - B Chang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - X Bai
- Translational Research Centre, Academy of Orthopaedics, Guangdong Province, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - W Han
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - C Ding
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Translational Research Centre, Academy of Orthopaedics, Guangdong Province, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 2017; 456:16-35. [PMID: 27888003 PMCID: PMC7116989 DOI: 10.1016/j.mce.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs, which are 20-25 nucleotide ribonucleic acids, have emerged as an important transformation in the biological evolution over almost three decades. microRNAs (miRNAs) and short interfering RNAs (siRNAs) are two significant categories of the small RNAs that exert important effects on bone endocrinology and skeletology. Therefore, clarifying the expression and function of these important molecules in bone endocrine physiology and pathology is of great significance for improving their potential therapeutic value for metabolism-associated bone diseases. In the present review, we highlight the recent advances made in understanding the function and molecular mechanism of these small non-coding RNAs in bone metabolism, especially their potentially therapeutic values in bone-related diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Static Compression Induces ECM Remodeling and Integrin α2β1 Expression and Signaling in a Rat Tail Caudal Intervertebral Disc Degeneration Model. Spine (Phila Pa 1976) 2017; 42:E448-E458. [PMID: 27548579 DOI: 10.1097/brs.0000000000001856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY DESIGN A three-level rat tail caudal intervertebral disc (IVD) degeneration (IVDD) model was established to study effects of static compression on extracellular matrix (ECM) remodeling and integrin signaling in IVDs during IVDD. OBJECTIVE The aim of this study was to investigate the effect of compression force on ECM remodeling and integrin signaling in IVDs during IVDD. SUMMARY OF BACKGROUND DATA Integrins sense mechanical environment alteration via binding to ECM ligands and trigger intracellular signaling for pathological ECM remodeling during IVDD. However, the role of compression force in ECM remodeling and integrin signaling during IVDD remains elusive. METHODS Compared with the classical one-level rat tail IVDD model that exerts axial stress on the 8th to 9th caudal vertebral bodies, a three-level model was established by using an Ilizarov-type apparatus to exert stress on the 7th to 10th caudal vertebral bodies in rat tails for four weeks. To exclude side effects from surgical stab injury on manipulated discs, intact coccygeal (Co) disc Co8-9 was analyzed. RESULTS In three-level IVDD model, significant degeneration of the Co8-9 disc was observed. Quantitative real-time polymerase chain reaction (qRT-PCR) showed elevated mRNA expression of collagen types I, III, and V; matrix metalloproteinases (MMPs) 2, 3, 9, 13, 14; and decreased mRNA expression of collagen type II in Co8-9 disc. Compression loading altered the expression of integrin α2β1 (upregulated) and α10β1 (downregulated) in NP cells, and activated integrin downstream signaling. By contrast, one-level model showed more severe disc degeneration and ECM remodeling. Integrin α1, α2, α11, and β1 were upregulated, whereas α10 was downregulated. Similar activation of integrin signaling was observed. CONCLUSION Static compression altered collagen and MMP expression, and promoted β1 integrin expression and signaling in IVD. Compared with one-level rat tail IVDD model, three-level model showed milder effects on disc degeneration, ECM remodeling, and integrin expression, suggesting one-level model might involve other causes that induce IVDD via mechanisms independent of compression force. LEVEL OF EVIDENCE N/A.
Collapse
|
18
|
Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Otero M, Goldring MB, Oreffo ROC. DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep 2017; 7:7771. [PMID: 28798419 PMCID: PMC5552713 DOI: 10.1038/s41598-017-08418-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Runt-related transcription factor 2 (RUNX2) is critical for bone formation as well as chondrocyte maturation. Matrix metalloproteinase (MMP)-13 is a major contributor to cartilage degradation in osteoarthritis (OA). We and others have shown that the abnormal MMP13 gene expression in OA chondrocytes is controlled by changes in the DNA methylation status of specific CpG sites of the proximal promoter, as well as by the actions of different transactivators, including RUNX2. The present study aimed to determine the influence of the methylation status of specific CpG sites in the RUNX2 promoter on RUNX2-driven MMP13 gene expression in OA chondrocytes. We observed a significant correlation between MMP13 mRNA levels and RUNX2 gene expression in human OA chondrocytes. RUNX2 overexpression enhanced MMP13 promoter activity, independent of the MMP13 promoter methylation status. A significant negative correlation was observed between RUNX2 mRNA levels in OA chondrocytes and the percentage methylation of the CpG sites in the RUNX2 P1 promoter. Accordingly, the activity of the wild type RUNX2 promoter was decreased upon methylation treatment in vitro. We conclude that RUNX2 gene transcription is regulated by the methylation status of specific CpG sites in the promoter and may determine RUNX2 availability in OA cartilage for transactivation of genes such as MMP13.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.,Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
19
|
Kiraly AJ, Roberts A, Cox M, Mauerhan D, Hanley E, Sun Y. Comparison of Meniscal Cell-Mediated and Chondrocyte-Mediated Calcification. Open Orthop J 2017; 11:225-233. [PMID: 28567149 PMCID: PMC5420175 DOI: 10.2174/1874325001711010225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Chondrocytes have been traditionally thought to be responsible for calcium crystal deposits within osteoarthritic knees. Increasing recent experimental evidence suggests that menisci may also play a role. However, the calcifying potential of chondrocytes and meniscal cells derived from same OA patients, and the genes associated with meniscal calcification have never been fully examined. Objective: Examine and compare the calcifying potential of articular chondrocytes and meniscal cells derived from same OA patients and identify the calcium crystal type(s) and selected gene expression in OA menisci. Methods: Chondrocytes and meniscal cells were isolated from articular cartilage and menisci of OA patients undergoing total knee arthroplasty. Chondrocyte- and meniscal cell-mediated calcification was examined using both monolayer and micromass culture-based assays. Crustal types were examined with histological staining. Levels of Type X Collagen, MMP-13, and ANKH in OA menisci were examined using immunohistochemistry. Results: Primary human OA meniscal cells produced calcified deposits at a similar rate compared to OA chondrocytes in-vitro. Histological examinations indicate that both BCP crystals and CPPD crystals are present in the meniscal tissue. Type X collagen, MMP-13, and ANKH were found in human OA menisci and their levels increased with OA severity. In addition, type X collagen was co-localized with calcium crystals. Conclusion: These findings suggest that OA meniscal cells have a similar calcifying potential as OA chondrocytes, supporting a pathogenic role of OA menisci in OA.
Collapse
Affiliation(s)
- Alex J Kiraly
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| | - Andrea Roberts
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| | - Michael Cox
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| | - David Mauerhan
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| | - Edward Hanley
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| | - Yubo Sun
- Department of Orthopaedic Surgery, Carolinas HealthCare System, Charlotte, NC, USA
| |
Collapse
|
20
|
David MA, Smith MK, Pilachowski RN, White AT, Locke RC, Price C. Early, focal changes in cartilage cellularity and structure following surgically induced meniscal destabilization in the mouse. J Orthop Res 2017; 35:537-547. [PMID: 27664978 DOI: 10.1002/jor.23443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is an accelerated form of osteoarthritic cartilage degeneration affecting approximately 20-50% of patients experiencing joint injury. Currently PTOA is incurable; to better understand the etiology of PTOA and to develop rational anti-osteoarthritic therapies, it is critical to understand the spatiotemporal initiation and the progression of PTOA. In this study, we employed semi-quantitative histological scoring and quantitative damage analysis to examine disease progression in the murine destabilization of the medial meniscus (DMM) model of PTOA from early (3 days) through late- (112 days) disease timepoints. We observed significant, progressive articular cartilage (AC) cellular, and structural changes in the medial compartments of injured joints as early as 3 days. Spatially within the joint, cartilage damage (erosions) were observed anteriorly at 84 days. Furthermore, a drastic loss in chondrocyte number (by 3 days), surface damage (at 7 days), and cartilage erosion (at 84 days) was found to co-localize to the specific region of the medial tibial plateau AC that experienced a change in meniscal coverage due to meniscal extrusion following DMM. Taken together, these results suggest that DMM-mediated extrusion of the medial meniscus leads to rapid, spatially dependent changes in AC cellularity and structure, and precipitates the focal degeneration of cartilage associated with PTOA. Importantly, this study suggests that joint instability injuries may trigger immediate (<3 days) processes within a small population of chondrocytes that directs the initiation and progression of PTOA, and that development of chondroprotective strategies for preventing and/or delaying PTOA-related cartilage degeneration are best targeted toward these immediately early processes following joint injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:537-547, 2017.
Collapse
Affiliation(s)
- Michael A David
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Melanie K Smith
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Rachael N Pilachowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Avery T White
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| |
Collapse
|
21
|
Hoshi H, Akagi R, Yamaguchi S, Muramatsu Y, Akatsu Y, Yamamoto Y, Sasaki T, Takahashi K, Sasho T. Effect of inhibiting MMP13 and ADAMTS5 by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res 2017; 368:379-387. [PMID: 28120109 DOI: 10.1007/s00441-016-2563-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
Abstract
Matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) are thought to play critical roles in cartilage degradation at the early phase of osteoarthritis (OA). The aim of this study is to examine the effect of chemically modified Mmp13 or Adamts5 small interfering RNA (siRNA), alone or in combination, in a mouse OA model. OA pathology was surgically induced in 9-week-old male C57/BL6 mice (n = 64) via destabilization of the medial meniscus (DMM). We used chemically modified siRNA (Accell siRNAs®) for Mmp13 and Adamts5, as well as a non-targeting control and evaluated their combined and individual effects after injection in the DMM model. The control group (n = 16) was injected with non-targeting siRNA and the normal group (n = 16) did not undergo any surgical induction or intra-articular injection. Histological assessment of the articular cartilage was conducted at 4 and 8 weeks post-DMM surgery to evaluate OA progression. Significant improvement in the histological score was observed at 8 weeks after DMM in all three siRNA-treated groups compared to the control siRNA-injected group. The score of the combined group was significantly lower than that of the Adamts5 siRNA-only group. No significant differences were noted between the Mmp13 siRNA-only group and the combined group. Combined intra-articular injection of Mmp13 and Adamts5 siRNA resulted in almost the same inhibitory effects as Mmp13 siRNA alone on cartilage degradation at the early phase of OA.
Collapse
Affiliation(s)
- Hiroko Hoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryuichiro Akagi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Satoshi Yamaguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuta Muramatsu
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yorikazu Akatsu
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yohei Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshihide Sasaki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takahisa Sasho
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Center for Preventive Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
22
|
|
23
|
Matrix Metalloproteinases in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X, Wang Y. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage 2015; 23:2259-2268. [PMID: 26162802 DOI: 10.1016/j.joca.2015.06.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/20/2015] [Accepted: 06/29/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify whether cartilage master regulator SRY-related protein 9 (SOX9) mediates A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) dysregulation during osteoarthritis (OA) cartilage degeneration. METHOD Twenty-two randomly selected OA patients were evaluated using Outerbridge Classification via arthroscopy. Haematoxylin-eosin (HE), Safranin O and Masson staining were performed for the histopathological assessment. The expression of ADAMTSs, collagen 2A1 (COL2A1), aggrecan (ACAN), cartilage oligomeric matrix protein (COMP) and SOX9 were examined using real-time quantitative Polymerase Chain Reaction (PCR) (RT-qPCR) and western blotting analysis. Immunohistochemistry (IHC) analysis was performed to investigate the production of ADAMTSs in cartilage tissues. The association between SOX9 production and ADAMTSs, COL2A1, ACAN, and COMP expression was established by full-depth cartilage biopsies. RESULTS ADAMTSs expression levels were repressed at stage 1, while a significant increase was observed at the progressive stage of OA. SOX9 was upregulated at stage 1 and suppressed at a later stage of cartilage development, particularly in cartilage with severe damage. In addition, SOX9 repressed the expression of ADAMTSs and promoted COL2A1, ACAN and COMP expression in human chondrocytes. SOX9 was recruited to the promoters of ADAMTS-4 and ADAMTS-7. SOX9 expression was negatively correlated with ADAMTSs production and was positively associated with COL2A1, ACAN and COMP expression. Inhibition of ADAMTSs markedly increased the production of COL2A1, ACAN and COMP in chondrocytes isolated from the early stage of OA. CONCLUSIONS These findings indicated that SOX9 upregulation might mediate ADAMTSs suppression at the early stage of human OA. In addition, SOX9 could be used as a potential therapeutic agent for human OA at an early stage.
Collapse
Affiliation(s)
- Q Zhang
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China; Department of Orthopaedic Surgery, Royal Liverpool University Hospital, Prescot Street, Liverpool, UK
| | - Q Ji
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - X Wang
- Department of Neurology, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - L Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Y Fu
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Y Yin
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Z Li
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Y Liu
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - X Xu
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Y Wang
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
25
|
McNulty AL, Leddy HA, Liedtke W, Guilak F. TRPV4 as a therapeutic target for joint diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:437-50. [PMID: 25519495 PMCID: PMC4361386 DOI: 10.1007/s00210-014-1078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.
Collapse
Affiliation(s)
- Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Wolfgang Liedtke
- Department of Neurology and Duke University Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|