1
|
Whitney DG, Caird MS, Raggio CL, Hurvitz EA, Clines GA, Jepsen KJ. Perspective: A multi-trait integrative approach to understanding the structural basis of bone fragility for pediatric conditions associated with abnormal bone development. Bone 2023; 175:116855. [PMID: 37481149 DOI: 10.1016/j.bone.2023.116855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Bone development is a highly orchestrated process that establishes the structural basis of bone strength during growth and functionality across the lifespan. This developmental process is generally robust in establishing mechanical function, being adaptable to many genetic and environmental factors. However, not all factors can be fully accommodated, leading to abnormal bone development and lower bone strength. This can give rise to early-onset bone fragility that negatively impacts bone strength across the lifespan. Current guidelines for assessing bone strength include measuring bone mineral density, but this does not capture the structural details responsible for whole bone strength in abnormally developing bones that would be needed to inform clinicians on how and when to treat to improve bone strength. The clinical consequence of not operationalizing how altered bone development informs decision making includes under-detection and missed opportunities for early intervention, as well as a false positive diagnosis of fragility with possible resultant clinical actions that may actually harm the growing skeleton. In this Perspective, we emphasize the need for a multi-trait, integrative approach to better understand the structural basis of bone growth for pediatric conditions with abnormal bone development. We provide evidence to showcase how this approach might reveal multiple, unique ways in which bone fragility develops across and within an array of pediatric conditions that are associated with abnormal bone development. This Perspective advocates for the development of new translational research aimed at informing better ways to optimize bone growth, prevent fragility fractures, and monitor and treat bone fragility based on the child's skeletal needs.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA.
| | - Michelle S Caird
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Edward A Hurvitz
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gregory A Clines
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Endocrinology Section, Ann Arbor VA Medical Center, Ann Arbor, MI, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Bigelow EM, Goulet RW, Ciarelli A, Schlecht SH, Kohn DH, Bredbenner TL, Harlow SD, Karvonen‐Gutierrez CA, Jepsen KJ. Sex and External Size Specific Limitations in Assessing Bone Health From Adult Hand Radiographs. JBMR Plus 2022; 6:e10653. [PMID: 35991534 PMCID: PMC9382868 DOI: 10.1002/jbm4.10653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Morphological parameters measured for the second metacarpal from hand radiographs are used clinically for assessing bone health during growth and aging. Understanding how these morphological parameters relate to metacarpal strength and strength at other anatomical sites is critical for providing informed decision-making regarding treatment strategies and effectiveness. The goals of this study were to evaluate the extent to which 11 morphological parameters, nine of which were measured from hand radiographs, relate to experimentally measured whole-bone strength assessed at multiple anatomical sites and to test whether these associations differed between men and women. Bone morphology and strength were assessed for the second and third metacarpals, radial diaphysis, femoral diaphysis, and proximal femur for 28 white male donors (18-89 years old) and 35 white female donors (36-89+ years old). The only morphological parameter to show a significant correlation with strength without a sex-specific effect was cortical area. Dimensionless morphological parameters derived from hand radiographs correlated significantly with strength for females, but few did for males. Males and females showed a significant association between the circularity of the metacarpal cross-section and the outer width measured in the mediolateral direction. This cross-sectional shape variation contributed to systematic bias in estimating strength using cortical area and assuming a circular cross-section. This was confirmed by the observation that use of elliptical formulas reduced the systematic bias associated with using circular approximations for morphology. Thus, cortical area was the best predictor of strength without a sex-specific difference in the correlation but was not without limitations owing to out-of-plane shape variations. The dependence of cross-sectional shape on the outer bone width measured from a hand radiograph may provide a way to further improve bone health assessments and informed decision making for optimizing strength-building and fracture-prevention treatment strategies. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Erin M.R. Bigelow
- Department of Orthopaedic Surgery, Michigan MedicineUniversity of MichiganAnn ArborMIUSA
| | - Robert W. Goulet
- Department of Orthopaedic Surgery, Michigan MedicineUniversity of MichiganAnn ArborMIUSA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, Michigan MedicineUniversity of MichiganAnn ArborMIUSA
| | - Stephen H. Schlecht
- Department of Orthopaedic SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - David H. Kohn
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
- Biological and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Todd L. Bredbenner
- Department of Mechanical and Aerospace EngineeringUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Sioban D. Harlow
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMIUSA
| | | | - Karl J. Jepsen
- Department of Orthopaedic Surgery, Michigan MedicineUniversity of MichiganAnn ArborMIUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
3
|
Rauch D, Robinson ME, Seiltgens C, Sutton VR, Lee B, Glorieux F, Rauch F. Assessment of longitudinal bone growth in osteogenesis imperfecta using metacarpophalangeal pattern profiles. Bone 2020; 140:115547. [PMID: 32730936 PMCID: PMC7502481 DOI: 10.1016/j.bone.2020.115547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Osteogenesis imperfecta (OI) is commonly associated with short stature, but it is unclear whether this is exclusively secondary to fractures and bone deformities or whether there is a primary defect in longitudinal bone growth. As metacarpal and phalangeal bones are rarely affected by fractures and deformities, any length deficits in these bones should reflect a direct disease effect on longitudinal growth. This study therefore assessed the relationship of hand bone length with clinical OI type and genotype. STUDY DESIGN Prospective study. RESULTS The length of all 19 tubular hand bones were measured in 144 individuals (age 6 to 57 years; 68 female) who had OI caused by COL1A1 or COL1A2 variants. Measurements of bone length were converted to z-scores using published reference data. Bone length was mostly normal in OI type I but was significantly decreased in OI types III and IV. Mean hand bone length z-score (i.e., the average length z-score of all 19 bones of a hand) was -0.2 for OI type I, -2.9 for OI type III and -1.2 for OI type IV. Mean hand bone length z-score was positively associated with height z-score (r2 = 0.65, P < 0.001). Regarding genotype-phenotype correlations, mean hand bone length z-score was close to 0 in individuals with COL1A1 mutations leading to haploinsufficiency but were significantly lower in the presence of mutations leading to triple-helical glycine substitutions in either the alpha 1 or alpha 2 chain of collagen type I. CONCLUSION COL1A1 and COL1A2 mutations affect bone growth not only by inducing fractures and bone deformities, but also through longitudinal growth deficits in bones that do not fracture or deform.
Collapse
Affiliation(s)
- Damian Rauch
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Marie-Eve Robinson
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Cristian Seiltgens
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Francis Glorieux
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Yoshii I, Akita K. Cortical thickness relative to the transverse diameter of third metacarpal bone reflects bone mineral density in patients with rheumatoid arthritis. Bone 2020; 137:115405. [PMID: 32371020 DOI: 10.1016/j.bone.2020.115405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is accompanied by potential risk of bone mineral loss. In this study, we developed a screening index for the osteoporosis related level of bone mineral density loss for RA patients as a substitute to the dual-energy X-ray absorptiometry (DXA) method. METHODS X-ray pictures of both sides of the hand were taken in order to evaluate Sharp/van der Heijde Scores (SHSs). This score was calculated for RA patients at the first consultation and routinely thereafter. We measured cortical thickness and the transverse diameter of the mid-portion of the metacarpal bone of the right middle finger with the same radiograph. Cortical Thickness Ratio (CTR) was then calculated as cortical thickness relative to the transverse diameter. Bone mineral density (BMD) of the lumbar spine (LS) and femoral neck (FN) was measured at the same time. The relationship between BMD and CTR was evaluated using multivariate linear regression analysis. Clinical backgrounds and disease indices were also evaluated. The cut-off index (COI) of the CTR for osteoporosis criteria that represented with a T-score < -2.5 for both bones was calculated using the Receivers Operation Characteristics technique. RESULTS In 300 subjects, the CTR demonstrated significant correlation with BMD in both bones (p < 0.01). The COI was determined to be 0.25 and the odds ratio was 4.19 and 4.90 for the LS and FN, respectively. CONCLUSION Our findings indicated that the CTR correlated with BMD. This index may represent a promising screening tool for the judgment of osteoporosis in RA patients.
Collapse
Affiliation(s)
- Ichiro Yoshii
- Department of Musculoskeletal Medicine, Yoshii Hospital, 6-7-5 Nakamura-Ohashidori, Shimanto City 787-0033, Kochi, Japan.
| | - Kunio Akita
- Department of Radiology, Yoshii Hospital, 6-7-5 Nakamura-Ohashidori, Shimanto-City 787-0033, Kochi, Japan
| |
Collapse
|
5
|
Shanas N, Querido W, Dumont A, Yonko E, Carter E, Ok J, Karchner JP, Barbe MF, Ali S, Patil C, Raggio C, Pleshko N. Clinical application of near infrared fiber optic spectroscopy for noninvasive bone assessment. JOURNAL OF BIOPHOTONICS 2020; 13:e201960172. [PMID: 31957205 DOI: 10.1002/jbio.201960172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Approaches for noninvasive bone quality assessment are of great clinical need, particularly in individuals that require close monitoring of disease progression. X-ray measurements are standard approaches to assess bone quality; however, they have several disadvantages. Here, a nonionizing approach for noninvasive assessment of the second metacarpal bone based on near infrared (NIR) spectroscopy was investigated. Transcutaneous bone signal detection was experimentally confirmed with cadaveric hand data, and Monte Carlo modeling further indicated that 50% of the measured signals arise from bone. Spectral data were collected via a NIR fiber optic from the bone of individuals with osteogenesis imperfecta, a disease marked by frequent bone fractures and fragility. Multiple significant correlations were found between spectral parameters related to water, protein and fat, and standard bone quality parameters obtained by X-ray measurements. The results from this preliminary study highlight the potential application of NIR spectroscopy for the noninvasive assessment of bone quality.
Collapse
Affiliation(s)
- No'ad Shanas
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - William Querido
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Alexander Dumont
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Elizabeth Yonko
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Erin Carter
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Jina Ok
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - James P Karchner
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sayed Ali
- Department of Radiology, Temple University Hospital, Philadelphia, Pennsylvania
| | - Chetan Patil
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Cathleen Raggio
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Nancy Pleshko
- Department for Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|