1
|
Bliven EK, Fung A, Baker A, Fleps I, Ferguson SJ, Guy P, Helgason B, Cripton PA. How accurately do finite element models predict the fall impact response of ex vivo specimens augmented by prophylactic intramedullary nailing? J Orthop Res 2025; 43:396-406. [PMID: 39354743 DOI: 10.1002/jor.25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Ingmar Fleps
- Skeletal Mechanobiology & Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Buehring B, Maus U. [Geriatric traumatological management of osteoporosis : "Let the first fracture be the last"]. Z Gerontol Geriatr 2024; 57:616-622. [PMID: 39373920 DOI: 10.1007/s00391-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
In Germany more than 800,000 osteoporotic fractures occur every year, with severe medical, social and health economic consequences. Nevertheless, as in many other countries there is a large gap in care. Fractures frequently occur in older geriatric patients, who are increasingly being (or should be) treated in geriatric trauma centers. This multidisciplinary approach offers the opportunity not only to restore the patient's mobility and independence but also to set the course for preventing further fractures. Diagnosing osteoporosis and initiating treatment early after a fracture is particularly important as there is an imminently high risk of further fractures in the months and years following a fracture. This review article describes a pragmatic, guideline-based approach to osteoporosis management for geriatric trauma patients. It discusses fracture risk assessment, current treatment thresholds and treatment strategies as well as the individual osteoporosis drugs, the indications and contraindications. This review aims to show that the treatment of osteoporosis within the framework of a geriatric traumatology team is feasible in the majority of cases. It is suggested that a treatment decision can be systematically made based on a few questions or a flow chart.
Collapse
Affiliation(s)
- Bjoern Buehring
- Bergisches Rheuma-Zentrum, Cellitinnen Krankenhaus St. Josef, Wuppertal, Deutschland.
- Ruhr-Universität Bochum, Bochum, Deutschland.
- Abteilung für Rheumatologie, Immunologie und Osteologie, Cellitinnen Krankenhaus St. Josef, Bergstr. 6-12, 42105, Wuppertal, Deutschland.
| | - Uwe Maus
- Endoprothetik und Osteologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
3
|
Paracuollo M, Tarulli FR, Pellegrino G, Pellegrino A. Proximal femoral nailing for intertrochanteric fracture combined with contralateral femoral neck local osteo-enhancement procedure (LOEP) for severe osteoporotic bone loss: An original Italian case series. Injury 2024; 55 Suppl 4:111408. [PMID: 39542574 DOI: 10.1016/j.injury.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 11/17/2024]
Abstract
Proximal femoral fractures in elderly women are a major cause of morbidity and mortality worldwide and a public health concern. Although pharmacological therapies have shown potential in improving bone mineral density (BMD) and decreasing fracture risk, the current research effort is focused on developing a procedure that can ensure both immediate and long-term efficacy. A minimally-invasive surgical approach, known as AGN1 local osteo-enhancement procedure (LOEP), has been recently developed to promote bone augmentation. The procedure implies the preparation of an enhancement site, a specific location where new bone is required within a local bony area weakened by osteoporotic bone loss, and the insertion of a triphasic, resorbable, calcium-based implant material. The results of this procedure have shown a significant and sustainable long-term increase in the proximal femur BMD and consequently in bone strength, thereby improving the femoral neck's resistance to compression and distraction forces that may result in fall-related fractures. A preliminary case series of ten women, suffering from intertrochanteric fracture and contralateral proximal femur severe osteoporotic bone loss, who underwent a combined procedure of proximal femoral nailing and AGN1 local osteo-enhancement procedure, has been developed over the course of a year of clinical and radiological data collection.
Collapse
Affiliation(s)
- Mario Paracuollo
- III Division of Orthopaedics and Traumatology, "C.T.O." Hospital in Naples (NA), Viale Colli Aminei, 21 80131, Italy.
| | - Filippo Rosati Tarulli
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Giuseppe Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Achille Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| |
Collapse
|
4
|
Vlachos C, Ampadiotaki MM, Papagrigorakis E, Galanis A, Patilas C, Sakellariou E, Rodis G, Vasiliadis E, Kontogeorgakos VA, Pneumaticos S, Vlamis J. Is Regional Bone Mineral Density the Differentiating Factor Between Femoral Neck and Femoral Trochanteric Fractures? Cureus 2024; 16:e53003. [PMID: 38406115 PMCID: PMC10894667 DOI: 10.7759/cureus.53003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Osteoporosis is globally recognized as a prevalent bone disease, and proximal femoral fractures constitute a serious complication associated with it. In recent years, the frequency of hip fractures has increased rapidly, with ramifications that extend into the social and economic aspects of both patients' lives and healthcare systems. The primary goal of this study is to discover whether bone mineral density (BMD) in specific regions of the hip could be related to femoral neck or trochanteric fractures. Methodology This prospective cohort study employed dual-energy X-ray absorptiometry (DEXA) measurements on 70 individuals with proximal femoral fractures. The participants sought treatment at the emergency department of our unit for hip fractures and adhered to our predefined eligibility criteria. These criteria primarily included (i) age exceeding 60 years and (ii) a diagnosis of either femoral neck or trochanteric fracture attributed to (iii) a low-energy lateral fall and (iv) a previously established state of complete ambulation before the occurrence of the fracture. In this context, we recorded the BMD of the hip, as well as the BMD values of the upper and lower halves of the neck, trochanteric region, and diaphysis. For the comparison of the categorical variables, Pearson's χ2 criterion was used, whereas Student's t-test was applied for the comparison of means of quantitative variables across fracture types. Results No statistical differences were identified when comparing regional BMDs and T-scores with the fracture type. This conclusion was also reconfirmed concerning age, gender, and Tonnis classification. Only a moderate correlation was observed, demonstrating lower values of regional BMDs in women compared to men. Conclusions The inability of our study to establish a direct correlation between BMD measurements across diverse areas of the proximal femur underlines the imperative need for subsequent investigations. These studies should not only integrate more precise techniques for measuring and mapping the BMD of different hip regions but should also encompass a comprehensive examination that would consider both intrinsic and extrinsic characteristics of the proximal femur.
Collapse
Affiliation(s)
- Christos Vlachos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Eftychios Papagrigorakis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Athanasios Galanis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Christos Patilas
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Evangelos Sakellariou
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Elias Vasiliadis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT Trauma Hospital, Athens, GRC
| | | | - Spiros Pneumaticos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - John Vlamis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| |
Collapse
|
5
|
Bliven EK, Fung A, Cripton PA, Helgason B, Guy P. Evaluating femoral augmentation to prevent geriatric hip fracture: A scoping review of experimental methods. J Orthop Res 2023; 41:1855-1862. [PMID: 37249119 DOI: 10.1002/jor.25636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/28/2023] [Indexed: 05/31/2023]
Abstract
Various femoral augmentation designs have been investigated over the past decade for the prevention of geriatric hip fracture. The experimental methods used to evaluate the efficacy of these augmentations have not been critically evaluated or compared in terms of biofidelity, robustness, or ease of application. Such parameters have significant relevance in characterizing future clinical success. In this study we aimed to use a scoping review to summarize the experimental studies that evaluate femoral augmentation approaches, and critically evaluate commonly applied protocols and identify areas for concordance with the clinical situation. We conducted a literature search targeting studies that used experimental test methods to evaluate femoral augmentation to prevent geriatric fragility fracture. A total of 25 studies met the eligibility criteria. The most commonly investigated augmentation to date is the injection of bone cement or another material that cured in situ, and a popular subsequent method for biomechanical evaluation was to load the augmented proximal femur until fracture in a sideways fall configuration. We noted limitations in the clinical relevance of sideways fall scenarios being modeled and large variance in the concordance of many of the studies identified. Our review brings about recommendations for enhancing the fidelity of experimental methods modeling clinical sideways falls, which include an improved representation of soft tissue effects, using outcome metrics beyond load-to-failure, and applying loads inertially. Effective augmentations are encouraging for their potential to reduce the burden of hip fracture; however, the likelihood of this success is only as strong as the methods used in their evaluation.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Pierre Guy
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Fung A, Fleps I, Cripton PA, Guy P, Ferguson SJ, Helgason B. The efficacy of femoral augmentation for hip fracture prevention using ceramic-based cements: A preliminary experimentally-driven finite element investigation. Front Bioeng Biotechnol 2023; 11:1079644. [PMID: 36777252 PMCID: PMC9909544 DOI: 10.3389/fbioe.2023.1079644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Femoral fractures due to sideways falls continue to be a major cause of concern for the elderly. Existing approaches for the prevention of these injuries have limited efficacy. Prophylactic femoral augmentation systems, particularly those involving the injection of ceramic-based bone cements, are gaining more attention as a potential alternative preventative approach. We evaluated the mechanical effectiveness of three variations of a bone cement injection pattern (basic ellipsoid, hollow ellipsoid, small ellipsoid) utilizing finite element simulations of sideways fall impacts. The basic augmentation pattern was tested with both high- and low-strength ceramic-based cements. The cement patterns were added to the finite element models (FEMs) of five cadaveric femurs, which were then subject to simulated sideways falls at seven impact velocities ranging from 1.0 m/s to 4.0 m/s. Peak impact forces and peak acetabular forces were examined, and failure was evaluated using a strain-based criterion. We found that the basic HA ellipsoid provided the highest increases in both the force at the acetabulum of the impacted femur ("acetabular force", 55.0% ± 22.0%) and at the force plate ("impact force", 37.4% ± 15.8%). Changing the cement to a weaker material, brushite, resulted in reduced strengthening of the femur (45.2% ± 19.4% acetabular and 30.4% ± 13.0% impact). Using a hollow version of the ellipsoid appeared to have no effect on the fracture outcome and only a minor effect on the other metrics (54.1% ± 22.3% acetabular force increase and 35.3% ± 16.0% impact force increase). However, when the outer two layers of the ellipsoid were removed (small ellipsoid), the force increases that were achieved were only 9.8% ± 5.5% acetabular force and 8.2% ± 4.1% impact force. These results demonstrate the importance of supporting the femoral neck cortex to prevent femoral fractures in a sideways fall, and provide plausible options for prophylactic femoral augmentation. As this is a preliminary study, the surgical technique, the possible effects of trabecular bone damage during the augmentation process, and the effect on the blood supply to the femoral head must be assessed further.
Collapse
Affiliation(s)
- Anita Fung
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,*Correspondence: Anita Fung,
| | - Ingmar Fleps
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Peter A. Cripton
- Orthopaedic and Injury Biomechanics Group, School of Biomedical Engineering and Departments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, BC, Canada,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Guy
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada,Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen J. Ferguson
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benedikt Helgason
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Peña JA, Shaul JL, Müller M, Damm T, Barkmann R, Kurz B, Campbell GM, Freitag-Wolf S, Glüer CC. Dual-Layer Spectral-Computed Tomography Enhances the Separability of Calcium-Based Implant Material from Bone: An Ex Vivo Quantitative Imaging Study. J Bone Miner Res 2022; 37:2472-2482. [PMID: 36125939 DOI: 10.1002/jbmr.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
Local treatment of bone loss with an injection of a resorbable, calcium-based implant material to replace bone has a long history of clinical use. The in vivo discrimination of changes in bone versus implant is challenging with standard computed tomography (CT). However, spectral-CT techniques enable the separation between tissues of similar densities but different chemical compositions. Dual-layer spectral-CT imaging and postprocessing analysis methods were applied to investigate the separability of AGN1 (a triphasic calcium-based implant) and bone after AGN1 injection in n = 10 male cadaveric femurs ex vivo. Using the area under the curve (AUC) from receiver-operating characteristic (ROC) analyses, the separability of AGN1 from bone was assessed for AGN1 (postoperatively) versus compact and versus femoral neck cancellous bone (both preoperatively). CT techniques included conventional Hounsfield (HU) and density-equivalent units (BMD, mg hydroxyapatite [HA]/cm3 ) and spectral-CT measures of effective atomic number (Zeff) and electron density (ED). The samples had a wide range of femoral neck BMD (55.66 to 241.71 mg HA/cm3 ). At the injection site average BMD, HU, Zeff, and ED increased from 69.5 mg HA/cm3 , 109 HU, 104.38 EDW, and 8.30 Zeff in the preoperative to 1233 mg HA/cm3 , 1741 HU, 181.27 EDW, and 13.55 Zeff in the postoperative CT scan, respectively. For compact bone at the femoral shaft the preoperative values were 1124.15 mg HA/cm3 , 1648 HU, 177 EDW, and 13.06 Zeff and were maintained postoperatively. Zeff showed substantially sharper distributions and significantly greater separability compared to ED, BMD, and HU (all p < 0.002, for both regions) with average AUCs for BMD, HU, ED, and Zeff of 0.670, 0.640, 0.645, and 0.753 for AGN1 versus compact and 0.996, 0.995, 0.994, and 0.998 for AGN1 versus femoral neck cancellous sites, respectively. Spectral-CT permits better discrimination of calcium-based implants like AGN1 from bone ex vivo. Our results warrant application of spectral-CT in patients undergoing procedures with similar implants. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jaime A Peña
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | | | - Michael Müller
- Clinic for Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Reinhard Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts University (CAU), Kiel, Germany
| | | | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian-Albrechts University (CAU), Kiel, Germany
| | - Claus-C Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| |
Collapse
|
8
|
Tarantino U, Cariati I, Greggi C, Iundusi R, Gasbarra E, Iolascon G, Kurth A, Akesson KE, Bouxsein M, Tranquilli Leali P, Civinini R, Falez F, Brandi ML. Gaps and alternative surgical and non-surgical approaches in the bone fragility management: an updated review. Osteoporos Int 2022; 33:2467-2478. [PMID: 35851407 DOI: 10.1007/s00198-022-06482-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Osteoporotic fractures are one of the major problems facing healthcare systems worldwide. Undoubtedly, fragility fractures of the hip represent a far greater burden in terms of morbidity, mortality, and healthcare costs than other fracture sites. However, despite the significant impact on the health and quality of life of older adults, there is a general lack of awareness of osteoporosis, which results in suboptimal care. In fact, most high-risk individuals are never identified and do not receive adequate treatment, leading to further fragility fractures and worsening health status. Furthermore, considering the substantial treatment gap and the proven cost-effectiveness of fracture prevention programs such as Fracture Liaison Services, urgent action is needed to ensure that all individuals at high risk of fragility fracture are adequately assessed and treated. Based on this evidence, the aim of our review was to (i) provide an overview and comparison of the burden and management of fragility fractures, highlighting the main gaps, and (ii) highlight the importance of using alternative approaches, both surgical and non-surgical, with the aim of implementing early prevention of osteoporotic fractures and improving the management of osteoporotic patients at imminent and/or very high risk of fracture.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Andreas Kurth
- Department of Orthopaedic and Trauma Surgery, Community Clinics Middle Rhine, Campus Kemperhof, Koblenz, Germany
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Lund University and Department of Orthopedics, Skane University Hospital, Malmö, Sweden
| | - Mary Bouxsein
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Harvard Medical School, BIDMC, Boston, MA, USA
| | | | - Roberto Civinini
- Department of Surgical Science, University of Florence, Florence, Italy
| | - Francesco Falez
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Rome, Italy
| | | |
Collapse
|
9
|
Shaul J, Hill R, Bruder S, Tilton A, Howe J. Triphasic calcium-based implant material resorbs and is replaced with bone in ovariectomized rats with or without bisphosphonate treatment. J Orthop Res 2022; 40:2271-2280. [PMID: 34935182 DOI: 10.1002/jor.25255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/08/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
This study evaluated the effects of AGN1, a triphasic calcium-based material, and alendronate (A) on distal femoral defect bone repair in ovariectomized (OVX) rats. Of 106 rats, 92 were OVX'ed at 12 weeks old and underwent a 12-week induction period. Animals were randomized into five groups: OVX Control, OVX Alendronate Control, Normal Control, OVX Implantation, OVX Alendronate + Implantation. OVX Alendronate Control and OVX Alendronate + Implantation groups received alendronate injection twice weekly (0.015 mg/kg) from 6 weeks until sacrifice. Twelve weeks after OVX, 2.5 mm diameter by 4.0 mm long cylindrical, bilateral distal femoral defects were created in experimental animals. One defect was left empty, and one filled with AGN1. Dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry were performed 0-, 6-, 12-, and 18-week postdefect/implantation surgery (N = 6-8/group). Results showed OVX induced significant and progressive bone loss which alendronate prevented. Histomorphometry demonstrated rapid AGN1 resorption: AGN1 resorbed from 95.1 ± 0.7% filling of the implant site (week 0) to 1.3 ± 1.0% (18 weeks) with no significant alendronate effect (1.6 ± 1.1%, 18 weeks). Bone formation in empty defects consisted primarily of cortical wall healing, whereas AGN1 implants demonstrated cortical wall healing with new trabecular bone filling the subcortical space. Alendronate dramatically increased bone formation in empty and AGN1 defects. We conclude AGN1 is resorbed and replaced by new cortical and trabecular bone in this OVX model, and alendronate did not compromise these effects.
Collapse
Affiliation(s)
| | - Ronald Hill
- AgNovos Healthcare, Rockville, Maryland, USA
| | - Scott Bruder
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - James Howe
- AgNovos Healthcare, Rockville, Maryland, USA
- Department of Orthopedic Surgery, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Adami G, Fassio A, Gatti D, Viapiana O, Benini C, Danila MI, Saag KG, Rossini M. Osteoporosis in 10 years time: a glimpse into the future of osteoporosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221083541. [PMID: 35342458 PMCID: PMC8941690 DOI: 10.1177/1759720x221083541] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Patients living with osteoporosis are projected to increase dramatically in the
next decade. Alongside the forecasted increased societal and economic burden, we
will live a crisis of fractures. However, we will have novel pharmacological
treatment to face this crisis and, more importantly, new optimized treatment
strategies. Fracture liaison services will be probably implemented on a large
scale worldwide, helping to prevent additional fractures in high-risk patients.
In the next decade, novel advances in the diagnostic tools will be largely
available. Moreover, new and more precise fracture risk assessment tools will
change our ability to detect patients at high risk of fractures. Finally, big
data and artificial intelligence will help us to move forward into the world of
precision medicine. In the present review, we will discuss the future
epidemiology and costs of osteoporosis, the advances in early and accurate
diagnosis of osteoporosis, with a special focus on biomarkers and imaging tools.
Then we will examine new and refined fracture risk assessment tools, the role of
fracture liaison services, and a future perspective on osteoporosis
treatment.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | | | - Maria I. Danila
- Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth G. Saag
- Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
11
|
Cieśla J, Tomsia M. Cadaveric Stem Cells: Their Research Potential and Limitations. Front Genet 2022; 12:798161. [PMID: 35003228 PMCID: PMC8727551 DOI: 10.3389/fgene.2021.798161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of growing interest in stem cells, the availability of donors for transplantation has become a problem. The isolation of embryonic and fetal cells raises ethical controversies, and the number of adult donors is deficient. Stem cells isolated from deceased donors, known as cadaveric stem cells (CaSCs), may alleviate this problem. So far, it was possible to isolate from deceased donors mesenchymal stem cells (MSCs), adipose delivered stem cells (ADSCs), neural stem cells (NSCs), retinal progenitor cells (RPCs), induced pluripotent stem cells (iPSCs), and hematopoietic stem cells (HSCs). Recent studies have shown that it is possible to collect and use CaSCs from cadavers, even these with an extended postmortem interval (PMI) provided proper storage conditions (like cadaver heparinization or liquid nitrogen storage) are maintained. The presented review summarizes the latest research on CaSCs and their current therapeutic applications. It describes the developments in thanatotranscriptome and scaffolding for cadaver cells, summarizes their potential applications in regenerative medicine, and lists their limitations, such as donor’s unknown medical condition in criminal cases, limited differentiation potential, higher risk of carcinogenesis, or changing DNA quality. Finally, the review underlines the need to develop procedures determining the safe CaSCs harvesting and use.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Shaul JL, Hill RS, Bouxsein ML, Burr DB, Tilton AK, Howe JG. AGN1 implant material to treat bone loss: Resorbable implant forms normal bone with and without alendronate in a canine critical size humeral defect model. Bone 2022; 154:116246. [PMID: 34744020 DOI: 10.1016/j.bone.2021.116246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Fractures secondary to osteoporosis, particularly those of the hip and spine, are a major public health concern with high social and economic costs. The Local Osteo-Enhancement Procedure (LOEP) is an approach intended to strengthen skeletal areas that are at the highest risk for fracture due to osteoporosis. LOEP involves the implantation of AGN1, a triphasic, calcium-based, osteoconductive material which is then resorbed and replaced by bone. Since alendronate is the most prescribed osteoporotic treatment, the purpose of this canine study is to determine if the newly formed bone has the same properties as normal bone and whether alendronate treatment impacts AGN1 resorption and replacement with bone. METHODS Sixty skeletally mature male hounds (24-38 kg) were evenly divided between alendronate (0.2 mg/kg/day) and non-alendronate treatment groups. A critical-size core bone defect created in one proximal humerus was implanted with AGN1 while the contralateral non-operated humerus served as a paired control in each animal. Animals were sacrificed 13, 26, and 52 weeks post-operatively (10 per treatment per timepoint). The control and treatment site bone specimens from each animal were examined using radiographic, histomorphometric, and biomechanical techniques. Results between alendronate-treated and non-alendronate-treated animals were compared as groups. RESULTS AGN1 implant material was consistently resorbed and replaced by bone in all animals. At 52 weeks, only minimal residual implant material could be detected (0.9 ± 2.3% non-alendronate group; 2.2 ± 3.1% alendronate group), and new bone filled the defects in both the non-alendronate and alendronate groups. At 13 and 26 weeks, microCT revealed the newly formed bone in the defects had significantly higher trabecular bone volume and number connectivity than control bone in both groups. Mechanical testing demonstrated that the new bone had ultimate compressive strength and modulus equivalent to control bone as early as 13 weeks post-surgery which was maintained to 52 weeks in both groups. CONCLUSIONS In this canine critical-sized humeral core defect model, AGN1 was progressively replaced by normal bone as evaluated by all outcome measures. Concurrent alendronate therapy did not significantly impact AGN1 resorption or new bone formation. These results demonstrate that AGN1 can be used in conjunction with alendronate in non-osteoporotic animals. CLINICAL RELEVANCE This study suggests that the AGN1 implant material demonstrates potential for local restoration of bone in critical-size core defects, and that the material is compatible with alendronate drug therapy. Further studies will be required to determine if these results apply to other osteoporosis medications.
Collapse
Affiliation(s)
| | - Ronald S Hill
- AgNovos Healthcare, Rockville, MD, United States of America
| | - Mary L Bouxsein
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - David B Burr
- Indiana University, Indianapolis, IN, United States of America
| | | | - James G Howe
- AgNovos Healthcare, Rockville, MD, United States of America; University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
13
|
Prophylactic augmentation implants in the proximal femur for hip fracture prevention: An in silico investigation of simulated sideways fall impacts. J Mech Behav Biomed Mater 2021; 126:104957. [PMID: 34861519 DOI: 10.1016/j.jmbbm.2021.104957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/26/2022]
Abstract
Femoral fractures from sideways falls in the elderly are associated with significant rates of morbidity and mortality. Approaches to prevent these catastrophic injuries include pharmacological treatments, which have limited efficacy. Prophylactic femoral augmentation systems are a promising alternative that are gaining prominence by addressing the most debilitating osteoporosis-related fracture. We have developed finite element models (FEMs) of a novel experimental sideways fall simulator for cadavers. By virtue of the range of specimens and injury outcomes, these FEMs are well-suited to the evaluation of such implants. The purpose of this study was to use the FEMs to evaluate the mechanical effectiveness of three different prophylactic femoral augmentation systems. Models of the Y-Strut® (Hyprevention®, Pessac, France), Gamma Nail® (Stryker, Kalamazoo, USA), and a simple lag screw femoral fracture implant systems were placed into FEMs of five cadaveric pelvis-femur constructs embedded in a soft tissue surrogate, which were then subject to simulated sideways falls at seven impact velocities. Femur-only FEMs were also evaluated. Peak impact forces and peak acetabular forces were examined, and failure was evaluated using a strain-based criterion. We found that the femoral augmentation systems increased the peak forces prior to fracture, but were unable to prevent fracture for severe impacts. The Gamma Nail® system consistently produced the largest strength increases relative to the unaugmented femur for all five specimens in both the pendulum-drop FEMs and the femur-only simulations. In some cases, the same implant appeared to cause fractures in the acetabulum. The femur-only FEMs showed larger force increases than the pendulum-drop simulations, which suggests that the results of the femur-only simulations may not represent sideways falls as accurately as the soft tissue-embedded pendulum-drop simulations. The results from this study demonstrate the ability to simulate a high energy phenomenon and the effect of implants in an in silico environment. The results also suggest that implants could increase the force applied to the proximal femur during impact. Fracture outcomes from the tested implants can be used to inform the design of future devices, which reaffirms the value of modelling with biofidelic considerations in the implant design process. To the authors' knowledge, this is the first paper to use more complex biofidelic FEMs to assess prophylactic femoral augmentation methods.
Collapse
|
14
|
Farvardin A, Bakhtiarinejad M, Murphy RJ, Basafa E, Khanuja H, Oni JK, Armand M. A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise. Clin Biomech (Bristol, Avon) 2021; 87:105392. [PMID: 34174676 PMCID: PMC8550980 DOI: 10.1016/j.clinbiomech.2021.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Augmentation of the proximal femur with bone cement (femoroplasty) has been identified as a potential preventive approach to reduce the risk of fracture. Femoroplasty, however, is associated with a risk of thermal damage as well as the leakage of bone cement or blockage of blood supply when large volumes of cement are introduced inside the bone. METHODS Six pairs of cadaveric femora were augmented using a newly proposed planning paradigm and an in-house navigation system to control the location and volume of the injected cement. To evaluate the risk of thermal damage, we recorded the peak temperature of bone at three regions of interest as well as the exposure time for temperature rise of 8 °C, 10 °C, and 12 °C in these regions. Augmentation was followed by mechanical testing to failure resembling a sideway fall on the greater trochanter. FINDINGS Results of the fracture tests correlated with those of simulations for the yield load (R2 = 0.77) and showed that femoroplasty can significantly improve the yield load (42%, P < 0.001) and yield energy (139%, P = 0.062) of the specimens. Meanwhile, temperature recordings of the bone surface showed that the areas close to the greater trochanter will be exposed to more critical temperature rise than the trochanteric crest and femoral neck areas. INTERPRETATION The new planning paradigm offers a more efficient injection strategy with injection volume of 9.1 ml on average. Meanwhile, temperature recordings of bone surfaces suggest that risk of thermal necrosis remains as a concern with femoroplasty using Polymethylmethacrylate.
Collapse
Affiliation(s)
- Amirhossein Farvardin
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Mahsan Bakhtiarinejad
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Ryan J Murphy
- Auris Health, Inc., 150 Shoreline Dr, Redwood City, CA 94065, USA
| | - Ehsan Basafa
- Auris Health, Inc., 150 Shoreline Dr, Redwood City, CA 94065, USA
| | - Harpal Khanuja
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | - Juluis K Oni
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | - Mehran Armand
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, USA; Department of Orthopaedic Surgery, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Howe JG, Hill RS, Stroncek JD, Shaul JL, Favell D, Cheng RR, Engelke K, Genant HK, Lee DC, Keaveny TM, Bouxsein ML, Huber B. Treatment of bone loss in proximal femurs of postmenopausal osteoporotic women with AGN1 local osteo-enhancement procedure (LOEP) increases hip bone mineral density and hip strength: a long-term prospective cohort study. Osteoporos Int 2020; 31:921-929. [PMID: 31802158 PMCID: PMC7170985 DOI: 10.1007/s00198-019-05230-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
UNLABELLED This first-in-human study of AGN1 LOEP demonstrated that this minimally-invasive treatment durably increased aBMD in femurs of osteoporotic postmenopausal women. AGN1 resorption was coupled with new bone formation by 12 weeks and that new bone was maintained for at least 5-7 years resulting in substantially increased FEA-estimated femoral strength. INTRODUCTION This first-in-human study evaluated feasibility, safety, and in vivo response to treating proximal femurs of postmenopausal osteoporotic women with a minimally-invasive local osteo-enhancement procedure (LOEP) to inject a resorbable triphasic osteoconductive implant material (AGN1). METHODS This prospective cohort study enrolled 12 postmenopausal osteoporotic (femoral neck T-score ≤ - 2.5) women aged 56 to 89 years. AGN1 LOEP was performed on left femurs; right femurs were untreated controls. Subjects were followed-up for 5-7 years. Outcomes included adverse events, proximal femur areal bone mineral density (aBMD), AGN1 resorption, and replacement with bone by X-ray and CT, and finite element analysis (FEA) estimated hip strength. RESULTS Baseline treated and control femoral neck aBMD was equivalent. Treated femoral neck aBMD increased by 68 ± 22%, 59 ± 24%, and 58 ± 27% over control at 12 and 24 weeks and 5-7 years, respectively (p < 0.001, all time points). Using conservative assumptions, FEA-estimated femoral strength increased by 41%, 37%, and 22% at 12 and 24 weeks and 5-7 years, respectively (p < 0.01, all time points). Qualitative analysis of X-ray and CT scans demonstrated that AGN1 resorption and replacement with bone was nearly complete by 24 weeks. By 5-7 years, AGN1 appeared to be fully resorbed and replaced with bone integrated with surrounding trabecular and cortical bone. No procedure- or device-related serious adverse events (SAEs) occurred. CONCLUSIONS Treating femurs of postmenopausal osteoporotic women with AGN1 LOEP results in a rapid, durable increase in aBMD and femoral strength. These results support the use and further clinical study of this approach in osteoporotic patients at high risk of hip fracture.
Collapse
Affiliation(s)
- J G Howe
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R S Hill
- AgNovos Healthcare LLC, Rockville, MD, USA.
| | | | - J L Shaul
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - D Favell
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R R Cheng
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - K Engelke
- Bioclinica-Synarc, Inc., Hamburg, Germany
- FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - H K Genant
- University of California San Francisco, San Francisco, CA, USA
- Bioclinica-Synarc, Inc., Newark, CA, USA
| | - D C Lee
- O.N. Diagnostics, Berkeley, CA, USA
| | - T M Keaveny
- University of California Berkeley, Berkley, CA, USA
| | - M L Bouxsein
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B Huber
- Mansfield Orthopedics, Morrisville, VT, USA
| |
Collapse
|
16
|
Local osteo-enhancement of osteoporotic vertebra with a triphasic bone implant material increases strength-a biomechanical study. Arch Orthop Trauma Surg 2020; 140:1395-1401. [PMID: 32108254 PMCID: PMC7505880 DOI: 10.1007/s00402-020-03382-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 11/04/2022]
Abstract
PURPOSE The aim of this study was to assess the biomechanical properties of intact vertebra augmented using a local osteo-enhancement procedure to inject a triphasic calcium sulfate/calcium phosphate implant material. METHODS Twenty-one fresh frozen human cadaver vertebra (Th11-L2) were randomized into three groups: treatment, sham, and control (n = 7 each). Treatment included vertebral body access, saline lavage to displace soft tissue and marrow elements, and injection of the implant material to fill approximately 20% of the vertebral body by volume. The sham group included all treatment steps, but without injection of the implant material. The control group consisted of untreated intact osteoporotic vertebra. Load at failure and displacement at failure for each of the three groups were measured in axial compression loading. RESULTS The mean failure load of treated vertebra (4118 N) was significantly higher than either control (2841 N) or sham (2186 N) vertebra (p < 0.05 for: treatment vs. control, treatment vs. sham). Treated vertebra (1.11 mm) showed a significantly higher mean displacement at failure than sham vertebra (0.80 mm) (p < 0.05 for: treatment vs. sham). In the control group, the mean displacement at failure was 0.99 mm. CONCLUSIONS This biomechanical study shows that a local osteo-enhancement procedure using a triphasic implant material significantly increases the load at failure and displacement at failure in cadaveric osteoporotic vertebra.
Collapse
|