1
|
Fujino K, Yamamoto N, Yoshimura Y, Yokota A, Hirano Y, Neo M. Repair potential of self-assembling peptide hydrogel in a mouse model of anterior cruciate ligament reconstruction. J Exp Orthop 2024; 11:e12061. [PMID: 38899049 PMCID: PMC11185946 DOI: 10.1002/jeo2.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose Establishing zonal tendon-to-bone attachment could accelerate the anterior cruciate ligament reconstruction (ACLR) rehabilitation schedule and facilitate an earlier return to sports. KI24RGDS is a self-assembling peptide hydrogel scaffold (SAPS) with the RGDS amino acid sequence. This study aimed to elucidate the therapeutic potential of KI24RGDS in facilitating zonal tendon-to-bone attachment after ACLR. Methods Sixty-four C57BL/6 mice were divided into the ACLR + SAPS and ACLR groups. ACLR was performed using the tail tendon. To assess the maturation of tendon-to-bone attachment, we quantified the area of mineralized fibrocartilage (MFC) in the tendon graft with demeclocycline. Immunofluorescence staining of α-smooth muscle actin (α-SMA) was performed to evaluate progenitor cell proliferation. The strength of tendon-to-bone attachment was evaluated using a pull-out test. Results The MFC and maximum failure load in the ACLR + SAPS group were remarkably higher than in the ACLR group on Day 14. However, no significant difference was observed between the two groups on Day 28. The number of α-SMA-positive cells in the tendon graft was highest on Day 7 after ACLR in both the groups and was significantly higher in the ACLR + SAPS group than in the ACLR group. Conclusion This study highlighted the latent healing potential of KI24RGDS in facilitating early-stage zonal attachment of tendon grafts and bone tunnels post-ACLR. These findings may expedite rehabilitation protocols and shorten the timeline for returning to sports. Level of Evidence Not applicable.
Collapse
Affiliation(s)
- Keitaro Fujino
- Department of Orthopedic SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Natsuki Yamamoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and BioengineeringKansai UniversityOsakaJapan
| | - Yukiko Yoshimura
- Department of Orthopedic SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Atsushi Yokota
- Department of Orthopedic SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yoshiaki Hirano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and BioengineeringKansai UniversityOsakaJapan
| | - Masashi Neo
- Department of Orthopedic SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| |
Collapse
|
2
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
3
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
4
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
5
|
Self-assembling peptide hydrogel SPG-178 as a pancreatic fistula-preventing agent. Langenbecks Arch Surg 2021; 407:189-196. [PMID: 34100123 DOI: 10.1007/s00423-021-02226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Pancreatic fistula (PF) is a common and challenging complication after pancreatic surgery. The aim of this study was to investigate the efficacy of a new method for preventing PF utilizing self-assembling peptide hydrogel SPG-178 as a preclinical study. METHODS The degradability of SPG-178 was confirmed by mixing it with protease. A PF rat model was then established to investigate the efficacy of SPG-178 at preventing PF. After transecting the pancreatic duct toward the spleen, SPG-178 was attached to both sides of the pancreatic stump. The levels of amylase and lipase in both the serum and ascites were measured and surgical specimens investigated pathologically. RESULTS The hardness of SPG-178 did not change when treated with protease over a short period. The ascitic amylase level was significantly lower in rats treated with SPG-178 than rats who were not 3 days after transection of the pancreatic duct toward the spleen. Pathological examination showed fewer inflammatory cells and presence of a structure body on the surface of the pancreatic stump in the SPG-178-treated group. SPG-178 remained on the surface and many cells that covered it formed fibrous tissue or mesothelium. CONCLUSION Self-assembling peptide hydrogel SPG-178 has potential as a tool for preventing PF.
Collapse
|
6
|
Okuno N, Otsuki S, Aoyama J, Nakagawa K, Murakami T, Ikeda K, Hirose Y, Wakama H, Okayoshi T, Okamoto Y, Hirano Y, Neo M. Feasibility of a self-assembling peptide hydrogel scaffold for meniscal defect: An in vivo study in a rabbit model. J Orthop Res 2021; 39:165-176. [PMID: 32852842 DOI: 10.1002/jor.24841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The inner avascular zone of the meniscus has limited healing capacity as the area is poorly vascularized. Although peptide hydrogels have been reported to regenerate bone and cartilage, their effect on meniscus regeneration remains unknown. We tested whether the self-assembling peptide hydrogel scaffold KI24RGDS stays in the meniscal lesion and facilitates meniscal repair and regeneration in an induced rabbit meniscal defect model. Full-thickness (2.0 mm diameter) cylindrical defects were introduced into the inner avascular zones of the anterior portions of the medial menisci of rabbit knees (n = 40). Right knee defects were left empty (control group) while the left knee defects were transplanted with peptide hydrogel (KI24RGDS group). Macroscopic meniscus scores were significantly higher in the KI24RGDS group than in the control group at 2, 4, and 8 weeks after surgery. Histological examinations including quantitative and qualitative scores indicated that compared with the control group, the reparative tissue in the meniscus was significantly enhanced in the KI24RGDS group at 2, 4, 8, and 12 weeks after surgery. Immunohistochemical staining showed that the reparative tissue induced by KI24RGDS at 12 weeks postimplantation was positive for Type I and II collagen. KI24RGDS is highly biocompatible and biodegradable, with strong stiffness, and a three dimensional structure mimicking native extracellular matrix and RGDS sequences that enhance cell adhesion and proliferation. This in vivo study demonstrated that KI24RGDS remained in the meniscal lesion and facilitated the repair and regeneration in a rabbit meniscal defect model.
Collapse
Affiliation(s)
- Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Jo Aoyama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | | | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshiaki Hirano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| |
Collapse
|
7
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|