1
|
Yoshino Y, Miyaji H, Nishida E, Kanemoto Y, Hamamoto A, Kato A, Sugaya T, Akasaka T. Periodontal tissue regeneration by recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles. J Oral Biosci 2023; 65:62-71. [PMID: 36669699 DOI: 10.1016/j.job.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recombinant human collagen peptide (RCP) is a recombinantly created xeno-free biomaterial enriched in arginine-glycine-aspartic acid sequences with good processability whose use for regenerative medicine applications is under investigation. The biocompatibility and osteogenic ability of RCP granules combined with β-tricalcium phosphate (TCP) submicron particles (β-TCP/RCP) were recently demonstrated. In the present study, β-TCP/RCP was implanted into experimental periodontal tissue defects created in beagles to investigate its regenerative effects. METHODS An RCP solution was lyophilized, granulated, and thermally cross-linked into particles approximately 1 mm in diameter. β-TCP dispersion (1 wt%; 500 μL) was added to 100 mg of RCP granules to form β-TCP/RCP. A three-walled intrabony defect (5 mm × 3 mm × 4 mm) was created on the mesial side of the mandibular first molar and filled with β-TCP/RCP. RESULTS A micro-computed tomography image analysis performed at 8 weeks postoperative showed a significantly greater amount of new bone after β-TCP/RCP grafting (2.2-fold, P < 0.05) than after no grafting. Histological findings showed that the transplanted β-TCP/RCP induced active bone-like tissue formation including tartaric acid-resistant acid phosphatase- and OCN-positive cells as well as bioabsorbability. Ankylosis did not occur, and periostin-positive periodontal ligament-like tissue formation was observed. Histological measurements performed at 8 weeks postoperative revealed that β-TCP/RCP implantation formed 1.7-fold more bone-like tissue and 2.1-fold more periodontal ligament-like tissue than the control condition and significantly suppressed gingival recession and epithelial downgrowth (P < 0.05). CONCLUSIONS β-TCP/RCP implantation promoted bone-like and periodontal ligament-like tissue formation, suggesting its efficacy as a periodontal tissue regenerative material.
Collapse
Affiliation(s)
- Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asako Hamamoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, Flores KM, Cárdenas-Soria VH, Olivos-Meza A, Hernández-Rangel A, Landa-Solís C. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Mol Biol Rep 2022; 49:2503-2517. [PMID: 35013859 DOI: 10.1007/s11033-021-07051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The present review is focused on general aspects of the synovial membrane as well as specialized aspects of its cellular constituents, particularly the composition and location of synovial membrane mesenchymal stem cells (S-MSCs). S-MSC multipotency properties are currently at the center of translational medicine for the repair of multiple joint tissues, such as articular cartilage and meniscus lesions. METHODS AND RESULTS We reviewed the results of in vitro and in vivo research on the current clinical applications of S-MSCs, surface markers, cell culture techniques, regenerative properties, and immunomodulatory mechanisms of S-MSCs as well as the practical limitations of the last twenty-five years (1996 to 2021). CONCLUSIONS Despite the poor interest in the development of new clinical trials for the application of S-MSCs in joint tissue repair, we found evidence to support the clinical use of S-MSCs for cartilage repair. S-MSCs can be considered a valuable therapy for the treatment of repairing joint lesions.
Collapse
Affiliation(s)
- Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Ricardo Plata-Rodríguez
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Karina Martínez Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Víctor Hugo Cárdenas-Soria
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Anell Olivos-Meza
- Ortopedia del Deporte y Artroscopía, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Adriana Hernández-Rangel
- Instituto Politécnico Nacional-ESIQIE, Av. Luis Enrique Erro S/N, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico City, CDMX, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
3
|
Guilak F, Sandell LJ, Huard J. Journal of Orthopaedic Research: Special Issue on Stem Cells. J Orthop Res 2019; 37:1209-1211. [PMID: 31050013 DOI: 10.1002/jor.24338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado
| |
Collapse
|
4
|
Nakamura K. CellSaic, A Cell Aggregate-Like Technology Using Recombinant Peptide Pieces for MSC Transplantation. Curr Stem Cell Res Ther 2019; 14:52-56. [PMID: 30207243 PMCID: PMC6350195 DOI: 10.2174/1574888x13666180912125157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022]
Abstract
In the field of stem cell therapy, research on the application of Mesenchymal Stem Cells (MSCs) has flourished because of the various functions. On the other hand, research on the method of cell transplantation has developed from the administration of cell suspensions to cell-sheet engineering and 3D technology. In the trend, a cell transplantation platform named CellSaic, which is a combination of xeno-free recombinant scaffolds in a cell aggregate-like shape, was developed. CellSaic is the cell trans-plantation platform that can prevent the central necrosis within cell aggregates by arranging the cells and petaloid pieces of Recombinant Peptide (RCP) in a mosaic. The prevention of central necrosis is the most significant advantage over other 3D culture systems. This review details the unique characteristics of CellSaic including safety examination results and describes its future application for MSC transplantation. Particularly, in the application of MSCs, it has been reported that the MSC CellSaics increased the effect on improving various symptoms compared with MSCs only in the application of the therapy to Inflamma-tory Bowel Disease (IBD), cerebral infarction, bone cartilage regeneration in joints, and islet transplanta-tion. In accordance with the “One Health” concept, it is anticipated that this technology is expected to con-tribute to companion animal therapy and human therapy in the future.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Bioscience & Technology Development Center, FUJIFILM Corporation, Kanagawa/258-8577, Japan
| |
Collapse
|