1
|
Mosher TJ. Quantitative Cartilage T2 and T1rho Mapping: Is There a Clinical Role? From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2025:1-9. [PMID: 39082851 DOI: 10.2214/ajr.24.31655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite more than 20 years of development, the MRI-based cartilage compositional biomarkers T2 and T1rho have not been routinely applied in clinical practice. This review examines these measures' historical development and frames the challenges in the application of these quantitative imaging tools to the care of patients with cartilage injury and osteoarthritis (OA) using the hierarchic model of efficacy proposed by Fryback and Thornbury. T2 and T1rho have been validated for the evaluation of early compositional and structural changes in the cartilage extracellular matrix. Yet, these biomarkers lack direct correlation with pain or function loss, lack standardization of methods for acquisition and analysis, and have a limited role in guiding therapeutic management given the absence of effective disease-modifying OA drugs. These issues present significant challenges in the path to the biomarkers' future implementation in clinical care. Nonetheless, these MRI-based cartilage compositional biomarkers provide an essential tool for musculoskeletal research and can provide important information about the biophysical properties of cartilage that will continue to contribute to our understanding of cartilage injury and OA pathogenesis.
Collapse
Affiliation(s)
- Timothy J Mosher
- Department of Radiology, Penn State Milton S. Hershey Medical Center, 500 University Dr, MC H066, Hershey, PA 17033
| |
Collapse
|
2
|
Zhang J, Jia Z, Yang Y, Zhang L, Huang T, Tsai T, Li P. In the Acute Phase of Anterior Cruciate Ligament Rupture: Quantitative Assessment of Matrix Changes and Correlation between Different States of Meniscus and Adjacent Cartilage. Orthop Surg 2024; 16:2475-2487. [PMID: 39093708 PMCID: PMC11456734 DOI: 10.1111/os.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Cartilage and meniscus are important structures that maintain the health of the knee joint. Early detection of changes in the internal components of cartilage and meniscus before morphological changes occur is essential to prevent and delay the development of osteoarthritis (OA). This study was designed to determine the changes in the matrix composition of morphologically intact cartilage and meniscus during the acute phase of an anterior cruciate ligament (ACL) rupture, as well as the effect of different states of meniscus (intact or tear) on adjacent cartilage during the acute phase. METHODS This cross-sectional study compared and analyzed 50 patients in the acute phase of ACL rupture who underwent surgical treatment and 66 age-, weight- and height-matched healthy volunteers from May 2022 to May 2023 at our institution. Mean T2 relaxation times and effect sizes in different regions of tibiofemoral articular cartilage and meniscus were compared between the two groups using the Mann-Whitney nonparametric t-test, and correlations between different meniscal states and adjacent cartilage were analyzed. RESULTS Both in the lateral and medial compartments of the knee, T2 relaxation times were significantly higher in all subregions of cartilage and meniscus in the ACL rupture group (p < 0.05), and the site of injury was predominantly centered in the medial compartment (femur, p = 0.000; tibia, p = 0.000; anterior horn, p = 0.000). In the respective compartments, the posterior horn of the lateral meniscus showed a significant positive correlation with the mid-cartilage of the femoral and tibial (r = 0.566, p = 0.035; r = 0.611, p = 0.02); and the posterior horn of the medial meniscus showed a significant positive correlation with the posterior tibial cartilage (r = 0.668, p = 0.018). CONCLUSION During the acute phase of ACL rupture, the internal composition of the cartilage and meniscus undergoes significant changes, even if the morphology is intact. More importantly, the state of the meniscus significantly affects the internal composition of the adjacent cartilage. This is an early warning sign of OA, which should be closely monitored and carefully managed in clinical practice.
Collapse
Affiliation(s)
- Jiaying Zhang
- Department of Graduate SchoolGuangzhou University of Chinese MedicineGuangzhouChina
| | - Zhenyu Jia
- Guangdong Key Lab of Orthopedic Technology and ImplantGeneral Hospital of Southern Theater Command of PLAGuangzhouChina
| | - Yangyang Yang
- School of Biomedical Engineering & Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Lihang Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLAThe First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Tianwen Huang
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLAThe First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Tsung‐Yuan Tsai
- Engineering Research Center for Digital Medicine of the Ministry of EducationShanghaiChina
| | - Pingyue Li
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLAThe First School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Imhauser C. CORR Insights®: Differences in Cortical Activation During Dorsiflexion and Plantarflexion in Chronic Ankle Instability: A Task-fMRI Study. Clin Orthop Relat Res 2024; 482:827-830. [PMID: 38289693 PMCID: PMC11008632 DOI: 10.1097/corr.0000000000002991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Affiliation(s)
- Carl Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
4
|
Vassileva MT, Kim JS, Valle AGD, Harris MD, Pedoia V, Lattanzi R, Kraus VB, Pascual-Garrido C, Bostrom MP. Arthritis Foundation/HSS Workshop on Hip Osteoarthritis, Part 2: Detecting Hips at Risk: Early Biomechanical and Structural Mechanisms. HSS J 2023; 19:428-433. [PMID: 37937085 PMCID: PMC10626933 DOI: 10.1177/15563316231192097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 11/09/2023]
Abstract
Far more publications are available for osteoarthritis of the knee than of the hip. Recognizing this research gap, the Arthritis Foundation (AF), in partnership with the Hospital for Special Surgery (HSS), convened an in-person meeting of thought leaders to review the state of the science of and clinical approaches to hip osteoarthritis. This article summarizes the recommendations gleaned from 5 presentations given in the "early hip osteoarthritis" session of the 2023 Hip Osteoarthritis Clinical Studies Conference, which took place on February 17 and 18, 2023, in New York City. It also summarizes the workgroup recommendations from a small-group discussion on clinical research gaps.
Collapse
Affiliation(s)
| | | | | | - Michael D Harris
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Riccardo Lattanzi
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
5
|
Liao TC, Bird A, Samaan MA, Pedoia V, Majumdar S, Souza RB. Persistent underloading of patellofemoral joint following hamstring autograft ACL reconstruction is associated with cartilage health. Osteoarthritis Cartilage 2023; 31:1265-1273. [PMID: 37116856 PMCID: PMC11167283 DOI: 10.1016/j.joca.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To determine the longitudinal changes of patellofemoral joint (PFJ) contact pressure following anterior cruciate ligament reconstruction (ACLR). To identify the associations between PFJ contact pressure and cartilage health. DESIGN Forty-nine subjects with hamstring autograft ACLR (27 males; age 28.8 [standard deviation, 8.3] years) and 19 controls (12 males; 30.7 [4.6] years) participated. A sagittal plane musculoskeletal model was used to estimate PFJ contact pressure. A combined T1ρ/T2 magnetic resonance sequence was obtained. Assessments were performed preoperatively, at 6 months, 1, 2, and 3 years postoperatively in ACLR subjects and once for controls. Repeated Analysis of Variance (ANOVA) was used to compare peak PFJ contact pressure between ACLR and contralateral knees, and t-tests to compare with control knees. Statistical parametric mapping was used to evaluate the associations between PFJ contact pressure and cartilage relaxation concurrently and longitudinally. RESULTS No changes in peak PFJ contact pressure were found within ACLR knees over 3 years (preoperative to 3 years, 0.36 [CI, -0.08, 0.81] MPa), but decreased over time in the contralateral knees (0.75 [0.32, 1.18] MPa). When compared to the controls, ACLR knees exhibited lower PFJ contact pressure at all time points (at baseline, -0.64 [-1.25, -0.03] MPa). Within ACLR knees, lower PFJ contact pressure at 6 months was associated with elevated T2 times (r = -0.47 to -0.49, p = 0.021-0.025). CONCLUSIONS Underloading of the PFJ following ACLR persists for up to 3 years and has concurrent and future consequences in cartilage health. The non-surgical knees exhibited normal contact pressure initially but decreased over time achieving limb symmetry.
Collapse
Affiliation(s)
- Tzu-Chieh Liao
- Department of Physical Therapy, University of Michigan-Flint, Flint, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - Alyssa Bird
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Samaan
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Shah R, Astuto Arouche Nunes B, Gleason T, Fletcher W, Banaga J, Sweetwood K, Ye A, Patel R, McGill K, Link T, Crane J, Pedoia V, Majumdar S. Utilizing a Digital Swarm Intelligence Platform to Improve Consensus Among Radiologists and Exploring Its Applications. J Digit Imaging 2023; 36:401-413. [PMID: 36414832 PMCID: PMC10039189 DOI: 10.1007/s10278-022-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Radiologists today play a central role in making diagnostic decisions and labeling images for training and benchmarking artificial intelligence (AI) algorithms. A key concern is low inter-reader reliability (IRR) seen between experts when interpreting challenging cases. While team-based decisions are known to outperform individual decisions, inter-personal biases often creep up in group interactions which limit nondominant participants from expressing true opinions. To overcome the dual problems of low consensus and interpersonal bias, we explored a solution modeled on bee swarms. Two separate cohorts, three board-certified radiologists, (cohort 1), and five radiology residents (cohort 2) collaborated on a digital swarm platform in real time and in a blinded fashion, grading meniscal lesions on knee MR exams. These consensus votes were benchmarked against clinical (arthroscopy) and radiological (senior-most radiologist) standards of reference using Cohen's kappa. The IRR of the consensus votes was then compared to the IRR of the majority and most confident votes of the two cohorts. IRR was also calculated for predictions from a meniscal lesion detecting AI algorithm. The attending cohort saw an improvement of 23% in IRR of swarm votes (k = 0.34) over majority vote (k = 0.11). Similar improvement of 23% in IRR (k = 0.25) in 3-resident swarm votes over majority vote (k = 0.02) was observed. The 5-resident swarm had an even higher improvement of 30% in IRR (k = 0.37) over majority vote (k = 0.07). The swarm consensus votes outperformed individual and majority vote decision in both the radiologists and resident cohorts. The attending and resident swarms also outperformed predictions from a state-of-the-art AI algorithm.
Collapse
Affiliation(s)
- Rutwik Shah
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
- Center for Intelligent Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Bruno Astuto Arouche Nunes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Center for Intelligent Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Tyler Gleason
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Will Fletcher
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Justin Banaga
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Sweetwood
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Allen Ye
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Rina Patel
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kevin McGill
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jason Crane
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Center for Intelligent Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Center for Intelligent Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Center for Intelligent Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Mabrouk AM, Abd El Raaof MM, Hemaida TW, Bassiouny AM. Degenerative changes through MR cartilage mapping in anterior cruciate ligament-reconstructed knees. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023; 54:38. [DOI: 10.1186/s43055-022-00952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/27/2022] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
Anterior cruciate ligament (ACL) injury increases risk for post traumatic knee osteoarthritis. ACL injury causes lack of knee stability and frequently requires ACL-reconstruction (ACLR) in order to restore functional and anatomical joint stability. Magnetic resonance imaging with T2 mapping sequence is used to quantify the amount of water content in articular cartilage hence; it is considered a better tool and more beneficial than radiographic based assessment in early detection even before being symptomatic. The aim of work is to estimate the incidence of subclinical degenerative changes that happened early in patients who underwent ACL reconstruction and to identify the correlations of T2 mapping values with patients' BMI, meniscal state/operations, ACL graft assessment and presence of ACLR related complications.
Results
The study was conducted upon 71 patients, divided into 61 anterior cruciate ligament reconstructed knees and 10 control cases using 1.5 T MRI. Assessment of cartilage sub-compartment T2 values and comparison with average normal cartilage T2 values obtained from the control group. Multiple correlations of the grade of articular cartilage degeneration within anterior cruciate ligament reconstructed knees with Body Mass Index (BMI), time of operation as well associated meniscal operations and anterior cruciate ligament graft complications.
Conclusions
Adding the T2 cartilage mapping sequence improves the ability to detect subclinical early degenerative articular cartilage changes in patients who underwent anterior cruciate ligament reconstruction, taking into consideration the relation of the patients' BMI, previous meniscal injuries/operation, ACL graft status and related graft complications with the T2 cartilage mapping values.
Collapse
|
8
|
Quantitative evaluation of the tibiofemoral joint cartilage by T2 mapping in patients with acute anterior cruciate ligament injury vs contralateral knees: results from the subacute phase using data from the NACOX study cohort. Osteoarthritis Cartilage 2022; 30:987-997. [PMID: 35421548 DOI: 10.1016/j.joca.2022.02.623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Immediate cartilage structural alterations in the acute phase after an anterior cruciate ligament (ACL) rupture may be a precursor to posttraumatic osteoarthritis (PTOA) development. Our aim was to describe changes in cartilage matrix in the subacute phase of the acutely ACL-injured knee compared to the contralateral uninjured knee. DESIGN Participants (n = 118) aged 15-40 years with an acute ACL injury were consecutively included in subacute phase after acute ACL-injury and underwent MRI (mean 29 days post trauma) of both knees. Mean T2 relaxation times, T2 spatial coefficient of variation and cartilage thickness were determined for different regions of the tibiofemoral cartilage. Differences between the acutely ACL-injured and uninjured knee were evaluated using Wilcoxon signed-rank test. RESULTS T2 relaxation time in injured knees was increased in multiple cartilage regions from both medial and lateral compartment compared to contralateral knees, mostly in medial trochlea and posterior tibia (P-value<0.001). In the same sites of injured knees, we observed significantly thinner cartilage. Moreover, injured knees presented shorter T2 relaxation time in superficial cartilage on lateral central femur and trochlea (P-value<0.001), and decreased T2 spatial coefficient of variation in lateral trochlea and load bearing regions of medial-central femoral condyle and central tibia in both compartments. CONCLUSION Small but statistically significant differences were observed in the subacute phase between ACL-injured and uninjured knee in cartilage T2 relaxation time and cartilage thickness. Future longitudinal observations of the same cohort will allow for better understanding of early development of PTOA. TRIAL REGISTRATION NUMBER NCT02931084.
Collapse
|
9
|
Pius AK, Beynnon BD, Fiorentino N, Gardner-Morse M, Vacek PM, DeSarno M, Failla M, Slauterbeck JR, Sturnick DR, Argentieri EC, Tourville TW. Articular cartilage thickness changes differ between males and females 4 years following anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:65-73. [PMID: 34288090 DOI: 10.1002/jor.25142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament injury and reconstruction (ACLR) affects articular cartilage thickness profiles about the tibial, femoral, and patellar surfaces; however, it's unclear whether the magnitudes of change in cartilage thickness, as well as the locations and areas over which these changes occur, differ between males and females. This is important to consider as differences exist between the sexes with regard to knee biomechanics, patellofemoral pain, and anatomic alignment, which influence risk of an index and repeated injury. Subjects underwent ACLR with a bone-patella tendon-bone autograft. At 4-year follow-up, they had asymptomatic knees; however, significant ACL injured-to-contralateral normal knee differences in articular cartilage thickness values were observed. Both thickening and thinning of cartilage occurred about the tibiofemoral and patellofemoral joints, relative to matched control subjects with normal knees. Further, the location of the areas and magnitudes of thickening and thinning were different between females and males. Thickening (swelling) of articular cartilage is an early finding associated with the onset of posttraumatic osteoarthritis (PTOA). Therefore, the increases in cartilage thickness that were observed in this cohort may represent early signs of the onset of PTOA that occur prior to the patient developing symptoms and radiographic evidence of this disease. The different locations of areas that underwent a change in cartilage thicknesses between males and females suggest that each sex responds differently to knee ligament trauma, reconstruction, rehabilitation, and return to activity, and indicates that sex-specific analysis should be utilized in studies of PTOA.
Collapse
Affiliation(s)
- Alexa K Pius
- Department Orthopaedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Bruce D Beynnon
- Department Orthopaedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, USA.,Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont, USA
| | - Niccolo Fiorentino
- Department Orthopaedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, USA.,Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont, USA
| | - Mack Gardner-Morse
- Department Orthopaedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Pamela M Vacek
- Department of Medical Biostatistics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mike DeSarno
- Department of Medical Biostatistics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mat Failla
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - James R Slauterbeck
- Department Orthopaedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Daniel R Sturnick
- Department of Biomechanics, Hospital for Special Surgery, New York, USA
| | - Erin C Argentieri
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, USA
| | - Timothy W Tourville
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Tibrewala R, Pedoia V, Lee J, Kinnunen C, Popovic T, Zhang AL, Link TM, Souza RB, Majumdar S. Automatic hip abductor muscle fat fraction estimation and association with early OA cartilage degeneration biomarkers. J Orthop Res 2021; 39:2376-2387. [PMID: 33368579 DOI: 10.1002/jor.24974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
The aim of this study was to develop an automatic segmentation method for hip abductor muscles and find their fat fraction associations with early stage hip osteoarthritis (OA) cartilage degeneration biomarkers. This Institutional Review Board approved, Health Insurance Portability and Accountability Act compliant prospective study recruited 61 patients with evidence of hip OA or Femoroacetabular Impingement (FAI). Magnetic resonance (MR) images were acquired for cartilage segmentation, T1ρ and T2 relaxation times computation and grading of cartilage lesion scores. A 3D V-Net (Dice loss, Adam optimizer, learning rate = 1e-4 , batch size = 3) was trained to segment the three muscles (gluteus medius, gluteus minimus, and tensor fascia latae). The V-Net performance was measured using Dice, distance maps between manual and automatic masks, and Bland-Altman plots of the fat fractions and volumes. Associations between muscle fat fraction and T1ρ , T2 relaxation times values were found using voxel based relaxometry (VBR). A p < 0.05 was considered significant. The V-Net had a Dice of 0.90, 0.88, and 0.91 (GMed, GMin, and TFL). The VBR results found associations of fat fraction of all three muscles in early stage OA and FAI patients with T1ρ , T2 relaxation times. Using an automatic, validated segmentation model, the associations derived between OA biomarkers and muscle fat fractions provide insight into early changes that occur in OA, and show that hip abductor muscle fat is associated with markers of cartilage degeneration.
Collapse
Affiliation(s)
- Radhika Tibrewala
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jinhee Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Carla Kinnunen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Tijana Popovic
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Alan L Zhang
- Department of Orthopedics, University of California at San Francisco, San Francisco, San Francisco, California, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Richard B Souza
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Marom N, Jahandar H, Fraychineaud TJ, Zayyad ZA, Ouanezar H, Hurwit D, Zhu A, Wickiewicz TL, Pearle AD, Imhauser CW, Nawabi DH. Lateral Extra-articular Tenodesis Alters Lateral Compartment Contact Mechanics under Simulated Pivoting Maneuvers: An In Vitro Study. Am J Sports Med 2021; 49:2898-2907. [PMID: 34314283 DOI: 10.1177/03635465211028255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is concern that utilization of lateral extra-articular tenodesis (LET) in conjunction with anterior cruciate ligament (ACL) reconstruction (ACLR) may disturb lateral compartment contact mechanics and contribute to joint degeneration. HYPOTHESIS ACLR augmented with LET will alter lateral compartment contact mechanics in response to simulated pivoting maneuvers. STUDY DESIGN Controlled laboratory study. METHODS Loads simulating a pivot shift were applied to 7 cadaveric knees (4 male; mean age, 39 ± 12 years; range, 28-54 years) using a robotic manipulator. Each knee was tested with the ACL intact, sectioned, reconstructed (via patellar tendon autograft), and, finally, after augmenting ACLR with LET (using a modified Lemaire technique) in the presence of a sectioned anterolateral ligament and Kaplan fibers. Lateral compartment contact mechanics were measured using a contact stress transducer. Outcome measures were anteroposterior location of the center of contact stress (CCS), contact force from anterior to posterior, and peak and mean contact stress. RESULTS On average, augmenting ACLR with LET shifted the lateral compartment CCS anteriorly compared with the intact knee and compared with ACLR in isolation by a maximum of 5.4 ± 2.3 mm (P < .001) and 6.0 ± 2.6 mm (P < .001), respectively. ACLR augmented with LET also increased contact force anteriorly on the lateral tibial plateau compared with the intact knee and compared with isolated ACLR by a maximum of 12 ± 6 N (P = .001) and 17 ± 10 N (P = .002), respectively. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress by 0.7 ± 0.5 MPa (P = .005) and by 0.17 ± 0.12 (P = .006), respectively, at 15° of flexion. CONCLUSION Under simulated pivoting loads, adding LET to ACLR anteriorized the CCS on the lateral tibial plateau, thereby increasing contact force anteriorly. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress at 15° of flexion. CLINICAL RELEVANCE The clinical and biological effect of increased anterior loading of the lateral compartment after LET merits further investigation. The ability of LET to anteriorize contact stress on the lateral compartment may be useful in knees with passive anterior subluxation of the lateral tibia.
Collapse
Affiliation(s)
- Niv Marom
- Department of Orthopaedic Surgery, Meir Medical Center, Kfar Saba, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hamidreza Jahandar
- Biomechanics Department, Hospital for Special Surgery, New York, New York, USA
| | | | - Zaid A Zayyad
- Biomechanics Department, Hospital for Special Surgery, New York, New York, USA
| | | | - Daniel Hurwit
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Andrew Zhu
- Biomechanics Department, Hospital for Special Surgery, New York, New York, USA
| | - Thomas L Wickiewicz
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Andrew D Pearle
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Carl W Imhauser
- Biomechanics Department, Hospital for Special Surgery, New York, New York, USA
| | - Danyal H Nawabi
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
12
|
Liao TC, Jergas H, Tibrewala R, Bahroos E, Link TM, Majumdar S, Souza RB, Pedoia V. Longitudinal analysis of the contribution of 3D patella and trochlear bone shape on patellofemoral joint osteoarthritic features. J Orthop Res 2021; 39:506-515. [PMID: 32827327 PMCID: PMC8915432 DOI: 10.1002/jor.24836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/02/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
To explore bone shape features that are associated with patellofemoral joint (PFJ) osteoarthritic features. Thirty subjects with PFJ degeneration (six males, 53.2 ± 9.8 years) and 23 controls (12 males, 48.1 ± 10.6 years) were included. Magnetic resonance (MR) assessment was performed to provide bone segmentation, morpholgocial grading, and cartilage relaxation times. In addition, subject self-reported symptoms were reported. Logistic regressions were used to identify the shape features that were associated with the presence and worsening of PFJ morphological lesions over 3 years, and worsening of self-reported symptoms. Statistical parametric mapping was used to evaluate the associations between shape features and cartilage relaxation times at 3 years. Results indicated that subjects with PFJ degeneration exhibited a trochlea with longer lateral condyle and shallower trochlear groove (adjusted odds ratio [OR] = 0.30; 95% confidence interval [CI]: 0.10, 0.86; P = .025). Subjects with worsening of PFJ degeneration exhibited a patella with equally distributed facets (adjusted OR = 3.14; 95% CI: 1.05, 9.37; P = .040) and lateral bump (adjusted OR = 0.14; 95% CI: 0.02, 0.83; P = .030). No shape features were associated with worsening of self-reported symptoms. Elevated T1ρ and T2 times at 3 years were associated with a patella with a lateral hook, equally distributed facets, round and thick as well as a trochlea larger in size (R = 0.38~0.46, P = .015~.025). The study demonstrated the ability of 3D statistical shape modeling to quantify patella and trochlear bone shape features that are associated with the presence and progression of PFJ osteoarthritic features.
Collapse
Affiliation(s)
- Tzu-Chieh Liao
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Hannah Jergas
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Radhika Tibrewala
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Emma Bahroos
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Richard B. Souza
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA,Department of Physical Therapy and Rehabilitation Science, University of California-San Francisco, CA, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Li AK, Ochoa JK, Pedoia V, Amano K, Souza RB, Li X, Ma CB. Altered tibiofemoral position following ACL reconstruction is associated with cartilage matrix changes: A voxel-based relaxometry analysis. J Orthop Res 2020; 38:2454-2463. [PMID: 32369216 DOI: 10.1002/jor.24708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/18/2019] [Accepted: 04/23/2020] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to analyze the relationship between postsurgical tibial translation (TT) and tibial rotation (TR) with cartilage matrix changes using quantitative magnetic resonance imaging, specifically voxel-based relaxometry with T1ρ and T2 mapping sequences. Knee magnetic resonance imaging's (MRI's) of 51 patients with unilateral anterior cruciate ligament injury, no concomitant ligamentous injury, history of osteoarthritis (OA), and previous knee surgery were scanned prior to surgery. Thirty-four patients completed follow-up MRI scans at 6-month, 1- and 2-year post-reconstruction and were included in this study. Knee biomechanics, T1ρ, and T2 were calculated using an in-house Matlab program. Compared to the contralateral knee, the injured knee demonstrated significantly increased anterior TT at baseline (P < .001), 6-month (P < .001), 1- (P = .001), and 2-year (P < .001). Furthermore, patients were divided into groups based on TT at 6-month. When compared to patients with normal TT, those with increased anterior TT at 6-month displayed significantly longer T1ρ and T2 relaxation times in 10.4% and 7.4% of the voxels in the injured medial tibia at 1-year, respectively, as well as 12.4% and 9.8% of the voxels in the injured medial tibia at 2-year, respectively. Our results demonstrate an association between abnormal tibiofemoral position and early degradative changes to the articular cartilage matrix of the injured knee. Clinical significance: These findings suggest that altered tibiofemoral position following ACL reconstruction is associated with early degeneration of knee cartilage. Future prospective studies employing longer follow-up times are warranted to evaluate the relationship between abnormal tibiofemoral position and the early onset of posttraumatic OA.
Collapse
Affiliation(s)
- Alan K Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| | - Jonathan K Ochoa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California.,School of Medicine, University of California, San Francisco (UCSF), San Francisco, California
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| | - Keiko Amano
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California.,Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Richard B Souza
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California.,Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco (UCSF), San Francisco, California
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California.,Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio
| | - Chunbong B Ma
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
14
|
Liao TC, Pedoia V, Neumann J, Link TM, Souza RB, Majumdar S. Extracting Voxel-Based Cartilage Relaxometry Features in Hip Osteoarthritis Subjects Using Principal Component Analysis. J Magn Reson Imaging 2020; 51:1708-1719. [PMID: 31614057 PMCID: PMC9744136 DOI: 10.1002/jmri.26955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MRI-based relaxation time measurements provide quantitative assessment of cartilage biochemistry. Identifying distinctive relaxometry features in hip osteoarthritis (OA) might provide important information on regional disease variability. PURPOSE First, to incorporate fully automatic voxel-based relaxometry (VBR) with principal component analysis (PCA) to extract distinctive relaxometry features in subjects with radiographic hip OA and nondiseased controls. Second, to use the identified features to further distinguish subjects with cartilage compositional abnormalities. STUDY TYPE Cross-sectional. SUBJECTS Thirty-three subjects with radiographic hip OA (20 males; age, 50.2 ± 13.3 years) and 55 controls participated (28 males; 41.3 ± 12.0 years). SEQUENCE A 3.0T scanner using 3D SPGR, combined T1ρ /T2 , and fast spin echo sequences. ASSESSMENT Pelvic radiographs, patients' self-reported symptoms, physical function, and cartilage morphology were analyzed. Cartilage relaxation times were quantified using traditional regions of interest and VBR approaches. PCA was performed on VBR data to identify distinctive relaxometry features, and were subsequently used to identify a subgroup of subjects from the controls that exhibited compositional abnormalities. STATISTICAL TESTS Chi-square and independent t-tests were used to compare group characteristics. Logistic regression models were used to identify the possible principal components (PCs) that were able to predict OA vs. control classification. RESULTS In T1ρ assessment, OA subjects demonstrated higher T1ρ values in the posterior hip region and deep cartilage layer when compared with controls (P = 0.012 and 0.001, respectively). In T2 assessment, OA subjects exhibited higher T2 values in the posterior hip region (P < 0.001). Based on the PC score classification, 16 subjects without radiographic evidence of OA demonstrated relaxometry patterns similar to OA subjects, and exhibited worse physical function (P = 0.003) and cartilage lesions (P = 0.009-0.032) when compared with the remaining controls. DATA CONCLUSION The study identified distinctive cartilage relaxometry features that were able to discriminate subjects with and without radiographic hip OA effectively. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1708-1719.
Collapse
Affiliation(s)
- Tzu-Chieh Liao
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Valentina Pedoia
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Jan Neumann
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Richard B. Souza
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA,Department of Physical Therapy and Rehabilitation Science, University of California-San Francisco, San Francisco, CA, USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Li AK, Pedoia V, Tanaka M, Souza RB, Ma CB, Li X. Six-month post-surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction. J Orthop Res 2020; 38:1132-1140. [PMID: 31788845 DOI: 10.1002/jor.24544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023]
Abstract
The current study looks to: (i) investigate postural stability following anterior cruciate ligament (ACL) reconstruction, as assessed by Y-Balance Test, by comparing single-leg balance of the injured limb against those of controls and the uninjured limb; (ii) analyze the relationship between postural stability symmetry with localized cartilage matrix changes and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Bilateral knee MRI of 36 patients who underwent ACL reconstruction were performed before surgery, 6 months, 1 year, and 2 years, postoperatively. Postural stability was evaluated based on Y-Balance Test at 1 and 2 years. ACL patients were also split into three groups based on postural stability symmetry at 2 years and symmetry thresholds associated with elevated risks of lower extremity injury. Voxel-based relaxometry employing analysis of covariance was used to analyze localized differences in cartilage composition at all time-points (using quantitative magnetic resonance [MR] T1ρ and T2 mapping) between the three groups. The ACL patients displayed no significant deficits in postural stability. Compared with symmetric patients, those with asymmetric postural stability at 2 years had significantly prolonged cartilage T1ρ-indicating deterioration of the cartilage matrix-specifically in the injured knee's medial tibia as early as 6-month post-reconstruction. Prolonged T1ρ in asymmetric patients persisted up to 2 years, where the group also reported worse KOOS. Our results demonstrate an association between early stages of cartilage matrix deterioration and postural stability symmetry that may manifest in elevated lower extremity injury risk and worse patient-reported outcomes. Quantitative MR, in combination with local analysis performed with voxel-based relaxometry, is a tool to further study this relationship. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1132-1140, 2020.
Collapse
Affiliation(s)
- Alan K Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| | - Matthew Tanaka
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, UCSF, San Francisco, California
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, UCSF, San Francisco, California
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
16
|
Beynnon BD, Fiorentino N, Gardner-Morse M, Tourville TW, Slauterbeck JR, Sturnick DR, Argentieri EC, Imhauser CW. Combined Injury to the ACL and Lateral Meniscus Alters the Geometry of Articular Cartilage and Meniscus Soon After Initial Trauma. J Orthop Res 2020; 38:759-767. [PMID: 31705680 PMCID: PMC7071961 DOI: 10.1002/jor.24519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/23/2019] [Indexed: 02/04/2023]
Abstract
Combined injury to the anterior cruciate ligament (ACL) and meniscus is associated with earlier onset and increased rates of post-traumatic osteoarthritis compared with isolated ACL injury. However, little is known about the initial changes in joint structure associated with these different types of trauma. We hypothesized that trauma to the ACL and lateral meniscus has an immediate effect on morphometry of the articular cartilage and meniscus about the entire tibial plateau that is more pronounced than an ACL tear without meniscus injury. Subjects underwent magnetic resonance imaging scanning soon after injury and prior to surgery. Those that suffered injury to the ACL and lateral meniscus underwent changes in the lateral compartment (increases in the posterior-inferior directed slopes of the articular cartilage surface, and the wedge angle of the posterior horn of the meniscus) and medial compartment (the cartilage-to-bone height decreased in the region located under the posterior horn of the meniscus, and the thickness of cartilage increased and decreased in the mid and posterior regions of the plateau, respectively). Subjects that suffered an isolated ACL tear did not undergo the same magnitude of change to these articular structures. A majority of the changes in morphometry occurred in the lateral compartment of the knee; however, change in the medial compartment of the knee with a normal appearing meniscus also occurred. Statement of clinical significance: Knee injuries that involve combined trauma to the ACL and meniscus directly affect both compartments of the knee, even if the meniscus and articular cartilage appears normal upon arthroscopic examination. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:759-767, 2020.
Collapse
Affiliation(s)
- Bruce D Beynnon
- Department Orthopaedics and Rehabilitation, University of Vermont,Department of Mechanical Engineering, University of Vermont,Department of Electrical and Biomedical Engineering, University of Vermont
| | - Niccolo Fiorentino
- Department Orthopaedics and Rehabilitation, University of Vermont,Department of Mechanical Engineering, University of Vermont,Department of Electrical and Biomedical Engineering, University of Vermont
| | | | | | | | | | - Erin C Argentieri
- Department of Radiology and Imaging, Hospital for Special Surgery, New York
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York
| |
Collapse
|
17
|
Ushio T, Okazaki K, Osaki K, Takayama Y, Sagiyama K, Mizu-Uchi H, Hamai S, Akasaki Y, Honda H, Nakashima Y. Degenerative changes in cartilage likely occur in the medial compartment after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27:3567-3574. [PMID: 30879110 DOI: 10.1007/s00167-019-05468-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Magnetic resonance imaging with T1ρ mapping is used to quantify the amount of glycosaminoglycan in articular cartilage, which reflects early degenerative changes. The purposes of this study were to evaluate early degenerative changes in knees after anterior cruciate ligament (ACL) reconstruction by comparing T1ρ values before and 2 years after surgery and investigate whether surgical factors and clinical outcomes are related to differences in T1ρ values. METHODS Fifty patients who underwent unilateral primary ACL reconstruction were evaluated using T1ρ mapping before and 2 years after surgery. Three regions of interest (ROIs) were defined in the cartilage associated with the medial (M) and lateral (L) weight-bearing areas of the femoral condyle (FC) (anterior: MFC1 and LFC1, middle: MFC2 and LFC2, and posterior: MFC3 and LFC3). Two ROIs associated with the tibial plateau (T) were defined (anterior: MT1 and LT1, and posterior: MT2 and LT2). T1ρ values within the ROIs were measured before and 2 years after surgery and compared using the paired t test. Correlations between the difference in T1ρ values at these two time points and patient characteristics, presence of a cartilaginous lesion, graft type, and postoperative anteroposterior laxity were also evaluated using Pearson's and Spearman's correlation coefficients. RESULTS There was a significant increase in T1ρ before versus 2 years after surgery in the MT1, MT2, LFC1, and LT1 areas, and a significant decrease in the LFC3 and LT2 areas. There was a significant correlation between postoperative anterior-posterior laxity and a postoperative increase in T1ρ values in the MFC3 (r = 0.37, P = 0.013) and MT2 (r = 0.35, P = 0.021) areas. Increases in T1ρ values in the MFC2 area were negatively correlated with KOOS symptoms (ρ = - 0.349, P = 0.027) and quality of life (ρ = - 0.374, P = 0.017) subscale scores. CONCLUSION Early degenerative changes in medial articular cartilage were observed with T1ρ mapping at 2 years after ACL reconstruction. Postoperative anterior-posterior laxity is correlated with an increase in T1ρ values in the posteromedial femur and tibia. An increase in T1ρ values in the central medial femoral condyle was associated with knee symptoms. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Tetsuro Ushio
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kanji Osaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukihisa Takayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Sagiyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideki Mizu-Uchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Hamai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
18
|
Pedoia V, Majumdar S. Translation of morphological and functional musculoskeletal imaging. J Orthop Res 2019; 37:23-34. [PMID: 30273968 DOI: 10.1002/jor.24151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
In an effort to develop quantitative biomarkers for degenerative joint disease and fill the void that exists for diagnosing, monitoring, and assessing the extent of whole joint degeneration, the past decade has been marked by a greatly increased role of noninvasive imaging. This coupled with recent advances in image processing and deep learning opens new possibilities for promising quantitative techniques. The clinical translation of quantitative imaging was previously hampered by tedious non-scalable and subjective image analysis. Osteoarthritis (OA) diagnosis using X-rays can be automated by the use of deep learning models and pilot studies showed feasibility of using similar techniques to reliably segment multiple musculoskeletal tissues and detect and stage the severity of morphological abnormalities in magnetic resonance imaging (MRI). Automation and more advanced feature extraction techniques have applications on larger more heterogeneous samples. Analyses based on voxel based relaxometry have shown local patterns in relaxation time elevations and local correlations with outcome variables. Bone cartilage interactions are also enhanced by the analysis of three-dimensional bone morphology and the potential for the assessment of metabolic activity with simultaneous Positron Emission Tomography (PET)/MR systems. Novel techniques in image processing and deep learning are augmenting imaging to be a source of quantitative and reliable data and new multidimensional analytics allow us to exploit the interactions of data from various sources. In this review, we aim to summarize recent advances in quantitative imaging, the application of image processing and deep learning techniques to study knee and hip OA. ©2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res XX:XX-XX, 2018.
Collapse
Grants
- GE Healthcare
- P50 AR060752 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R01AR046905 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- K99AR070902 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R00AR070902 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R61AR073552 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
Collapse
Affiliation(s)
- Valentina Pedoia
- Department of Radiology and Biomedical Imaging, QB3 Building, 2nd Floor, Suite 203, 1700 - 4th Street, University of California, San Francisco, California, 94158
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, QB3 Building, 2nd Floor, Suite 203, 1700 - 4th Street, University of California, San Francisco, California, 94158
| |
Collapse
|
19
|
Affiliation(s)
| | | | - O Kenechi Nwawka
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Hollis G Potter
- Sports Health Associate Editor for Imaging, Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
20
|
Wang X, Wrigley TV, Bennell KL, Wang Y, Fortin K, Cicuttini FM, Lloyd DG, Bryant AL. Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction. J Orthop Res 2018; 36:2022-2029. [PMID: 29280504 DOI: 10.1002/jor.23846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 02/04/2023]
Abstract
Cartilage T2 relaxation time in isolated anterior cruciate ligament reconstruction (ACLR) without concomitant meniscal pathology and their changes over time remain unclear. The purpose of this exploratory study was to: (i) compare cartilage T2 relaxation time (T2 values) in people with isolated ACLR at 2-3 years post-surgery (baseline) and matched healthy controls and; (ii) evaluate the subsequent 2-year change in T2 values in people with ACLR. Twenty-eight participants with isolated ACLR and nine healthy volunteers underwent knee magnetic resonance imaging (MRI) at baseline; 16 ACLR participants were re-imaged 2 years later. Cartilage T2 values in full thickness, superficial layers, and deep layers were quantified in the tibia, femur, trochlear, and patella. Between-group comparisons at baseline were performed using analysis of covariance adjusting for age, sex, and body mass index. Changes over time in the ACLR group were evaluated using paired sample t-tests. ACLR participants showed significantly higher (p = 0.03) T2 values in the deep layer of medial femoral condyle at baseline compared to controls (mean difference 4.4 ms [13%], 95%CI 0.4, 8.3 ms). Over 2 years, ACLR participants showed a significant reduction (p = 0.04) in T2 value in the deep layer of lateral tibia (mean change 1.4 ms [-7%], 95%CI 0.04, 2.8 ms). The decrease in T2 values suggests improvement in cartilage composition in the lateral tibia (deep layer) of ACLR participants. Further research with larger ACLR cohorts divided according to meniscal status and matched healthy cohorts are needed to further understand cartilage changes post-ACLR. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2022-2029, 2018.
Collapse
Affiliation(s)
- Xinyang Wang
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, 161 Barry Street, Carlton, Melbourne, Victoria, 3010, Australia.,Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Tim V Wrigley
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, 161 Barry Street, Carlton, Melbourne, Victoria, 3010, Australia
| | - Kim L Bennell
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, 161 Barry Street, Carlton, Melbourne, Victoria, 3010, Australia
| | - Yuanyuan Wang
- School of Public Health & Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Karine Fortin
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, 161 Barry Street, Carlton, Melbourne, Victoria, 3010, Australia
| | - Flavia M Cicuttini
- School of Public Health & Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David G Lloyd
- Centre for Musculoskeletal Research, Griffith University, The Gold Coast, Queensland, Australia
| | - Adam L Bryant
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, 161 Barry Street, Carlton, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
21
|
Teng HL, Pedoia V, Link TM, Majumdar S, Souza RB. Local associations between knee cartilage T 1ρ and T 2 relaxation times and patellofemoral joint stress during walking: A voxel-based relaxometry analysis. Knee 2018; 25:406-416. [PMID: 29681528 PMCID: PMC6049815 DOI: 10.1016/j.knee.2018.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/22/2017] [Accepted: 02/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND This study aimed to utilize voxel-based relaxometry (VBR) to examine local correlations between patellofemoral joint (PFJ) stress during gait and PFJ cartilage relaxation times. METHODS Eighty-three subjects with and without PFJ osteoarthritis (OA) underwent knee magnetic resonance (MR) images using fast spin-echo, T1ρ and T2 relaxation time sequences. Patellar and trochlear cartilage relaxation times were computed for each voxel. Peak PFJ stress was computed during the stance phase from three-dimensional gait analysis. Statistical Parametric Mapping was used to perform VBR analyses. Pearson partial correlations were used to evaluate the associations between peak PFJ stress and cartilage relaxation times while controlling for age, sex, and body mass index. RESULTS A higher percentage of the trochlear cartilage (15.9-29.1%) showed significant positive correlations between PFJ stress and T1ρ and T2 than the patellar cartilage (7.4-13.6%). Average correlation coefficient (R) of the voxels showing significant positive correlations ranged from 0.27 to 0.29. Subcompartment analysis revealed a higher percentage of lateral compartment cartilage (trochlea: 30.2-34.7%, patella: 8.1-14.8%) showed significant correlations between peak PFJ stress and T1ρ and T2 than the medial compartment cartilage (trochlea: 7.1-27.2%, patella: 5.5-5.9%). Subgroup analysis showed that larger percentages of PFJ cartilage demonstrated significant positive correlations with PFJ stress in subjects with PFJ OA than those without PFJ OA. CONCLUSIONS The findings of this study suggest that peak PFJ stress has a greater influence on the biochemical composition of the trochlear than the patellar cartilage, and the lateral than the medial PFJ compartment.
Collapse
Affiliation(s)
- Hsiang-Ling Teng
- Musculoskeletal Quantitative Imaging Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA; Department of Physical Therapy, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, USA.
| | - Valentina Pedoia
- Musculoskeletal Quantitative Imaging Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA
| | - Richard B. Souza
- Musculoskeletal Quantitative Imaging Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA,Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, 1500 Owens Street, San Francisco, CA, USA
| |
Collapse
|
22
|
Samaan MA, Pedoia V, Zhang AL, Gallo MC, Link TM, Souza RB, Majumdar S. A novel mr-based method for detection of cartilage delamination in femoroacetabular impingement patients. J Orthop Res 2018; 36:971-978. [PMID: 28762536 PMCID: PMC5794666 DOI: 10.1002/jor.23667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/29/2017] [Indexed: 02/04/2023]
Abstract
In this study, quantitative magnetic resonance based measurements were used to evaluate T1ρ and T2 mapping and heterogeneity in femoroacetabular impingement (FAI) patients with acetabular cartilage delamination and to determine the ability of these quantitative MR-based measurements in detecting delamination. Unilateral hip joint MR-scans of 36 FAI patients with arthroscopically-confirmed acetabular cartilage delamination and 36 age, gender, and BMI matched controls were obtained. T1ρ and T2 mapping and heterogeneity of the hip joint articular cartilage were assessed in both groups using voxel-based relaxometry (VBR). Quantitative MR-based measurements were compared using statistical parametric mapping (SPM). Receiver operating characteristic (ROC) analysis was used to assess the ability of these quantitative measurements in detecting delamination by calculating the area under the curve (AUC). Pearson partial correlations (r) were used to assess for associations between T1ρ and T2 radial heterogeneity with the alpha angle in FAI patients. T1ρ and T2 global acetabular values were significantly higher in FAI patients with a focal increase within the posterior acetabular cartilage. FAI patients exhibited increased anterior superior acetabular T1ρ and T2 heterogeneity and both of these measures demonstrated a strong ability to detect acetabular cartilage delamination (T1ρ AUC: 0.96, p < 0.001; T2 AUC: 0.93, p < 0.001). FAI patients with a larger alpha angle exhibited increased anterior superior acetabular T1ρ (r = 0.48, p = 0.02) and T2 (r = 0.42, p = 0.03) heterogeneity. T1ρ and T2 heterogeneity within the anterior superior acetabular cartilage was shown to be a sensitive measure in detecting delamination and may prove beneficial to clinicians in determining optimal interventions for FAI patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:971-978, 2018.
Collapse
Affiliation(s)
- Michael A. Samaan
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
| | - Alan L. Zhang
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, CA
| | - Matthew C. Gallo
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
| | - Richard B. Souza
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
- Department of Physical Therapy and Rehabilitation Science, University of California-San Francisco, San Francisco, CA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Russell C, Pedoia V, Souza R, Majumdar S. Cross-sectional and longitudinal study of the impact of posterior meniscus horn lesions on adjacent cartilage composition, patient-reported outcomes and gait biomechanics in subjects without radiographic osteoarthritis. Osteoarthritis Cartilage 2017; 25:708-717. [PMID: 27838383 PMCID: PMC7263373 DOI: 10.1016/j.joca.2016.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to assess cross-sectional and longitudinal effects of meniscal lesions on adjacent cartilage T1ρ and T2 relaxation times, patient-reported outcomes and gait biomechanics. DESIGN Thirty patients with no cartilage morphological defects reported by Whole Organ MRI Score (WORMS) magnetic resonance imaging (MRI) grading and no radiographic osteoarthritis (OA) (Kellgren--Lawrence (KL) ≤ 1) were selected, 15 with posterior meniscus horn lesions and 15 matched controls without meniscal lesions. All were imaged on a 3T MR scanner for three consecutive years, except those who dropped from the study. Sagittal and frontal plane kinematic gait data were acquired at baseline. The Knee Injury and Osteoarthritis Outcome Score (KOOS) survey was taken each time. All images were automatically segmented and registered to an atlas for voxel-by-voxel cross-sectional and longitudinal analyses. RESULTS Relaxation time comparisons between groups showed elevated T1ρ of the lateral tibia (LP) and elevated T2 of the medial tibia (MT) and LT at 1 and 2 years in the lesion group. Longitudinal comparisons within each group revealed greater relaxation time elevations over one and 2 years in the group with lesions. KOOS Quality of Life (QOL) was significantly different between the groups at all time points (P < 0.05), as were other KOOS subcategories. No significant differences in the frontal or sagittal biomechanics were observed between the groups at baseline. CONCLUSIONS Individuals with healthy cartilage and posterior meniscal horn lesions have increased relaxation times when compared to matched controls, increased relaxation time changes over 2 years, and consistently report a lower KOOS QOL, yet show no difference in gait biomechanics.
Collapse
Affiliation(s)
- C. Russell
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - V. Pedoia
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - R.B. Souza
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA,Department of Physical Therapy, University of California, San Francisco, San Francisco, CA, USA
| | - S. Majumdar
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA,Address correspondence and reprint requests to: S. Majumdar, Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th Street, Suite 203, San Francisco, CA 94158, USA. Fax: 1-(415)-353-9423. (C. Russell)
| |
Collapse
|
24
|
Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM, Potter H, Rodeo S, Li X, Ma CB, Majumdar S, Goldring M, Hannafin JA, Marx RG, Nawabi DH, Otero M, Shah P, Warren RF, Amrami KK, Felmlee JP, Frick MA, Stuart MJ, Williams SL, Kretzchmar M, Lansdown DA, Okazaki N, Russell C, Savic D, Schwaiger B, Su F, Wyatt C, Cheong M, Hardin JA. Effects of Surgical Factors on Cartilage Can Be Detected Using Quantitative Magnetic Resonance Imaging After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2017; 45:1075-1084. [PMID: 28768432 DOI: 10.1177/0363546516677794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quantitative magnetic resonance (qMR) can be used to measure macromolecules in tissues and is a potential method of observing early cartilage changes in the development of posttraumatic osteoarthritis. Hypothesis/Purpose: We hypothesized that specific patient and surgical factors affecting cartilage matrix composition after anterior cruciate ligament (ACL) reconstruction (ACLR) can be detected using T1ρ and T2 relaxation times. Our purpose was to demonstrate this ability in a multicenter feasibility study. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 54 patients who underwent ACLR underwent bilateral MRI at baseline before surgery and 6 months postoperatively. Operative findings were recorded. T1ρ and T2 relaxation times were calculated for 6 cartilage regions: the medial femur, lateral femur, medial tibia, lateral tibia, patella, and trochlea. A paired t test compared relaxation times at baseline and 6 months, univariate regression identified regions that influenced patient-reported outcome measures, and analysis of covariance was used to determine the surgical factors that resulted in elevated relaxation times at 6 months. RESULTS The injured knee had significantly prolonged T1ρ and T2 relaxation times in the tibiofemoral compartment at baseline and 6 months but had shorter values in the patellofemoral compartment compared with the uninjured knee. Prolonged T1ρ and T2 times at 6 months were noted for both the injured and uninjured knees. At 6 months, prolongation of T1ρ and T2 times in the tibial region was associated with lower patient-reported outcome measures. ACLR performed within 30 days of injury had significantly shorter T1ρ times in the tibial regions, and lateral meniscal tears treated with repair had significantly shorter T1ρ times than those treated with excision. CONCLUSION Prolonged relaxation times in multiple regions demonstrate how the injury affects the entire joint after an ACL tear. Changes observed in the uninjured knee may be caused by increased loading during rehabilitation, especially in the patellofemoral articular cartilage and distal femur. Relaxation times in the tibial regions may be predictive of patient symptoms at 6 months. These same regions are affected by surgical timing as early as 30 days after injury, but this may partially be reflective of the severity of the preoperative injury and the choice of treatment of meniscal tears.
Collapse
Affiliation(s)
- Keiko Amano
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alan K Li
- University of California, Berkeley, Berkeley, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hollis Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Scott Rodeo
- Weill Cornell Medical College, Cornell University, New York, New York, USA.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | -
- All members are listed in the Contributing Authors section at the end of this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pedoia V, Su F, Amano K, Li Q, McCulloch CE, Souza RB, Link TM, Ma BC, Li X. Analysis of the articular cartilage T 1ρ and T 2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res 2017; 35:707-717. [PMID: 27557479 PMCID: PMC6863081 DOI: 10.1002/jor.23398] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023]
Abstract
The objectives of this study were twofold: (1) to evaluate the longitudinal change in cartilage T1ρ and T2 6- and 12-months after ACL reconstruction (ACLR) in both reconstructed and intact contralateral knees with the aim of validating the role of the contralateral knee as an internal control in longitudinal studies; (2) to explore relationships between bone shape at the time of injury and the progression of T1ρ and T2 over 12-months after ACLR. T1ρ and T2 cartilage relaxation times and 3D MRI-based statistical shape modeling (SSM) of tibia and femur were computed for both knees of forty ACL-injured patients and 15 healthy controls. ACL subjects were scanned 8.4 ± 6.4 weeks after injury (2.4 ± 3.7 weeks prior to ACLR), 6- and 12-months after ACLR. Longitudinal changes in T1ρ and T2 values were assessed using linear mixed model, and partial correlation coefficients were calculated between bone shape and longitudinal changes in T1ρ and T2 values. Significant longitudinal increases in T1ρ and T2 values were observed in reconstructed and contralateral knees 6-months after ACLR. Tibial bone shape features, associated with the medial plateau height and width, were observed to be correlated with cartilage T1ρ and T2 progression in reconstructed knees. Our results suggest that caution should be used in considering contralateral knee as internal controls in longitudinal ACL studies and 3D MRI-based-SSM might serve as an imaging biomarker for the early stratification of patients at risk for developing post-traumatic accelerated cartilage degeneration and potentially osteoarthritis after ACL tear. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:707-717, 2017.
Collapse
Affiliation(s)
- Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107
| | - Favian Su
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107
| | - Keiko Amano
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Qi Li
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107
| | - Charles E. McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Richard B. Souza
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107,Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107
| | - Benjamin C. Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, California 94107
| |
Collapse
|
26
|
|
27
|
Pedoia V, Russell C, Randolph A, Li X, Majumdar S. Principal component analysis-T 1ρ voxel based relaxometry of the articular cartilage: a comparison of biochemical patterns in osteoarthritis and anterior cruciate ligament subjects. Quant Imaging Med Surg 2016; 6:623-633. [PMID: 28090441 DOI: 10.21037/qims.2016.11.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Quantitative MR, including T1ρ mapping, has been extensively used to probe early biochemical changes in knee articular cartilage of subjects with osteoarthritis (OA) and others at risk for cartilage degeneration, such as those with anterior cruciate ligament (ACL) injury and reconstruction. However, limited studies have been performed aimed to assess the spatial location and patterns of T1ρ. In this study we used a novel voxel-based relaxometry (VBR) technique coupled with principal component analysis (PCA) to extract relevant features so as to describe regional patterns and to investigate their similarities and differences in T1ρ maps in subjects with OA and subjects six months after ACL reconstruction (ACLR). METHODS T1ρ quantitative MRI images were collected for 180 subjects from two separate cohorts. The OA cohort included 93 osteoarthritic patients and 25 age-matched controls. The ACLR-6M cohort included 52 patients with unilateral ACL tears who were imaged 6 months after ACL reconstruction, and 10 age-matched controls. Non-rigid registration on a single template and local Z-score conversion were adopted for T1ρ spatial and intensity normalization of all the images in the dataset. PCA was used as a data dimensionality reduction to obtain a description of all subjects in a 10-dimensional feature space. Logistic linear regression was used to identify distinctive features of OA and ACL subjects. RESULTS Global prolongation of the Z-score was observed in both OA and ACL subjects compared to controls [higher values in 1st principal component (PC1); P=0.01]. In addition, relaxation time differences between superficial and deep cartilage layers of the lateral tibia and trochlea were observed to be significant distinctive features between OA and ACL subjects. OA subjects demonstrated similar values between the two cartilage layers [higher value in 2nd principal component (PC2); P=0.008], while ACL reconstructed subjects showed T1ρ prolongation specifically in the cartilage superficial layer (lower values in PC2; P<0.0001). T1ρ elevation located outside of the weight-bearing area, located in the posterior and anterior aspects of the lateral femoral compartment, was also observed to be a key feature in distinguishing OA subjects from controls [higher value in 6th principal component (PC6); P=0.007]. CONCLUSIONS This study is the first example of T1ρ local/regional pattern analysis and data-driven feature extraction in knees with cartilage degeneration. Our results revealed similarities and differences between OA and ACL relaxation patterns that could be potentially useful to better understand the pathogenesis of post-traumatic cartilage degeneration and the identification of imaging biomarkers for the early stratification of subjects at risk for developing post-traumatic OA.
Collapse
Affiliation(s)
- Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Colin Russell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Allison Randolph
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | |
Collapse
|
28
|
Pedoia V, Gallo MC, Souza RB, Majumdar S. Longitudinal study using voxel-based relaxometry: Association between cartilage T 1ρ and T 2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging 2016; 45:1523-1533. [PMID: 27626787 DOI: 10.1002/jmri.25458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study the local distribution of hip cartilage T1ρ and T2 relaxation times and their association with changes in patient reported outcome measures (PROMs) using a fully automatic, local, and unbiased method in subjects with and without hip osteoarthritis (OA). MATERIALS AND METHODS The 3 Tesla MRI studies of the hip were obtained for 37 healthy controls and 16 subjects with radiographic hip OA. The imaging protocol included a three-dimensional (3D) SPGR sequence and a combined 3D T1ρ and T2 sequence. Quantitative cartilage analysis was compared between a traditional region of interest (ROI)-based method and a fully automatic voxel-based relaxometry (VBR) method. Additionally, VBR was used to assess local T1ρ and T2 differences between subjects with and without OA, and to evaluate the association between T1ρ and T2 and 18-month changes PROMs. RESULTS Results for the two methods were consistent in the acetabular (R = 0.79; coefficients of variation [CV] = 2.9%) and femoral cartilage (R = 0.90; CV = 2.6%). VBR revealed local patterns of T1ρ and T2 elevation in OA subjects, particularly in the posterosuperior acetabular cartilage (T1ρ : P = 0.02; T2 : P = 0.038). Overall, higher T1ρ and T2 values at baseline, particularly in the anterosuperior acetabular cartilage (T1ρ : Rho = -0.42; P = 0.002; T2 : Rho = -0.44; P = 0.002), were associated with worsening PROMS at 18-month follow-up. CONCLUSION VBR is an accurate and robust method for quantitative MRI analysis in hip cartilage. VBR showed the capability to detect local variations in T1ρ and T2 values in subjects with and without osteoarthritis, and voxel based correlations demonstrated a regional dependence between baseline T1ρ and T2 values and changes in PROMs. LEVEL OF EVIDENCE 1 J. MAGN. RESON. IMAGING 2017;45:1523-1533.
Collapse
Affiliation(s)
- Valentina Pedoia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Matthew C Gallo
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Richard B Souza
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|