1
|
Luo Y, Huang X, Yue Y, Lin X, Chen G, Wang K, Luo Y. In vivo cervical vertebrae kinematic studies based on dual fluoroscopic imaging system measurement: A narrative review. Heliyon 2024; 10:e30904. [PMID: 38765031 PMCID: PMC11097065 DOI: 10.1016/j.heliyon.2024.e30904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Understanding the motion characteristics of cervical spine through biomechanical analysis aids in the identification of abnormal joint movements. This knowledge is essential for the prevention, diagnosis, and treatment of related disorders. However, the anatomical structure of the cervical spine is complex, and traditional medical imaging techniques have certain limitations. Capturing the movement characteristics of various parts of the cervical spine in vivo during motion is challenging. The dual fluoroscopic imaging system (DFIS) is able to quantify the motion and motion patterns of individual segments. In recent years, DFIS has achieved accurate non-invasive measurements of dynamic joint movements in humans. This review assesses the research findings of DFIS about the cervical spine in healthy and pathological individuals. Relevant study search was conducted up to October 2023 in Web of Science, PubMed, and EBSCO databases. After the search, a total of 30 studies were ultimately included. Among them, 13 studies focused on healthy cervical spines, while 17 studies focused on pathological cervical spines. These studies mainly centered on exploring the vertebral bodies and associated structures of the cervical spine, including intervertebral discs, intervertebral foramina, and zygapophyseal joints. Further research could utilize DFIS to investigate cervical spine motion in different populations and under pathological conditions.
Collapse
Affiliation(s)
- Yuanbiao Luo
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian, China
| | - Xinwei Huang
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
| | - Yongda Yue
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian, China
| | - Xiande Lin
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian, China
| | - Guoxian Chen
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian, China
| | - Kun Wang
- Department of Rehabilitation Therapy, Kunshan Rehabilitation Hospital, Suzhou, Jiangsu, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
| | - Ye Luo
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Wawrose RA, Howington FE, LeVasseur CM, Smith CN, Couch BK, Shaw JD, Donaldson WF, Lee JY, Patterson CG, Anderst WJ, Bell KM. Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. J Orthop Res 2021; 39:1217-1226. [PMID: 32333606 PMCID: PMC7606317 DOI: 10.1002/jor.24702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In vitro biomechanical studies of the osteoligamentous spine are widely used to characterize normal biomechanics, identify injury mechanisms, and assess the effects of degeneration and surgical instrumentation on spine mechanics. The objective of this study was to determine how well four standards in vitro loading paradigms replicate in vivo kinematics with regards to the instantaneous center of rotation and arthrokinematics in relation to disc deformation. In vivo data were previously collected from 20 asymptomatic participants (45.5 ± 5.8 years) who performed full range of motion neck flexion-extension (FE) within a biplane x-ray system. Intervertebral kinematics were determined with sub-millimeter precision using a validated model-based tracking process. Ten cadaveric spines (51.8 ± 7.3 years) were tested in FE within a robotic testing system. Each specimen was tested under four loading conditions: pure moment, axial loading, follower loading, and combined loading. The in vivo and in vitro bone motion data were directly compared. The average in vitro instant center of rotation was significantly more anterior in all four loading paradigms for all levels. In general, the anterior and posterior disc heights were larger in the in vitro models than in vivo. However, after adjusting for gender, the observed differences in disc height were not statistically significant. This data suggests that in vitro biomechanical testing alone may fail to replicate in vivo conditions, with significant implications for novel motion preservation devices such as cervical disc arthroplasty implants.
Collapse
Affiliation(s)
- Richard A. Wawrose
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Forbes E. Howington
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Clarissa M. LeVasseur
- Department of Orthopaedic Surgery, Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, PA 15203
| | - Clair N. Smith
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brandon K. Couch
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jeremy D. Shaw
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - William F. Donaldson
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joon Y. Lee
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Charity G. Patterson
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - William J. Anderst
- Department of Orthopaedic Surgery, Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, PA 15203
| | - Kevin M. Bell
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
3
|
Diao H, Xin H, Jin Z. Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation. Proc Inst Mech Eng H 2018; 232:1071-1082. [DOI: 10.1177/0954411918799630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cervical spine diseases lead to a heavy economic burden to the individuals and societies. Moreover, frequent post-operative complications mean a higher risk of neck pain and revision. At present, controversy still exists for the etiology of spinal diseases and their associated complications. Knowledge of in vivo cervical spinal loading pattern is proposed to be the key to answer these questions. However, direct acquisition of in vivo cervical spinal loading remains challenging. In this study, a previously developed cervical spine musculoskeletal multi-body dynamics model was utilized for spinal loading prediction. The in vivo dynamic segmental contributions to head motion and the out-of-plane coupled motion were both taken into account. First, model validation and sensitivity analysis of different segmental contributions to head motion were performed. For model validation, the predicted intervertebral disk compressive forces were converted into the intradiskal pressures and compared with the published experimental measurements. Significant correlations were found between the predicted values and the experimental results. Thus, the reliability and capability of the cervical spine model was ensured. Meanwhile, the sensitivity analysis indicated that cervical spinal loading is sensitive to different segmental contributions to head motion. Second, the compressive, shear and facet joint forces at C3–C6 disk levels were predicted, during the head flexion/extension, lateral bending and axial rotation. Under the head flexion/extension movement, asymmetric loading patterns of the intervertebral disk were obtained. In comparison, symmetrical typed loading patterns were found for the head lateral bending and axial rotation movements. However, the shear forces were dramatically increased during the head excessive extension and lateral bending. Besides, a nonlinear correlation was seen between the facet joint force and the angular displacement. In conclusion, dynamic cervical spinal loading was both intervertebral disk angle-dependent and level-dependent. Cervical spine musculoskeletal multi-body dynamics model provides an attempt to comprehend the in vivo biomechanical surrounding of the human head-neck system.
Collapse
Affiliation(s)
- Hao Diao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hua Xin
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
4
|
Yu Y, Mao H, Li JS, Tsai TY, Cheng L, Wood KB, Li G, Cha TD. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck. J Biomech Eng 2017; 139:2613837. [PMID: 28334358 DOI: 10.1115/1.4036311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/26/2022]
Abstract
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.
Collapse
Affiliation(s)
- Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 2000065, China;Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jing-Sheng Li
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA 02215
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Kirkham B Wood
- Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | - Guoan Li
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1215, Boston, MA 02114 e-mail:
| | - Thomas D Cha
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|