1
|
Yahay Z, Moein Farsani N, Mirhadi M, Tavangarian F. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior. J Mech Behav Biomed Mater 2023; 144:105996. [PMID: 37392603 DOI: 10.1016/j.jmbbm.2023.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
In this study, first willemite (Zn2SiO4) micro and nano-powders were synthesized by the sol-gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) were applied to characterize the crystalline phases and particle size of powders. Then polycaprolactone (PCL) polymer scaffolds containing 20 wt% willemite were successfully fabricated by the DIW 3D printing (direct ink writing) method. The effects of willemite particle size on compressive strength, elastic modulus, degradation rate, and bioactivity of the composite scaffolds were investigated. The results showed that nanoparticle willemite/PCL (NW/PCL) scaffolds had 33.1% and 58.1% higher compressive strength and the elastic modulus of NW/PCL were 1.14 and 2.45 times better compared to micron size willemite/PCL (MW/PCL) and pure PCL scaffolds, respectively. Scanning electron microscopy (SEM) images and Energy-dispersive X-ray spectroscopy map (EDS map) results indicated that willemite nanoparticles, unlike microparticles, were smoothly embedded in the scaffold struts. In vitro tests also revealed an improvement in bone-like apatite formation ability and an increase in the degradation rate up to 2.17% by decreasing the willemite particle size to 50 nm. In addition, NW/PCL rendered significant enhancement in cell viability and cell attachment during the culture of MG-63 human osteosarcoma cell line. Nanostructure had also a positive effect on ALP activity and biomineralization in vitro.
Collapse
Affiliation(s)
- Zahra Yahay
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, 81593-58686, Iran; School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Niloofar Moein Farsani
- Department of Biomedical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, 84181-48499, Iran
| | - Mahtasadat Mirhadi
- Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, 86145-311, Iran
| | - Fariborz Tavangarian
- Mechanical Engineering Program, School of Science, Engineering and Technology, Pennsylvania State University, Harrisburg, Middletown, PA, 17057, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, United States.
| |
Collapse
|
2
|
Abula A, Cheng E, Abulaiti A, Liu K, Liu Y, Ren P. Risk factors of transport gap bending deformity in the treatment of critical-size bone defect after bone transport. BMC Musculoskelet Disord 2022; 23:900. [PMID: 36209097 PMCID: PMC9548124 DOI: 10.1186/s12891-022-05852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this study was to investigate the risk factors of transport gap bending deformity (TGBD) in the treatment of critical-size bone defect (CSBD) after the removal of the external fixator. Methods From January 2008 to December 2019, 178 patients with bone defects of the lower extremity caused by infection were treated by bone transport using a unilateral external fixator in our medical institution. TGBD was defined as the bone callus in the distraction area with a deviation to the force line of the femur (> 10°) or tibia (> 12°) after removal of the external fixator. The Association for the Study and Application of the Method of Ilizarov (ASAMI) standard was applied to assess the bone and functional outcomes. After the data were significant by the T-test or Pearson’s Chi-square test was analyzed, odds ratios were calculated using logistic regression tests to describe factors associated with the diagnosis of TGBD. Results A total of 178 patients were enrolled in the study, with a mean follow-up time of 28.6 ± 3.82 months. The positive result of the bacteria isolated test was observed in 144 cases (80.9%). The rate of excellent and good in the bone outcomes (excellent/good/fair/poor/failure, 41/108/15/14/0) was 83.7%, and 92.3% in the functional results (excellent/good/fair/poor/failure, 50/98/16/14/0) according to the ASAMI criteria. TGBD after removal of external fixator occurred in twenty-two patients (12.3%), including 6 tibias, and 16 femurs. Age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, osteoporosis, glucocorticoid intake, duration of infection > 24 months, EFT > 9 months, EFI > 1.8 month/cm were associated significantly with a higher incidence of TGBD in the binary logistic regression analysis (P < 0.05). The incidence more than 50% was found in patients with femoral defect (76.1%), osteoporosis (72.7%), BMI > 25 kg/m2 (69.0%), diabetes (59.5%), glucocorticoid intake (54.7%). In the multivariate logistic regression analyses, the following factors were associated independently with TGBD, including age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, and osteoporosis. Conclusions Bone transport using a unilateral external fixator was a safe and practical method in the treatment of CSBD caused by infection. The top five risk factors of TGBD included femoral defect, BMI > 25 kg/m2, duration of bone infection > 24 months, age > 45 years, and diabetes. Age > 45 years, BMI > 25 kg/m2, femoral defect, osteoporosis, and diabetes were the independent risk factors. The higher incidence of TGBD may be associated with more risk factors.
Collapse
Affiliation(s)
- Abulaiti Abula
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Erlin Cheng
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Alimujiang Abulaiti
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Kai Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yanshi Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Peng Ren
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
3
|
Klosterhoff BS, Vantucci CE, Kaiser J, Ong KG, Wood LB, Weiss JA, Guldberg RE, Willett NJ. Effects of osteogenic ambulatory mechanical stimulation on early stages of BMP-2 mediated bone repair. Connect Tissue Res 2022; 63:16-27. [PMID: 33820456 PMCID: PMC8490484 DOI: 10.1080/03008207.2021.1897582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mechanical loading of bone defects through rehabilitation is a promising approach to stimulate repair and reduce nonunion risk; however, little is known about how therapeutic mechanical stimuli modulate early-stage repair before mineralized bone formation. The objective of this study was to investigate the early effects of osteogenic loading on cytokine expression and angiogenesis during the first 3 weeks of BMP-2 mediated segmental bone defect repair.Materials and Methods: A rat model of BMP-2 mediated bone defect repair was subjected to an osteogenic mechanical loading protocol using ambulatory rehabilitation and a compliant, load-sharing fixator with an integrated implantable strain sensor. The effect of fixator load-sharing on local tissue strain, angiogenesis, and cytokine expression was evaluated.Results: Using sensor readings for local measurements of boundary conditions, finite element simulations showed strain became amplified in remaining soft tissue regions between 1 and 3 weeks (Week 3: load-sharing: -1.89 ± 0.35% and load-shielded: -1.38 ± 0.35% vs. Week 1: load-sharing: -1.54 ± 0.17%; load-shielded: -0.76 ± 0.06%). Multivariate analysis of cytokine arrays revealed that load-sharing significantly altered expression profiles in the defect tissue at 2 weeks compared to load-shielded defects. Specifically, loading reduced VEGF (p = 0.052) and increased CXCL5 (LIX) levels. Subsequently, vascular volume in loaded defects was reduced relative to load-shielded defects but similar to intact bone at 3 weeks. Endochondral bone repair was also observed histologically in loaded defects at 3 weeks.Conclusions: Together, these results demonstrate that moderate ambulatory strains previously shown to stimulate bone regeneration significantly alter early angiogenic and cytokine signaling and may promote endochondral ossification.
Collapse
Affiliation(s)
- Brett S. Klosterhoff
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Casey E. Vantucci
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Jarred Kaiser
- Research Service, Atlanta VA Medical Center, Decatur, GA,Department of Orthopaedics, Emory University, Atlanta, GA
| | | | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT,Department of Orthopedics, University of Utah, Salt Lake City, UT
| | | | - Nick J. Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,Research Service, Atlanta VA Medical Center, Decatur, GA,Department of Orthopaedics, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Aljawadi A, Naylor T, Islam A, Madhi I, Niazi N, Elmajee M, Pillai A. Radiological Analysis of Gentamicin Eluting Synthetic Bone Graft Substitute Used in the Management of Patients With Traumatic Bone Voids. Cureus 2022; 14:e20969. [PMID: 35154948 PMCID: PMC8815800 DOI: 10.7759/cureus.20969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Management of traumatic bone voids has always been challenging. Gentamicin eluting synthetic bone graft substitute (Cerament-G) showed encouraging results in achieving good bone healing with a satisfactory degree of resorption when utilised as a void filler. This study aims to assess the radiological signs of Cerament-G remodelling when used for patients with traumatic bone voids. Methods Retrospective data analysis of all patients admitted to our unit between 2015 and 2021 with traumatic bone voids who had Cerament-G applied intraoperatively as a void filler. Postoperative radiographic images of the fracture site at six weeks, three months, six months, and at the final follow-up were reviewed. The radiological signs of Cerament-G integration, percent of void healing at the final follow-up were assessed. Results A total of 51 patients (52 fractures) were included in the study. Among them 10 were female and 41 were male with a mean age of 42.7 (11 - 90) years. The mean void size was 6.58 cm3. Mean follow-up duration was 9.73 months. Primary fracture union was achieved in 44 (86.3%) patients. Delayed union was reported in six (11.7%) patients, while one (1.9%) patient had non-union. Twenty-seven (52%) patients had >90% of void healing with normal trabecular bone. Twenty (38.5%) patients had 50-90% void healing with normal bone. Whereas only five (9.5%) patients had less than 50% of void healing. Conclusion Cerament-G used as a void filler for patients with traumatic bone void has resulted 98% fracture union rate with good signs of radiological remodelling into a trabecular bone. More than 50% void filling with new trabecular bone was reported in more than 90% of patients. Non-union was reported in only one patient.
Collapse
Affiliation(s)
- Ahmed Aljawadi
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| | - Thomas Naylor
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| | - Amirul Islam
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| | - Imad Madhi
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| | - Noman Niazi
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| | - Mohammed Elmajee
- Trauma and Orthopaedics, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, GBR
| | - Anand Pillai
- Trauma and Orthopaedics, Wythenshawe Hospital, Manchester, GBR
| |
Collapse
|
5
|
Treatments, cost and healthcare utilization of patients with segmental bone defects. Injury 2021; 52:2935-2940. [PMID: 33514450 DOI: 10.1016/j.injury.2021.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Treatment of large segmental defects in skeletal long bones is challenging. Heterogeneity in patient presentation further increase the difficulty in designing and running randomized trials, hence the paucity of published data with large patient numbers. This study was designed to help understand patient presentation, costs and outcomes, using real world data sources. METHODS Two data sources (Premier healthcare database (PHD) and IBM® MarketScan® Commercial Claims and Medicaid databases) were utilized, PHD for intraoperative and cost analyses, MarketScan for payer costs and longitudinal (2-year) outcomes. Patients were included in the analysis if they had diagnoses of osteomyelitis, non-union or open (acute) fractures, treated with bone graft and/or spacers, using either the Masquelet or external frames. Patient cohorts were defined by diagnosis at index (acute fracture, osteomyelitis, non-union) and descriptive statistics were conducted for patient variables (demographic, comorbidities) and outcomes. Risk of complications were estimated using logistic regression models. Hospital and payer costs for index and follow-up periods, were estimated using least means square estimators from generalized linear model outputs. All costs and payments were adjusted for inflation to 2019 consumer price-index. RESULTS 904 patients were identified in PHD (414 fractures, 388 osteomyelitis and 102 nonunion patients). Main comorbidities at time of initial surgery were hypertension (32.7%) followed by obesity (22.1%), diabetes with complications (20.9%) and chronic pulmonary disease (20.6%). Significant variability in surgical operating room time and length of stay were observed, with averages of 484.7 minutes and 11.7 days, respectively. Two-year postoperative infection rates ranged from 33.1% - 58.5%, the highest infection rates being reflective of ongoing infections in patients initially treated for osteomyelitis. Amputation rates ranged from 10.0% in patients with bone loss due to acute factures to 14.5% in patients with osteomyelitis. Osteomyelitis patients were also the costliest, with 12-months hospital costs averaging US$ 156.818 (95%CI: 112,970-217,685). CONCLUSION This study identified high complication rates and costs of segmental bone repair surgery. All patients with segmental bone defects had high costs and risks but patients with osteomyelitis were at significant risk for increased cost and complications, including amputation. Medical innovation is particularly important for this high-risk patient group.
Collapse
|
6
|
Kong J, Ma J, Wu Z, Wang H, Peng X, Wang S, Wu C, Song Z, Zhao C, Cui F, Qiu Z. Minimally invasive injectable lumbar interbody fusion with mineralized collagen-modified PMMA bone cement: A new animal model. J Appl Biomater Funct Mater 2021; 18:2280800020903630. [PMID: 32421424 DOI: 10.1177/2280800020903630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was to develop a feasible and safe animal model for minimally invasive injectable lumbar interbody fusion using a novel biomaterial, mineralized collagen-polymethylmethacrylate bone cement (MC-PMMA), with unilateral pedicle screw fixation in an in vivo goat model. Eight goats (Capra aegagrus hircus) were divided into three groups: MC-PMMA, unmodified commercial-polymethylmethacrylate bone cement (UC-PMMA), and a control group (titanium cage filled with autogenous bone, TC-AB). Each group of goats was treated with minimally invasive lumbar interbody fusion at the L3/L4 and L5/L6 disc spaces (injected for MC-PMMA and UC-PMMA, implanted for TC-AB). The pedicle screws were inserted at the L3, L4, L5, and L6 vertebrae, respectively, and fixed on the left side. The characteristics of osteogenesis and bone growth were assessed at the third and the sixth month, respectively. The methods of evaluation included the survival of each animal, X-ray imaging, and 256-layer spiral computed tomography (256-CT) scanning, imaged with three-dimensional microfocus computed tomography (micro-CT), and histological analysis. The results showed that PMMA bone cement can be extruded smoothly after doping MC, the MC-PMMA integrates better with bone than the UC-PMMA, and all goats recovered after surgery without nerve damage. After 3 and 6 months, the implants were stable. New trabecular bone was observed in the TC-AB group. In the UC-PMMA group a thick fibrous capsule had formed around the implants. The MC-PMMA was observed to have perfect osteogenesis and bone ingrowth to adjacent bone surface. Minimally invasive injectable lumbar interbody fusion using MC-PMMA bone cement was shown to have profound clinical value, and the MC-PMMA showed potential application prospects.
Collapse
Affiliation(s)
- Jianjun Kong
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Jianqing Ma
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Zhanyong Wu
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Huiwang Wang
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Xiangping Peng
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Shaofeng Wang
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Chunfu Wu
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China
| | - Zhanfeng Song
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Chaohui Zhao
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China
| | - Fuzhai Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China.,Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, P. R. China
| | - Zhiye Qiu
- School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China.,Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, P. R. China
| |
Collapse
|
7
|
Vascular Endothelial Growth Factor and Mesenchymal Stem Cells Revealed Similar Bone Formation to Allograft in a Sheep Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676609. [PMID: 33763484 PMCID: PMC7946458 DOI: 10.1155/2021/6676609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
Introduction Mesenchymal stem cells (MSCs) and vascular endothelial growth factor (VEGF) are key factors in bone regeneration. Further stimulation should establish an enhanced cell environment optimal for vessel evolvement and hereby being able to attract bone-forming cells. The aim of this study was to generate new bone by using MSCs and VEGF, being able to stimulate growth equal to allograft. Methods Eight Texel/Gotland sheep had four titanium implants in a size of 10 × 12 mm inserted into bilateral distal femurs, containing a 2 mm gap. In the gap, autologous 3 × 106 MSCs seeded on hydroxyapatite (HA) granules in combination with 10 ng, 100 ng, and 500 ng VEGF release/day were added. After 12 weeks, the implant-bone blocks were harvested, embedded, and sectioned for histomorphometric analysis. Bone formation and mechanical fixation were evaluated. Blood samples were collected for the determination of bone-related biomarkers and VEGF in serum at weeks 0, 1, 4, 8, and 12. Results The combination of 3 × 106 MSCs with 10 ng, 100 ng, and 500 ng VEGF release/day exhibited similar amount of bone formation within the gap as allograft (P > 0.05). Moreover, no difference in mechanical fixation was observed between the groups (P > 0.05). Serum biomarkers showed no significant difference compared to baseline (all P > 0.05). Conclusion MSCs and VEGF exhibit significant bone regeneration, and their bone properties equal to allograft, with no systemic increase in osteogenic markers or VEGF with no visible side effects. This study indicates a possible new approach into solving the problem of insufficient allograft, in larger bone defects.
Collapse
|
8
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
9
|
Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X, Ding J. Poly(lactic- co-glycolic acid)-based composite bone-substitute materials. Bioact Mater 2021; 6:346-360. [PMID: 32954053 PMCID: PMC7475521 DOI: 10.1016/j.bioactmat.2020.08.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics. Recently, poly(lactic-co-glycolic acid) (PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility, degradability, mechanical properties, and capabilities to promote bone regeneration. In this article, we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances, elaborate on their applications for bone regeneration with or without bioactive factors, and prospect the challenges and opportunities in clinical bone regeneration.
Collapse
Affiliation(s)
- Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang, 110032, PR China
| | - Tongtong Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Jie Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Liguo Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang, 110032, PR China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
10
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
11
|
Mondal D, Willett TL. Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing. J Mech Behav Biomed Mater 2020; 104:103653. [PMID: 32174411 DOI: 10.1016/j.jmbbm.2020.103653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/16/2022]
Abstract
In this study, single filaments of acrylated epoxidized soybean oil (AESO)/polyethylene glycol diacrylate (PEGDA)/nanohydroxyapatite (nHA)-based nanocomposites intended for bone defect repair have displayed significant improvement of their mechanical properties when extruded through smaller needle gauges before UV curing. These nanocomposite inks can be deposited layer-by-layer during direct ink writing (DIW) - a form of additive manufacturing. Single filaments were prepared by extruding the nanocomposite ink through needles with varying diameters from 0.21 mm to 0.84 mm and then UV cured. Filaments and cast specimens were tensile tested to determine elastic modulus, strength and toughness. The cured nanocomposite filaments were further characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). SEM confirmed that the hydroxyapatite nanoparticles were well dispersed in the polymer matrices. The ultimate tensile strength and moduli increased as the diameter of the extrusion needle was decreased. These correlated with increased matrix crystallinity and fewer defects. For instance, filaments extruded through 0.84 mm diameter needles had ultimate tensile stress and modulus of 26.3 ± 2.8 MPa and 885 ± 100 MPa, respectively, whereas, filaments extruded through 0.21 mm needles had ultimate tensile stress and modulus of 48.9 ± 4.0 MPa and 1696 ± 172 MPa, respectively. This study has demonstrated enhanced mechanical properties resulting from extrusion-based direct ink writing of a new AESO-PEGDA-nHA nanocomposite biomaterial intended for biomedical applications. These enhanced properties are the result of fewer defects and increased crystallinity. A means of achieving mechanical properties suitable for repairing bone defects is apparent.
Collapse
Affiliation(s)
- Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada.
| |
Collapse
|
12
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
13
|
Yu M, Du Y, Han Y, Lei B. Biomimetic Elastomeric Bioactive Siloxane‐Based Hybrid Nanofibrous Scaffolds with miRNA Activation: A Joint Physico‐Chemical‐Biological Strategy for Promoting Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201906013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 01/27/2025]
Abstract
AbstractRapid and efficient disease‐induced or critical‐size bone regeneration remains a challenge in tissue engineering due to the lack of highly bioactive biomaterial scaffolds. Physical structures such as nanostructures, chemical components such as silicon elements, and biological factors such as genes have shown positive effects on bone regeneration. Herein, a bioactive photoluminescent elastomeric silicate‐based nanofibrous scaffold with sustained miRNA release is reported for promoting bone regeneration based on a joint physico‐chemical‐biological strategy. Bioactive nanofibrous scaffolds are fabricated by cospinning poly (ε‐caprolactone) (PCL), elastomeric poly (citrates‐siloxane) (PCS), and bioactive osteogenic miRNA nanocomplexes (denoted PPM nanofibrous scaffolds). The PPM scaffolds possess uniform nanostructures, significantly enhanced tensile stress (≈15 MPa) and modulus (≈32 MPa), improved hydrophilicity (30–60°), controlled biodegradation, and strong blue fluorescence. Bioactive miRNA complexes are efficiently loaded into the nanofibrous matrix and exhibit long‐term release for up to 70 h. The PPM scaffolds significantly promote the adhesion, proliferation, and osteoblast differentiation of bone marrow stem cells in vitro and enhanced rat cranial defect restoration (12 weeks) in vivo. This work reports an attractive joint physico‐chemical‐biological strategy for the design of novel cell/protein‐free bioactive scaffolds for synergistic tissue regeneration.
Collapse
Affiliation(s)
- Meng Yu
- Frontier Institute of Science and Technology Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Yuzhang Du
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Science Northwestern Polytechnical University Xi'an 710072 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Bo Lei
- Frontier Institute of Science and Technology Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Instrumental Analysis Center Xi'an Jiaotong University Xi'an 710054 China
- State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an 710054 China
| |
Collapse
|
14
|
França CM, Thrivikraman G, Athirasala A, Tahayeri A, Gower LB, Bertassoni LE. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J Biomed Mater Res B Appl Biomater 2019; 107:1522-1532. [PMID: 30267638 PMCID: PMC6440878 DOI: 10.1002/jbm.b.34244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin-guided polymer-induced liquid-precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15-fold. To evaluate vasculature formation and pericyte-like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT-PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRβ. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+ mural cells. RT-PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte-supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522-1532, 2019.
Collapse
Affiliation(s)
- Cristiane M. França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Nove de Julho University, São Paulo, SP, Brazil
| | - Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Laurie B. Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
15
|
Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E590. [PMID: 30974820 PMCID: PMC6523566 DOI: 10.3390/nano9040590] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
This paper provides review updates on the current development of bionanocomposites with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly, especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional porogen leaching, and thermally induced phase separation have many drawbacks inducing the use of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro, and the new bone formation in vivo.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
17
|
Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel) 2017; 10:E96. [PMID: 29231857 PMCID: PMC5748651 DOI: 10.3390/ph10040096] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
A great deal of research is ongoing in the area of tissue engineering (TE) for bone regeneration. A possible improvement in restoring damaged tissues involves the loading of drugs such as proteins, genes, growth factors, antibiotics, and anti-inflammatory drugs into scaffolds for tissue regeneration. This mini-review is focused on the combination of the local delivery of antibiotic agents with bone regenerative therapy for the treatment of a severe bone infection such as osteomyelitis. The review includes a brief explanation of scaffolds for bone regeneration including scaffolds characteristics and types, a focus on severe bone infections (especially osteomyelitis and its treatment), and a literature review of local antibiotic delivery by the combination of scaffolds and drug-delivery systems. Some examples related to published studies on gentamicin sulfate-loaded drug-delivery systems combined with scaffolds are discussed, and future perspectives are highlighted.
Collapse
Affiliation(s)
- Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Antonella DeTrizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Francesco Benazzo
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
- Centre oh Health Technology (CHT), Via Ferrata 1, University of Pavia, 27100 Pavia, Italy.
| | - Giulia Gastaldi
- Centre oh Health Technology (CHT), Via Ferrata 1, University of Pavia, 27100 Pavia, Italy.
- Department of Molecular Medicine, University of Pavia, Viale Taramelli 2, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Center of Health Technology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| |
Collapse
|