1
|
Newton MD, Fleischer MM, Matthew HWT, Maerz T. Molecular mapping of articular cartilage CXCR4 expression after ACL injury via a novel small molecule-based probe. Bone 2025; 195:117463. [PMID: 40101879 DOI: 10.1016/j.bone.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Molecular imaging is a powerful modality to spatially resolve molecular changes across tissues, but application to articular cartilage remains limited. CXCR4 is an established marker of chondrocyte hypertrophy and potential therapeutic target for osteoarthritis. The purpose of this study was to develop and apply a CXCR4-targeted, near-infrared fluorescent (NIR) probe to a rat model of post-traumatic osteoarthritis (PTOA). METHODS A CXCR4-targeted, small molecule-based NIR probe ("Cy7-AMD") was synthesized. Sensitivity and specificity of Cy7-AMD to CXCR4 was validated in vitro (HUVECs), and ex vivo (rat osteochondral explants). To induce PTOA, female Lewis rats underwent noninvasive anterior cruciate ligament (ACL) rupture. At 7- and 28-days post-injury, injured/contralateral femora and tibiae were dissected, incubated in Cy7-AMD vs a non-targeting control, and imaged via NIR imaging, as well as conventional and contrast-enhanced micro-computed tomography. Imaging datasets were co-registered, cartilage tissue volumes were segmented, and paired cartilage thickness and NIR signal maps were generated and analyzed for PTOA-relevant changes. RESULTS Compared to a non-targeting control probe, in vitro and ex vivo assays confirm sensitivity and specificity of Cy7-AMD to CXCR4. Flow cytometry confirmed high correspondence between Cy7-AMD- and antibody-based measurement of CXCR4 expression. Cy7-AMD rapidly equilibrated within cartilage, and fluorescent histology confirmed full-thickness penetration. Injured femoral cartilage exhibited heterogeneous CXCR4 expression, with increased signal deviation compared to contralateral femora. Spatial CXCR4 expression patterns correlated to cartilage thickness patterns; high CXCR4 expression at boundaries of low-thickness lesions suggests an association between CXCR4 expression and cartilage loss. CONCLUSIONS Small molecule-based probes are advantageous for mapping spatial patterns of molecular expression in rodent articular cartilage, deepening our understanding of PTOA progression.
Collapse
Affiliation(s)
- Michael D Newton
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place #2278, Ann Arbor, MI 48109, United States of America; Department of Orthopaedic Surgery, Beaumont Hospital, 3811 W 13 Mile Rd, Royal Oak, MI 48073, United States of America; Department of Chemical Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI 48202, United States of America
| | - Mackenzie M Fleischer
- Department of Orthopaedic Surgery, Beaumont Hospital, 3811 W 13 Mile Rd, Royal Oak, MI 48073, United States of America
| | - Howard W T Matthew
- Department of Chemical Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI 48202, United States of America
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place #2278, Ann Arbor, MI 48109, United States of America; Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd #1107, Ann Arbor, MI 48109, United States of America; Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr #5483, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
2
|
Torga T, Suutre S, Kisand K, Aunapuu M, Arend A. Cartilage Collagen Neoepitope C2C Expression in the Articular Cartilage and Its Relation to Joint Tissue Damage in Patients with Knee Osteoarthritis. Biomedicines 2024; 12:1063. [PMID: 38791025 PMCID: PMC11117959 DOI: 10.3390/biomedicines12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Pathological cleavage of type II collagen (Col2) and generation of Col2 neoepitopes can serve as useful molecular markers of the progression of osteoarthritis (OA). One of such potential biomarkers is type II collagen neoepitope C2C. The aim of this study was to correlate the degree of articular cartilage damage in OA patients with C2C expression in histological samples of tissues removed during total knee replacement. Cartilage samples were obtained from 27 patients ranging in age from 55 to 66 years. In each patient, medial and lateral tibia plateau samples were analyzed according to the OARSI histopathology grading system. The C2C expression was evaluated on histological slides by semi-quantitative analysis using ImageJ Fiji 2.14.0 software. Spearman's rank correlation analysis revealed a positive weak correlation (rho = 0.289, p = 0.0356) between the histological grade of tissue damage and the percentage of C2C staining. In addition, a highly significant positive correlation (rho = 0.388, p = 0.0041) was discovered between the osteoarthritis score (combining the histological grade of damage with the OA macroscopic stage) and the percentage of C2C staining in the samples. The C2C expression was detected in all the regions of the articular cartilage (i.e., the superficial zone, mid zone, deep zone and tidemark area, and the zone of calcified cartilage). Our findings imply that local expression of C2C correlates with the articular cartilage damage in OA-affected knees. This confirms that C2C can be used as a prospective marker for assessing pathological changes in the OA course and OA clinical trials.
Collapse
Affiliation(s)
- Taavi Torga
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Siim Suutre
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Kalle Kisand
- Department of Internal Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia;
| | - Marina Aunapuu
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Andres Arend
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| |
Collapse
|
3
|
Kraus VB, Hsueh MF. Molecular biomarker approaches to prevention of post-traumatic osteoarthritis. Nat Rev Rheumatol 2024; 20:272-289. [PMID: 38605249 DOI: 10.1038/s41584-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Up to 50% of individuals develop post-traumatic osteoarthritis (PTOA) within 10 years following knee-joint injuries such as anterior cruciate ligament rupture or acute meniscal tear. Lower-extremity PTOA prevalence is estimated to account for ≥12% of all symptomatic osteoarthritis (OA), or approximately 5.6 million cases in the USA. With knowledge of the inciting event, it might be possible to 'catch PTOA in the act' with sensitive imaging and soluble biomarkers and thereby prevent OA sequelae by early intervention. Existing biomarker data in the joint-injury literature can provide insights into the pathogenesis and early risk trajectory related to PTOA and can help to elucidate a research agenda for preventing or slowing the onset of PTOA. Non-traumatic OA and PTOA have many clinical, radiological and genetic similarities, and efforts to understand early risk trajectories in PTOA might therefore contribute to the identification and classification of early non-traumatic OA, which is the most prevalent form of OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Zheng H, Fang J, Lu W, Liu Y, Chen S, Huang G, Zou Y, Hu S, Zheng Y, Fang H, Zhang R. TCF12 regulates the TGF-β/Smad2/3 signaling pathway to accelerate the progression of osteoarthritis by targeting CXCR4. J Orthop Translat 2024; 44:35-46. [PMID: 38235367 PMCID: PMC10792168 DOI: 10.1016/j.jot.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Objective Osteoarthritis (OA), which involves total joint damage and dysfunction, is a leading cause of disability worldwide. However, its exact pathogenesis remains unclear. Here, we identified TCF12 as an important regulator of the progression of OA. Methods qRT-PCR, immunoblotting and immunohistochemistry (IHC) were used to detect the expression level of TCF12. The interaction of TCF12 with its downstream factor CXCR4 was assessed by Western blotting, immunofluorescence, qRT-PCR and luciferase assays. A mouse model was generated to examine the functions and mechanism of TCF12 in vivo. Result TCF12 expression was upregulated in chondrocytes stimulated with IL-1β and osteoarthritic chondrocytes. TCF12 upregulates the expression of CXCR4 and leads to dysfunction of the TGF-β signaling pathway. Furthermore, knockdown of TCF12 alleviated cartilage damage in a mouse model generated by destabilization of the medial meniscus (DMM). Conclusion TCF12 aggravates the progression of OA by targeting CXCR4 and then activating the TGF-β signaling pathway, suggesting that TCF12 may be a new target for the treatment of OA. The translational potential of this article Transcription Factor 12(TCF12), is known to regulate cell development and differentiation, It has been widely studied in various organs and diseases, but its role in OA remains unclear. Here, we identified Transcription Factor 12(TCF12) as an important regulator mediating chondrocyte senescence and cartilage extracellular matrix degradation indicating its role in OA. We found that TCF12 expression was upregulated both locally and systemically as OA advanced in patients with OA, and in mice after DMM surgery to induce OA. TCF12 expression caused striking progressive articular cartilage damage, synovial hyperplasia in OA mice, and remarkably, it was relieved by intra-articular administration of mutant mouse TCF12 lentiviral vector (shTCF12). Furthermore, TCF12 upregulated the expression of CXCR4, leading to exacerbation of experimental OA partially through activation of TGF-β signaling in chondrocytes. TCF12 expression was upregulated in chondrocytes treated with IL-1β and osteoarthritic chondrocytes. Our findings established an essential role of TCF12 in chondrocyte senescence and cartilage extracellular matrix degradation during OA, and identified intra-articular injection of TCF12 as a potential therapeutic strategy for OA prevention and treatment.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Jianli Fang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Wei Lu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Youhui Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Sixu Chen
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Guangxin Huang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Yuming Zou
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Shu Hu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Yongxu Zheng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- The Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, Guangdong, China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, Guangdong, China
- Linzhi People's Hospital, Tibet Autonomous Region, China
- The Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Utomo L, Fahy N, Kops N, van Tiel ST, Waarsing J, Verhaar JAN, Leenen PJM, van Osch GJVM, Bastiaansen‐Jenniskens YM. Macrophage phenotypes and monocyte subsets after destabilization of the medial meniscus in mice. J Orthop Res 2021; 39:2270-2280. [PMID: 33336820 PMCID: PMC8518591 DOI: 10.1002/jor.24958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Macrophages play an important role in the development and progression of osteoarthritis (OA). The aim of this study was to identify macrophage phenotypes in synovium and monocyte subsets in peripheral blood in C57BL/6 mice by destabilizing the medial meniscus (DMM), and the association of macrophage subsets with OA features. DMM, sham, and non-operated knees were histologically assessed between 1 and 56 days for macrophage polarization states by immunohistochemistry (IHC), cartilage damage, synovial thickening, and osteophytes (n = 9 per timepoint). Naive knees (n = 6) were used as controls. Monocyte and polarized synovial macrophage subsets were evaluated by flow cytometry. CD64 and CD206 levels on IHC were higher at early timepoints in DMM and sham knees compared to naive knees. iNOS labeling intensity was higher in DMM and sham knees than in naive knees from d3 onwards. CD163 expression was unaltered at all timepoints. Even though macrophage polarization profiles were similar in DMM and sham knees, only in DMM knees the presence of iNOS and CD206 associated with synovial thickness, and CD163 staining inversely correlated with osteophyte presence. At day 14, monocyte subset distribution was different in peripheral blood of DMM mice compared with sham mice. In conclusion, monocyte subsets in blood and synovial macrophage phenotypes vary after joint surgery. High levels of iNOS+ , CD163+ , and CD206+ cells are found in both destabilized and sham-operated knees, and coexistence with joint instability may be a requirement to initiate and exacerbate OA progression.
Collapse
Affiliation(s)
- Lizette Utomo
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Present address:
L. Utomo, Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Niamh Fahy
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Oral and Maxillofacial Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sandra T. van Tiel
- Department of Radiology and Nuclear Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan Waarsing
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan A. N. Verhaar
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MCUniversity Medical Center RotterdamThe Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Otorhinolaryngology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
6
|
Hu H, Liu W, Sun C, Wang Q, Yang W, Zhang Z, Xia Z, Shao Z, Wang B. Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy. Aging Dis 2021; 12:886-901. [PMID: 34094649 PMCID: PMC8139200 DOI: 10.14336/ad.2020.0902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) has a very limited intrinsic repair capacity after injury or disease. Although exogenous cell-based regenerative approaches have obtained acceptable outcomes, they are usually associated with complicated procedures, donor-site morbidities and cell differentiation during ex vivo expansion. In recent years, endogenous regenerative strategy by recruiting resident mesenchymal stem/progenitor cells (MSPCs) into the injured sites, as a promising alternative, has gained considerable attention. It takes full advantage of body's own regenerative potential to repair and regenerate injured tissue while avoiding exogenous regenerative approach-associated limitations. Like most tissues, there are also multiple stem-cell niches in AC and its surrounding tissues. These MSPCs have the potential to migrate into injured sites to produce replacement cells under appropriate stimuli. Traditional microfracture procedure employs the concept of MSPCs recruitment usually fails to regenerate normal hyaline cartilage. The reasons for this failure might be attributed to an inadequate number of recruiting cells and adverse local tissue microenvironment after cartilage injury. A strategy that effectively improves local matrix microenvironment and recruits resident MSPCs may enhance the success of endogenous AC regeneration (EACR). In this review, we focused on the reasons why AC cannot regenerate itself in spite of potential self-repair capacity and summarized the latest developments of the three key components in the field of EACR. In addition, we discussed the challenges facing in the present EACR strategy. This review will provide an increasing understanding of EACR and attract more researchers to participate in this promising research arena.
Collapse
Affiliation(s)
- Hongzhi Hu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijian Liu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Caixia Sun
- 2Department of Gynecology, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Qiuyuan Wang
- 3Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, China
| | - Wenbo Yang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhiCai Zhang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhidao Xia
- 4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| | - Zengwu Shao
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| |
Collapse
|
7
|
Wang J, Sun Y, Liu J, Yang B, Wang T, Zhang Z, Jiang X, Guo Y, Zhang Y. Roles of long non‑coding RNA in osteoarthritis (Review). Int J Mol Med 2021; 48:133. [PMID: 34013375 PMCID: PMC8148092 DOI: 10.3892/ijmm.2021.4966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic bone and joint disease characterized by articular cartilage degeneration and joint inflammation and is the most common form of arthritis. The clinical manifestations of OA are chronic pain and joint activity disorder, which severely affect the patient quality of life. Long non-coding RNA (lncRNA) is a class of RNA molecules >200 nucleotides long that are expressed in animals, plants, yeast, prokaryotes and viruses. lncRNA molecules lack an open reading frame and are not translated into protein. The present review collated the results of recent studies on the role of lncRNA in the pathogenesis of OA to provide information for the prevention, diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yanshan Sun
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Jianyong Liu
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhen Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
8
|
Wang G, Li Y, Meng X, Yang X, Xiang Y. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res 2020; 15:195. [PMID: 32471458 PMCID: PMC7257224 DOI: 10.1186/s13018-020-01646-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/24/2020] [Indexed: 11/11/2022] Open
Abstract
Objective To explore the possibility and mechanism of targeted blocking SDF-1/CXCR4 signaling pathway using three antagonists TN14003, T140, and AMD3100 in vivo, and to investigate the function of three antagonists in delay degeneration process of articular cartilage. Methods Ninety-six male Duncan-Hartley guinea pigs (6 months old) were divided into groups A, B, C, and D randomly. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group A, and TN14003 with concentration of 180 μg/ml was pumped every day. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group B, and T140 with concentration of 180 μg/ml was pumped every day. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group C, and AMD3100 with concentration of 180 μg/ml was pumped every day. Hartley guinea pigs in group D remained untreated as the blank control group. At 2, 4, 6, 8, 10, and 12 weeks of treatment, 5 to 8 animals in each group were randomly chosen for blood collection via cardiac puncture. SDF-1 content using enzyme-linked immunosorbent assay (ELISA). At 12 weeks, all guinea pigs were sacrificed by injecting pentobarbital sodium (30 mg/kg) into the peritoneal cavity. Cartilages from the tibial plateau in each group were harvested for PCR testing and western blot analysis. SPSS19.0 was used for data analysis. Results Result of ELISA: the serum levels of SDF-1 of groups A, B, and C decreased gradually with time. Significant drop of SDF-1 level was seen in group A while increased SDF-1 was shown in group D. At the same time, the serum levels of SDF-1 of the group A were significantly lower than that of group B; those of group B were significantly lower than that of group C, which was significantly lower than that of group D, and their difference is statistically significant (P < 0.05). Real time quantitative PCR result: The mRNA levels of MMPs in group A were significantly lower than group B, and those of group B were significantly lower than group C, which was significantly lower than group D, and there was statistically significant (P < 0.05). The mRNA levels of type II collagen, aggrecan in group A were significantly more than group B; those of group B were significantly more than group C, which was significantly more than group D, and the difference was statistically significant (P < 0.05). H&E staining result: cartilage of group C was more significantly degenerative than other groups. Conclusions The three antagonists can target SDF-1/CXCR4 signaling pathway in vivo, reduce the expression and secretion of MMP-3, MMP-9, and MMP-13 in cartilage tissue, and reduce the degradation of collagen II and aggregating proteoglycan, thus delaying the degeneration of articular cartilage, of which TN14003 has the strongest regulatory effect. Targeted blockade of SDF-1/CXCR4 signaling pathway by TN14003 in vivo delays articular cartilage degeneration more effectively than T140 and AMD3100.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650031, Yunnan, China.,Kunming Medical University, No.1168 Chunrong Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650031, Yunnan, China.
| | - Xuhan Meng
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650031, Yunnan, China
| | - Xiao Yang
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650031, Yunnan, China
| | - Yaoyu Xiang
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650031, Yunnan, China
| |
Collapse
|
9
|
Bragg R, Gilbert W, Elmansi AM, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis. Ther Adv Chronic Dis 2019; 10:2040622319882531. [PMID: 31695863 PMCID: PMC6820172 DOI: 10.1177/2040622319882531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 01/13/2023] Open
Abstract
With age, joints become subject to chronic inflammatory processes that lead to degeneration of articular cartilage. Although multifactorial, cytokines have been shown to play a role in the pathogenesis of these chronic disease states. Stromal cell-derived factor 1 (SDF-1) is a chemokine that has been shown to be active in homeostatic mechanisms and developmental processes throughout the body, such as endochondral bone formation. SDF-1 plays a role in the transition from cartilage to bone. Although it has been shown to be a factor in normal development, it has also been shown to involve in the pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, SDF-1 has been shown to stimulate the recruitment of proinflammatory cells, as well as osteoclasts to the synovium, aiding in the facilitation of synovial degradation. Similarly, in OA, SDF-1 has been shown to regulate key proteins involved in the degradation of the cartilage of the joint. Because of its role in degenerative joint disease, SDF-1 has been investigated as a potential therapeutic target. Animal studies have been employing SDF-1 inhibitors, such as AMD3100 and T140, to study their effects on attenuating degenerative joint disease. These studies have shown promising results in slowing the progression of cartilage degradation and could potentially be used as therapeutic target for humans OA and RA.
Collapse
Affiliation(s)
- Robert Bragg
- Departments of Orthopedic Surgery, Augusta University, Augusta, GA, USA
| | - William Gilbert
- Departments of Orthopedic Surgery, Augusta University, Augusta, GA, USA
| | - Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, and the Ralph H. Johnson VAMC, Charleston, SC, USA
| | | | - Mark W. Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, and the Ralph H. Johnson VAMC, Charleston, SC, USA
| | | |
Collapse
|
10
|
Jia D, Li Y, Han R, Wang K, Cai G, He C, Yang L. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF‑1‑induced cartilage degradation. Mol Med Rep 2019; 19:4388-4400. [PMID: 30942441 PMCID: PMC6472139 DOI: 10.3892/mmr.2019.10076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is an aseptic inflammatory disease which is associated with the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis. Accumulating studies have identified numbers of microRNAs (miRNAs) that serve important roles in the pathogenesis of OA. However, whether and how the inhibition of the SDF-1/CXCR4 axis induces alterations in miRNA expression remains largely unclear. miRNA profiling was performed in OA chondrocytes stimulated with SDF-1 alone, or SDF-1 with the CXCR4 antagonist TN14003 by miRNA microarray. Candidate miRNAs were verified by reverse transcription quantitative polymerase chain reaction. Bioinformatic analyses including target prediction, gene ontology (GO) and pathway analysis were performed to explore the potential functions of candidate miRNAs. Notably, 7 miRNAs (miR-146a-5p, miR-221-3p, miR-126-3p, miR-185-5p, miR-155-5p, miR-124-3p and miR-130a-3p) were significantly differentially expressed. GO analysis indicated that miR-146a-5p and its associated genes were enriched in receptor regulatory activity, nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase activity, cellular response to interleukin-1, cytokine-cytokine receptor interaction, NF-κB signaling pathway and osteoclast differentiation pathways. CXCR4 was predicted to be a target of miR-146a-5p with high importance. The mRNA and protein levels of key factors involved in cartilage degeneration were measured following manipulation of the expression levels of miR-146a-5p in OA chondrocytes. CXCR4 and MMP-3 levels were negatively associated with miR-146a-5p expression, while the levels of type II collagen and aggrecan were positively associated. These data reveal that TN14003 upregulates miR-146a-5p expression, and also pinpoints a novel role of miR-146a-5p in inhibiting cartilage degeneration by directly targeting the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Rui Han
- Department of Diabetology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Guofeng Cai
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Chuan He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Lingjian Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
11
|
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7:5. [PMID: 30792936 PMCID: PMC6381187 DOI: 10.1038/s41413-018-0041-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.
Collapse
|
12
|
Li L, Lv G, Wang B, Kuang L. The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun 2018; 503:2555-2562. [PMID: 30005876 DOI: 10.1016/j.bbrc.2018.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in multiple diverse diseases, including osteoarthritis (OA). Here, we explored the role of lncRNA XIST in OA and identified the potential molecular mechanisms. The expression of XIST in cartilage samples in patients with OA was significantly upregulated. XIST knockdown remarkably suppressed IL-1β-suppressed OA chondrocyte proliferation while promoted IL-1β-induced cell apoptosis. By employing online tools, miRNAs related to CXCR4, a major contributor to chondrocyte apoptosis, and XIST were selected. miR-211 expression could be significantly inhibited by IL-1β stimulation, and miR-211 negatively regulated XIST expression and CXCR4 protein levels. Through direct binding, XIST served as a ceRNA for miR-211 to counteract miR-211-mediated CXCR4 repression, thereby modulating chondrocyte proliferation and apoptosis through downstream MAPK signaling. In OA tissues, miR-211 expression was significantly downregulated while CXCR4 mRNA expression was upregulated. miR-211 was negatively correlated with XIST and CXCR4, respectively, while XIST and CXCR4 was positively correlated in tissue samples. In conclusion, the study revealed that lncRNA XIST can promote the proliferation of OA chondrocytes and promote apoptosis through the miR-211/CXCR4 axis. Thus, lncRNA XIST might be considered as a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lei Kuang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Wang S, Wei X, Sun X, Chen C, Zhou J, Zhang G, Wu H, Guo B, Wei L. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system. Int J Nanomedicine 2018; 13:617-631. [PMID: 29440889 PMCID: PMC5798567 DOI: 10.2147/ijn.s142797] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaojuan Sun
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chongwei Chen
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingming Zhou
- Department of Orthopaedics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ge Zhang
- Integrated Traditional Chinese and Western Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Heng Wu
- Integrated Traditional Chinese and Western Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Baosheng Guo
- Integrated Traditional Chinese and Western Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Lei Wei
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Orthopaedics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Liang D, Sun J, Wei F, Zhang J, Li P, Xu Y, Shang X, Deng J, Zhao T, Wei L. Establishment of rat ankle post-traumatic osteoarthritis model induced by malleolus fracture. BMC Musculoskelet Disord 2017; 18:464. [PMID: 29149841 PMCID: PMC5693506 DOI: 10.1186/s12891-017-1821-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malleolar fracture, which is present in 37-53% of human ankle osteoarthritis (OA), is the most common type of fracture in the ankle joint. In spite of this, no rat animal model has been developed for this type of injury to date. Here, we established a rat ankle post-traumatic OA (PTOA) model induced by malleolar fracture; this model will be useful in ankle OA research. METHODS Two-month-old male Sprague Dawley (SD) rats were randomized into 2 groups (n = 19 per group): 1) malleolus articular fracture, dislocation, and immediate reduction on the right joints and 2) malleolus articular fracture on the right ankle. The contralateral ankle joints were used as controls. The fracture and healing processes were confirmed and monitored by radiography. Changes in inflammation were monitored in vivo by fluorescence molecular tomography (FMT). Cartilage damage and changes in expression of OA-related genes were analyzed by histology, immunohistochemistry, Real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) at 8 weeks post-surgery. RESULTS X-rays showed that all fractures were healed at 8 weeks post-surgery. A reproducible, mild to moderate degree of OA cartilage damage with reduced aggrecan was detected by histology in all animals in both groups but there was no significant difference between the two groups. Decreased Col-II and increased Col-X and MMP-13 levels were detected by qPCR, immunohistochemistry, ELISA and FMT from both groups cartilage. CONCLUSIONS Malleolus articular fracture alone induces ankle OA with lesions on the central weight bearing area of the tibiotalar joint in rats. This model will provide a reproducible and useful tool for researchers to study ankle OA.
Collapse
Affiliation(s)
- Dawei Liang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fangyuan Wei
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Beijing, China
| | - Jianzhong Zhang
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Beijing, China
| | - Pengcui Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yingke Xu
- School of Community Health Science, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada USA
| | - Xianwen Shang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ting Zhao
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI USA
| | - Lei Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI USA
| |
Collapse
|
15
|
Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The Multifunctional Role of the Chemokine System in Arthritogenic Processes. Curr Rheumatol Rep 2017; 19:11. [PMID: 28265846 DOI: 10.1007/s11926-017-0635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The involvement of chemokines and their receptors in the genesis and perpetuation of rheumatoid arthritis, spondyloarthritis, and osteoarthritis has been clearly recognized for a long time. Nevertheless, the complexity of their contribution to these diseases is now becoming evident and this review focuses on published evidence on their mechanism of action. RECENT FINDINGS Studies performed on patients and in vivo models have identified a number of chemokine-mediated pathways involved in various aspects of arthritogenic processes. Chemokines promote leukocyte infiltration and activation, angiogenesis, osteoclast differentiation, and synoviocyte proliferation and activation and participate to the generation of pain by regulating the release of neurotransmitters. A number of chemokines are expressed in a timely controlled fashion in the joint during arthropathies, regulating all the aspects of inflammation as well as the equilibrium between damage and repair and between relief and pain. Thus, the targeting of specific chemokine/chemokine receptor interactions is considered a promising tool for therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Dipartimento di Medicina Molecolare, Sapienza Universita' di Roma, 00161, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Giorgia Benigni
- Innate Immunity Unit, Institut Pasteur, Paris, 75015, France
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy.
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Universita' di Roma, Viale Regina Elena 291, 00161, Roma, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
16
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 2017; 56:1461-1471. [PMID: 28003493 DOI: 10.1093/rheumatology/kew389] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
Subchondral bone and the synovium play an important role in the initiation and progression of OA. MRI often permits an early detection of synovial hypertrophy and bone marrow lesions, both of which can precede cartilage damage. Newer imaging modalities including CT osteoabsorptiometry and hybrid SPECT-CT have underlined the importance of bone in OA pathogenesis. The subchondral bone in OA undergoes an uncoupled remodelling process, which is notably characterized by macrophage infiltration and osteoclast formation. Concomitant increased osteoblast activity leads to spatial remineralization and osteosclerosis in end-stage disease. A plethora of metabolic and mechanical factors can lead to synovitis in OA. Synovial tissue is highly vascularized and thus exposed to systemic influences such as hypercholesterolaemia or low grade inflammation. This review aims to describe the current understanding of synovitis and subchondral bone pathology and their connection in OA.
Collapse
Affiliation(s)
- Thomas Hügle
- Osteoarthritis Research Center Basel.,Department of Rheumatology
| | - Jeroen Geurts
- Osteoarthritis Research Center Basel.,Spine Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
T140 blocks the SDF-1/CXCR4 signaling pathway and prevents cartilage degeneration in an osteoarthritis disease model. PLoS One 2017; 12:e0176048. [PMID: 28426786 PMCID: PMC5398617 DOI: 10.1371/journal.pone.0176048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases affecting older people; however, there remains no effective targeted drug to combat OA. The aims of this study were (1) to explore the effect of T140 in regulating degeneration of articular cartilage in vivo by targeted blocking of the SDF-1/CXCR4 signaling pathway, and (2) to provide experimental evidence for the development of a novel OA-targeted pharmacotherapy. Thirty-six healthy Hartley guinea pigs were randomly divided into three groups: a T140-treated group (n = 12), a phosphate buffer saline control group (n = 12) and an untreated control group (n = 12). At 2, 4, 6, 8, 10 and 12 weeks of treatment, SDF-1 in serum was quantified by enzyme-linked immunosorbent assay. At 12 weeks of treatment, the cartilage from knee tibial plateau in the knee joint was collected for H&E, Safranin-O staining and Mankin grading; measurement for mRNA levels of matrix metalloproteinases (MMP-3, MMP-9 and MMP-13), aggrecan (ACAN) and collagen II (Col II) using RT-PCR; and measurement for Col II protein levels by western blot. Results showed that SDF-1 in serum increased in the T140 group and increased in the control groups. H&E and Safranin-O staining revealed less cartilage loss in T140-treated animals compared to controls. The mRNA levels of MMP-3, MMP-9 and MMP-13 in cartilage were much lower in the T140 group than other groups, but mRNA levels of ACAN and Col II in cartilage were higher in the T140-treated group. Col II protein levels in the T140 group and control groups were different. T140 can downregulate the expression of matrix-degrading enzyme and lessen the degeneration of cartilage by blocking the SDF-1/CRCR4 signaling pathway in vivo. This mechanism may present a pharmacological target for the treatment of OA.
Collapse
|
19
|
Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, Zhu W, Chen A. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci 2016; 17:E1522. [PMID: 27690009 PMCID: PMC5085615 DOI: 10.3390/ijms17101522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022] Open
Abstract
We evaluated the role of the CXCL12/CXCR4 (C-X-C motif chemokine ligand 12/C-X-C chemokine receptor type 4) axis in aggrecanase-mediated cartilage degradation, and explored the underlying mechanism in a post-traumatic osteoarthritis rat model. Expression of CXCL12/CXCR4 and ADAMTS-5 was analyzed in the knees of osteoarthritic and non-arthritic rats using Western blot, ELISA, immunohistochemistry and immunofluorescence. Rodent studies were performed using Sprague-Dawley rats, with animals divided into three groups: Destabilization of the medial meniscus/AMD3100-treated (DMM/AMD3100-treated), DMM/PBS-treated, and sham controls. Rats were sacrificed after eight weeks, and samples were collected for histology and immunohistochemistry analyses. IL-1-pretreated primary chondrocytes were cultured with untreated control, CXCL12a, siNC + CXCL12a, or siRNA CXCR4 + CXCL12a, and analyzed for expression of relevant markers and cellular pathways. Higher levels of CXCL12 were detected in the knee fluid of osteoarthritic subjects, with strong staining for CXCR4 in chondrocytes and CXCL12 in synoviocytes together with enhanced expression of ADAMTS-5. DMM/AMD3100-treated rats showed a significantly reduced immunological response, with minimal evidence of pathology in both histological and immunohistochemical analyses. Treatment with CXCL12a increased the expression of ACAN, RUNX-2, and ADAMTS-4/5 in IL-1-pretreated primary chondrocytes, together with a decrease in the expression of SOX-9. Molecular analyses revealed strong induction of NF-κB activation, along with phosphorylation of MAPKs, and activation of canonical Wnt/β-catenin signaling. In conclusion, inhibition of SDF-1α/CXCR4 signaling axis was able to inhibit aggrecanase expression and lessen cartilage degeneration in post-traumatic osteoarthritis rats.
Collapse
Affiliation(s)
- Weiwei Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Dong Y, Liu H, Zhang X, Xu F, Qin L, Cheng P, Huang H, Guo F, Yang Q, Chen A. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis. Int J Mol Sci 2016; 17:E943. [PMID: 27322244 PMCID: PMC4926476 DOI: 10.3390/ijms17060943] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA). Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA) mice models were prepared by transecting the anterior cruciate ligament (ACLT), or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS) or AMD3100 (an inhibitor of CXCR4) and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT). Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I) were quantified by ELISA. Bone marrow mononuclear cells (BMMCs) were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP), cathepsin K (CK), and matrix metalloproteinase (MMP)-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage degeneration in PTOA mice.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xuejun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qing Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
21
|
Chan KM. Musculoskeletal regeneration research network: A global initiative. J Orthop Translat 2015; 3:160-165. [PMID: 30035054 PMCID: PMC5986990 DOI: 10.1016/j.jot.2015.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kai-Ming Chan
- Corresponding author. Room 74029, 5th Floor, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| |
Collapse
|
22
|
Arranz A, Ripoll J. Advances in optical imaging for pharmacological studies. Front Pharmacol 2015; 6:189. [PMID: 26441646 PMCID: PMC4566037 DOI: 10.3389/fphar.2015.00189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering.
Collapse
Affiliation(s)
- Alicia Arranz
- Department of Cell Biology and Immunology, Center for Molecular Biology "Severo Ochoa", Spanish National Research Council , Madrid, Spain
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III of Madrid , Madrid, Spain ; Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón , Madrid, Spain
| |
Collapse
|
23
|
Mailhiot SE, Zignego DL, Prigge JR, Wardwell ER, Schmidt EE, June RK. Non-Invasive Quantification of Cartilage Using a Novel In Vivo Bioluminescent Reporter Mouse. PLoS One 2015; 10:e0130564. [PMID: 26151638 PMCID: PMC4495059 DOI: 10.1371/journal.pone.0130564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Mouse models are common tools for examining post-traumatic osteoarthritis (OA), which involves cartilage deterioration following injury or stress. One challenge to current mouse models is longitudinal monitoring of the cartilage deterioration in vivo in the same mouse during an experiment. The objective of this study was to assess the feasibility for using a novel transgenic mouse for non-invasive quantification of cartilage. Chondrocytes are defined by expression of the matrix protein aggrecan, and we developed a novel mouse containing a reporter luciferase cassette under the inducible control of the endogenous aggrecan promoter. We generated these mice by crossing a Cre-dependent luciferase reporter allele with an aggrecan creERT2 knockin allele. The advantage of this design is that the targeted knockin retains the intact endogenous aggrecan locus and expresses the tamoxifen-inducible CreERT2 protein from a second IRES-driven open reading frame. These mice display bioluminescence in the joints, tail, and trachea, consistent with patterns of aggrecan expression. To evaluate this mouse as a technology for non-invasive quantification of cartilage loss, we characterized the relationship between loss of bioluminescence and loss of cartilage after induction with (i) ex vivo collagenase digestion, (ii) an in vivo OA model utilizing treadmill running, and (iii) age. Ex vivo experiments revealed that collagenase digestion of the femur reduced both luciferase signal intensity and pixel area, demonstrating a link between cartilage degradation and bioluminescence. In an in vivo model of experimental OA, we found decreased bioluminescent signal and pixel area, which correlated with pathological disease. We detected a decrease in both bioluminescent signal intensity and area with natural aging from 2 to 13 months of age. These results indicate that the bioluminescent signal from this mouse may be used as a non-invasive quantitative measure of cartilage. Future studies may use this reporter mouse to advance basic and preclinical studies of murine experimental OA with applications in synovial joint biology, disease pathogenesis, and drug delivery.
Collapse
Affiliation(s)
- Sarah E. Mailhiot
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Donald L. Zignego
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Justin R. Prigge
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Ella R. Wardwell
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Edward E. Schmidt
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Ronald K. June
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
- Department of Cell Biology and Neuroscience, Affiliate Faculty, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| |
Collapse
|