1
|
Tu T, Hsu Y, Yang C, Shyong Y, Kuo C, Liu Y, Shih S, Lin C. Variations in ECM Topography, Fiber Alignment, Mechanical Stiffness, and Cellular Composition Between Ventral and Dorsal Ligamentum Flavum Layers: Insights Into Hypertrophy Pathogenesis. JOR Spine 2025; 8:e70033. [PMID: 39886656 PMCID: PMC11780719 DOI: 10.1002/jsp2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Background Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood. This study aimed to bridge the existing knowledge gap concerning the intricate relationships between ECM characteristics, mechanical properties, and myofibroblast expression in LFH. Methods Histological staining, scanning electron microscopy, and atomic force microscopy were used to analyze the components, alignment, and mechanical properties of the ECM. Immunostaining and western blot analyses were performed to assess the distribution of myofibroblasts in LF tissues. Results There were notable differences between the dorsal and ventral layers of the hypertrophic ligamentum flavum. Specifically, the dorsal layer exhibited higher collagen content and disorganized fibrous alignment, resulting in reduced stiffness. Immunohistochemistry analysis revealed a significantly greater presence of α-smooth muscle actin (αSMA)-stained cells, a marker for myofibroblasts, in the dorsal layer. Conclusions This study offers comprehensive insights into LFH by elucidating the distinctive ECM characteristics, mechanical properties, and cellular composition disparities between the ventral and dorsal layers. These findings significantly enhance our understanding of the pathogenesis of LFH and may inform future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ting‐Yuan Tu
- Department of Biomedical Engineering, College of EngineeringNational Cheng Kung UniversityTainanTaiwan
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Chia Hsu
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chia‐En Yang
- Department of Biomedical Engineering, College of EngineeringNational Cheng Kung UniversityTainanTaiwan
| | - Yan‐Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Cheng‐Hsiang Kuo
- International Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
- Department of Biochemistry and Molecular Biology, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yuan‐Fu Liu
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Shu‐Shien Shih
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
| | - Cheng‐Li Lin
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Musculoskeletal Research Center, Innovation HeadquartersNational Cheng Kung UniversityTainanTaiwan
- Skeleton Materials and Bio‐Compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
2
|
Silwal P, Nguyen-Thai AM, Alexander PG, Sowa GA, Vo NV, Lee JY. Cellular and Molecular Mechanisms of Hypertrophy of Ligamentum Flavum. Biomolecules 2024; 14:1277. [PMID: 39456209 PMCID: PMC11506588 DOI: 10.3390/biom14101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined. The molecular factors involved in the onset of HLF include increases in inflammatory cytokines such as transforming growth factor (TGF)-β, matrix metalloproteinases, and pro-fibrotic growth factors. In this review, we discuss the current understanding of the mechanisms involved in HLF with a particular emphasis on aging and mechanical stress. We also discuss in detail how several pathomechanisms such as fibrosis, proliferation and apoptosis, macrophage infiltration, and autophagy, in addition to several molecular pathways involving TGF-β1, mitogen-activated protein kinase (MAPKs), and nuclear factor-κB (NF-κB) signaling, PI3K/AKT signaling, Wnt signaling, micro-RNAs, extracellular matrix proteins, reactive oxygen species (ROS), etc. are involved in fibrosis leading to HLF. We also present a summary of the current advancements in preclinical animal models for HLF research. In addition, we update the current and potential therapeutic targets/agents against HLF. An improved understanding of the molecular processes behind HLF and a novel animal model are key to developing effective LSS prevention and treatment strategies.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Peter G. Alexander
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Cancer, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
3
|
Li L, Zheng ZZ, Jiang JJ, Chen JL, Jiang B, Li YW, Dai YL, Wang B. CTSD upregulation as a key driver of spinal ligament abnormalities in spinal stenosis. Bone 2024; 186:117174. [PMID: 38917962 DOI: 10.1016/j.bone.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Zhen-Zhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Jia-Jiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Jia-Lin Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Ya-Wei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Yu-Liang Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China.
| |
Collapse
|
4
|
Wang S, Qu Y, Fang X, Ding Q, Zhao H, Yu X, Xu T, Lu R, Jing S, Liu C, Wu H, Liu Y. Decorin: a potential therapeutic candidate for ligamentum flavum hypertrophy by antagonizing TGF-β1. Exp Mol Med 2023; 55:1413-1423. [PMID: 37394592 PMCID: PMC10394053 DOI: 10.1038/s12276-023-01023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Ligamentum flavum hypertrophy (LFH) is the main physiological and pathological mechanism of lumbar spinal canal stenosis (LSCS). The specific mechanism for LFH has not been completely clarified. In this study, bioinformatic analysis, human ligamentum flavum (LF) tissues collection and analysis, and in vitro and in vivo experiments were conducted to explore the effect of decorin (DCN) on LFH pathogenesis. Here, we found that TGF-β1, collagen I, collagen III, α-SMA and fibronectin were significantly upregulated in hypertrophic LF samples. The DCN protein expression in hypertrophic LF samples was higher than that in non-LFH samples, but the difference was not significant. DCN inhibited the expression of TGF-β1-induced fibrosis-associated proteins in human LF cells, including collagen I, collagen III, α-SMA, and fibronectin. ELISAs showed that TGF-β1 can upregulate PINP and PIIINP in the cell supernatant, and this effect was inhibited after DCN administration. Mechanistic studies revealed that DCN suppressed TGF-β1-induced fibrosis by blocking the TGF-β1/SMAD3 signaling pathway. In addition, DCN ameliorated mechanical stress-induced LFH in vivo. In summary, our findings indicated that DCN ameliorated mechanical stress-induced LFH by antagonizing the TGF-β1/SMAD3 signaling pathway in vitro and in vivo. These findings imply that DCN is a potential therapeutic candidate for ligamentum flavum hypertrophy.
Collapse
Affiliation(s)
- Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Yang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
Lin IT, Lin YH, Lian WS, Wang FS, Wu RW. MicroRNA-29a Mitigates Laminectomy-Induced Spinal Epidural Fibrosis and Gait Dysregulation by Repressing TGF-β1 and IL-6. Int J Mol Sci 2023; 24:ijms24119158. [PMID: 37298111 DOI: 10.3390/ijms24119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal epidural fibrosis is one of the typical features attributable to failed back surgery syndrome, with excessive scar development in the dura and nerve roots. The microRNA-29 family (miR-29s) has been found to act as a fibrogenesis-inhibitory factor that reduces fibrotic matrix overproduction in various tissues. However, the mechanistic basis of miRNA-29a underlying the overabundant fibrotic matrix synthesis in spinal epidural scars post-laminectomy remained elusive. This study revealed that miR-29a attenuated lumbar laminectomy-induced fibrogenic activity, and epidural fibrotic matrix formation was significantly lessened in the transgenic mice (miR-29aTg) as compared with wild-type mice (WT). Moreover, miR-29aTg limits laminectomy-induced damage and has also been demonstrated to detect walking patterns, footprint distribution, and moving activity. Immunohistochemistry staining of epidural tissue showed that miR-29aTg was a remarkably weak signal of IL-6, TGF-β1, and DNA methyltransferase marker, Dnmt3b, compared to the wild-type mice. Taken together, these results have further strengthened the evidence that miR-29a epigenetic regulation reduces fibrotic matrix formation and spinal epidural fibrotic activity in surgery scars to preserve the integrity of the spinal cord core. This study elucidates and highlights the molecular mechanisms that reduce the incidence of spinal epidural fibrosis, eliminating the risk of gait abnormalities and pain associated with laminectomy.
Collapse
Affiliation(s)
- I-Ting Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yu-Han Lin
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
6
|
Duan Y, Li J, Qiu S, Ni S, Cao Y. TCF7/SNAI2/miR-4306 feedback loop promotes hypertrophy of ligamentum flavum. Lab Invest 2022; 20:468. [PMID: 36224570 PMCID: PMC9558422 DOI: 10.1186/s12967-022-03677-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Background Hypertrophy of ligamentum flavum (HLF) is the mainly cause of lumbar spinal stenosis (LSS), but the precise mechanism of HLF formation has not been fully elucidated. Emerging evidence indicates that transcription factor 7 (TCF7) is the key downstream functional molecule of Wnt/β-catenin signaling, which participated in regulating multiple biological processes. However, the role and underlying mechanism of TCF7 in HLF is still unclear. Methods We used mRNAs sequencing analysis of human LF and subsequent confirmation with RT-qPCR, western blot and immunohistochemistry to identified the TCF7 in HLF tissues and cells. Then effect of TCF7 on HLF progression was investigated both in vitro and in vivo. Mechanically, chromatin immunoprecipitation, dual-luciferase reporter assays, and rescue experiments were used to validate the regulation of TCF7/SNAI2/miR-4306 feedback loop. Results Our results identified for first time that the TCF7 expression was obviously elevated in HLF tissues and cells compared with control, and also found that TCF7 expression had significant positive correlation with LF thickness and fibrosis score. Notably, TCF7 inhibition suppressed the hyper-proliferation and fibrosis phenotype of HLF cells in vitro and ameliorated progression of HLF in mice in vivo, whereas TCF7 overexpression promoted hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Our data further revealed that TCF7 interacted with SNAI2 promoter to transactivated the SNAI2 expression, thereby promoting hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Furthermore, miR-4036 negatively regulated by SNAI2 could negatively feedback regulate TCF7 expression by directly binding to TCF7 mRNA 3’-UTR, thus inhibiting the hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Conclusions Our study demonstrated that TCF7 inhibition could suppress HLF formation by modulating TCF7/SNAI2/miR-4306 feedback loop, which might be considered as a novel potential therapeutic target for HLF. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03677-0.
Collapse
Affiliation(s)
- Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
He N, Qi W, Zhao Y, Wang X. Relationship between Severity of Lumbar Spinal Stenosis and Ligamentum Flavum Hypertrophy and Serum Inflammatory Factors. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8799240. [PMID: 36277021 PMCID: PMC9581654 DOI: 10.1155/2022/8799240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022]
Abstract
Objective This study is aimed at investigating the correlation between lumbar spinal stenosis (LSS) severity, ligamentum flavum hypertrophy, and the upregulation of inflammatory markers. Methods From March 2019 and May 2022, eighty-five inpatients with LSS were enlisted as the study's research group, while sixty-five patients hospitalized for lumbar intervertebral disc herniation over the same time period served as the study's control group. Moreover, mild, moderate, and severe subgroups of patients were created within the research population based on their LSS severity. The ligamentum flavum thickness and the positive expression rates of TNF-α, TGF-β1, and IL-1α were compared between the study group and the control group. The levels of TNF-α, TGF-β1, and IL-1α that were found to be positively expressed were compared between the mild, moderate, and severe groups. Patients with LSS had their ligamentum flavum thickness and their positive expression rates of TNF-α, TGF-β1, and IL-1α analyzed using Spearman correlation analysis. We evaluated the diagnostic utility of the positive expression rates of IL-α1, TGF-β1, and TNF-α and ligamentum flavum thickness in distinguishing the severity of LSS using a receiver operating characteristic (ROC) curve. Results The rates of both lower limb pain (40.00%) and intermittent claudication (80.00%) in the LSS group were higher than those in the lumbar disc herniation group (15.38%, 12.31%), with statistical significance (P < 0.05). However, no substantial disparity was observed in left lower limb pain, right lower limb pain, low back pain, lower limb sensation, muscle strength, and reflex abnormalities between the two groups (P > 0.05). Positive expressions of TGF-β1, TNF-α, and IL-1α and thicker ligamentum flavum were more prevalent in the LSS group than in the lumbar intervertebral disc herniation group. All indexes were significantly (P < 0.05) higher in the moderate stenosis group than in the severe stenosis group. Additionally, the thickness of the ligamentum flavum and the positive expression rates of TNF-α, TGF-β1, and IL-1α were higher in the mild and moderate stenosis groups than in the severe stenosis group. The expression levels of TNF-α, TGF-β1, and IL-1α were favorably linked with ligamentum flavum thickness (P < 0.05). ROC curve analysis showed that the thickness of ligamentum flavum, the expression of IL-1α, the expression of TGF-β1, and the expression of TNF-α could effectively diagnose mild, moderate, and severe LSS (P < 0.05). Conclusion Ligamentum flavum hypertrophy and positive expression rates of IL-1α, TGF-β1, and TNF-α are closely linked to LSS, which can effectively identify mild, moderate, and severe LSS.
Collapse
Affiliation(s)
- Nina He
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Wenbin Qi
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Yongli Zhao
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Xiaojun Wang
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| |
Collapse
|
8
|
Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1549-1562. [PMID: 36131026 PMCID: PMC9534863 DOI: 10.1038/s12276-022-00849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-β1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-β1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-β1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-β1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-β1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-β1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-β1 pathway. These findings indicate that CLU is a potential treatment target for LFH. The protein clusterin regulates the body’s response to lower back pain induced by mechanical stress and could be a target for treatments. Lower back pain is common and is exacerbated by our upright stance. A major cause of the pain is excessive cell growth (hypertrophy) in the ligaments between vertebrae. This growth narrows the spinal canal and compresses nerves. Using a unique mouse model bred to walk upright, Zhongmin Zhang and Liang Wang at Southern Medical University in Guangzhou, China, and co-workers showed that clusterin, a protein involved in regulation of cell survival, can reduce the hypertrophy caused by mechanical stresses, and could be used in back pain treatments. Clusterin regulates the activity of the growth factor TGF-β1, which plays a role in synthesizing new tissues after injury, but can spur excessive growth.
Collapse
|
9
|
Seki S, Iwasaki M, Makino H, Yahara Y, Kondo M, Kamei K, Futakawa H, Nogami M, Watanabe K, Tran Canh Tung N, Hirokawa T, Tsuji M, Kawaguchi Y. Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression-Comparative Microarray Gene Expression Analysis. Int J Mol Sci 2022; 23:5038. [PMID: 35563428 PMCID: PMC9101523 DOI: 10.3390/ijms23095038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The role of the ligamentum flavum (LF) in the pathogenesis of adolescent idiopathic scoliosis (AIS) is not well understood. Using magnetic resonance imaging (MRI), we investigated the degrees of LF hypertrophy in 18 patients without scoliosis and on the convex and concave sides of the apex of the curvature in 22 patients with AIS. Next, gene expression was compared among neutral vertebral LF and LF on the convex and concave sides of the apex of the curvature in patients with AIS. Histological and microarray analyses of the LF were compared among neutral vertebrae (control) and the LF on the apex of the curvatures. The mean area of LF in the without scoliosis, apical concave, and convex with scoliosis groups was 10.5, 13.5, and 20.3 mm2, respectively. There were significant differences among the three groups (p < 0.05). Histological analysis showed that the ratio of fibers (Collagen/Elastic) was significantly increased on the convex side compared to the concave side (p < 0.05). Microarray analysis showed that ERC2 and MAFB showed significantly increased gene expression on the convex side compared with those of the concave side and the neutral vertebral LF cells. These genes were significantly associated with increased expression of collagen by LF cells (p < 0.05). LF hypertrophy was identified in scoliosis patients, and the convex side was significantly more hypertrophic than that of the concave side. ERC2 and MAFB genes were associated with LF hypertrophy in patients with AIS. These phenomena are likely to be associated with the progression of scoliosis.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mami Iwasaki
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Miho Kondo
- Department of Orthopaedic Surgery, Takaoka City Hospital, Toyama 933-8550, Japan;
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Makiko Nogami
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Kenta Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| |
Collapse
|
10
|
Impact of oxidized LDL/LOX-1 system on ligamentum flavum hypertrophy. J Orthop Sci 2022; 28:669-676. [PMID: 35123844 DOI: 10.1016/j.jos.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Patients with lumbar spinal canal stenosis (LSS) often have peripheral arterial disease and aortic disease based on atherosclerosis. Oxidized LDL, which is clinically involved in the development of atherosclerosis, may also influence LF hypertrophy, but the function of the oxidized low-density lipoprotein (LDL)/lectin-type oxidized LDL receptor 1 (LOX-1) system in LF hypertrophy is unknown. We aimed to elucidate the potential involvement of oxidized LDL/LOX-1 system in ligamentum flavum (LF) hypertrophy. METHODS A total of 43 samples were collected from LF tissues of the patients who underwent posterior lumbar spinal surgery. Immunohistochemistry for LOX-1 was performed using human LF samples. We treated the cells in vitro with inflammatory cytokines TNF-α and IL-1β, oxidized LDL, and simvastatin. The expressions of LOX-1 and LF hypertrophy markers including type I collagen, Type III collagen, and COX-2 were assessed by real-time RT-PCR and immunocytochemistry. Phosphorylation of MAPKs and NF-κb was evaluated by Western blot after treatment with TNF-α, IL-1β, oxidized LDL, and simvastatin. RESULTS A significant weak correlation was observed between the number of positive cells of LOX-1 and cross-sectional area of LF on preoperative axial magnetic resonance imaging. In functional analysis, simvastatin treatment neutralized the oxidized LDL-mediated induction of mRNA expressions of LF hypertrophy markers. Western blot analysis showed that oxidized LDL as well as TNF-α and IL-1β activated the signaling of MAPKs and NF-κb in LF cells, and that simvastatin treatment reduced the phosphorylation of all signaling. The TNF-α and IL-1β treatments increased both mRNA and protein expression of LOX-1 in LF cells. CONCLUSION We found a link between the oxidized LDL/LOX-1 system and LF hypertrophy. In addition, our in vitro analysis indicate that oxidized LDL may affect LF hypertrophy through signaling of MAPKs. Our results suggest that the oxidized LDL/LOX-1 system may be a potential therapeutic target for LSS.
Collapse
|
11
|
Yang K, Chen Y, Xiang X, Lin Y, Fei C, Chen Z, Lai Z, Yu Y, Tan R, Dong J, Zhang J, Li P, Wang L, Zhang Z. EGF Contributes to Hypertrophy of Human Ligamentum Flavum via the TGF-β1/Smad3 Signaling Pathway. Int J Med Sci 2022; 19:1510-1518. [PMID: 36185336 PMCID: PMC9515692 DOI: 10.7150/ijms.76077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The most common spinal disorder in elderly is lumbar spinal canal stenosis (LSCS). Previous studies showed that ligamentum flavum hypertrophy (LFH) with fibrosis as the main pathological change is one of the pathogenic factors leading to LSCS. Epidermal Growth Factor (EGF) is known to have an intimate relationship with fibrosis in various tissues. Nevertheless, currently, there are few studies regarding EGF in LFH. The effect of EGF on the development of LFH is unknown, and the underlying pathomechanism remains unclear. In this study, we investigated the role of EGF in LFH and its potential molecular mechanism. Methods: First, the expression levels of EGF, phosphorylation of EGF receptor (pEGFR), Transforming growth factor-β1 (TGF-β1), Phosphorylated Smad3 (pSmad3), collagen I and collagen III were examined via immunohistochemistry and Western blot in LF tissues from patients with LSCS or Non-LSCS. Second, primary LF cells were isolated from adults with normal LF thickness and were cultured with different concentrations of exogenous EGF with or without erlotinib/TGF-β1-neutralizing antibody. Results: The results showed that EGF, pEGFR, TGF-β1, pSmad3, collagen I and collagen III protein expression in the LSCS group was significantly higher than that in the Non-LSCS group. Meanwhile, pEGFR, TGF-β1, pSmad3, collagen I and collagen III protein expression was significantly enhanced in LF cells after exogenous EGF exposure, which can be notably blocked by erlotinib. In addition, pSmad3, collagen I and collagen III protein expression was blocked by TGF-β1-neutralizing antibody. Conclusions: EGF promotes the synthesis of collagen I and collagen III via the TGF-β1/Smad3 signaling pathway, which eventually contributes to LFH.
Collapse
Affiliation(s)
- Kaifan Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongpeng Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqian Tan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Dong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junxiong Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Rolipram plays an anti-fibrotic effect in ligamentum flavum fibroblasts by inhibiting the activation of ERK1/2. BMC Musculoskelet Disord 2021; 22:818. [PMID: 34556093 PMCID: PMC8461931 DOI: 10.1186/s12891-021-04712-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Fibrosis is an important factor and process of ligamentum flavum hypertrophy. The expression of phosphodiesterase family (PDE) is related to inflammation and fibrosis. This article studied the expression of PDE in hypertrophic ligamentum flavum fibroblasts and investigated whether inhibition of PDE4 activity can play an anti-fibrotic effect. Methods Samples of clinical hypertrophic ligamentum flavum were collected and patients with lumbar disc herniations as a control group. The collagenase digestion method is used to separate fibroblasts. qPCR is used to detect the expression of PDE subtypes, type I collagen (Col I), type III collagen (Col III), fibronectin (FN1) and transforming growth factor β1 (TGF-β1). Recombinant TGF-β1 was used to stimulate fibroblasts to make a fibrotic cell model and treated with Rolipram. The morphology of the cells treated with drugs was observed by Sirius Red staining. Scratch the cells to observe their migration and proliferation. WB detects the expression of the above-mentioned multiple fibrotic proteins after drug treatment. Finally, combined with a variety of signaling pathway drugs, the signaling mechanism was studied. Results Multiple PDE subtypes were expressed in ligamentum flavum fibroblasts. The expression of PDE4A and 4B was significantly up-regulated in the hypertrophic group. Using Rolipram to inhibit PDE4 activity, the expression of Col I and TGF-β1 in the hypertrophic group was inhibited. Col I recovered to the level of the control group. TGF-β1 was significantly inhibited, which was lower than the control group. Recombinant TGF-β1 stimulated fibroblasts to increase the expression of Col I/III, FN1 and TGF-β1, which was blocked by Rolipram. Rolipram restored the increased expression of p-ERK1/2 stimulated by TGF-β1. Conclusion The expressions of PDE4A and 4B in the hypertrophic ligamentum flavum are increased, suggesting that it is related to the hypertrophy of the ligamentum flavum. Rolipram has a good anti-fibrosis effect after inhibiting the activity of PDE4. This is related to blocking the function of TGF-β1, specifically by restoring normal ERK1/2 signal. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04712-9.
Collapse
|
13
|
Li P, Liu C, Qian L, Zheng Z, Li C, Lian Z, Liu J, Zhang Z, Wang L. miR-10396b-3p inhibits mechanical stress-induced ligamentum flavum hypertrophy by targeting IL-11. FASEB J 2021; 35:e21676. [PMID: 34042220 DOI: 10.1096/fj.202100169rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) leads to lumbar spinal stenosis (LSS) caused by LF tissue inflammation and fibrosis. Emerging evidence has indicated that dysregulated microRNAs (miRNAs) have an important role in inflammation and fibrosis. Mechanical stress (MS) has been explored as an initiating step in LFH pathology progression; the inflammation-related miRNAs induced after mechanical stress have been implicated in fibrosis pathology. However, the pathophysiological mechanism of MS-miRNAs-LFH remains to be elucidated. Using miRNAs sequencing analysis and subsequent confirmation with qRT-PCR assays, we identified the decreased expression of miR-10396b-3p and increased expression of IL-11 (interleukin-11) as responses to the development of LSS in hypertrophied LF tissues. We also found that IL-11 is positively correlated with fibrosis indicators of collagen I and collagen III. The up-regulation of miR-10396b-3p significantly decreased the level of IL-11 expression, whereas miR-10396b-3p down-regulation increased IL-11 expression in vitro. Luciferase reporter assay indicates that IL-11 is a direct target of miR-10396b-3p. Furthermore, cyclic mechanical stress inhibits miR-10396b-3p and induces IL-11, collagen I, and collagen III in vitro. Our results showed that overexpression of miR-10396b-3p suppresses MS-induced LFH by inhibiting collagen I and III via the inhibition of IL-11. These data suggest that the MS-miR-10396b-3p-IL-11 axis plays a key role in the pathological progression of LFH.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Chunlei Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Lei Qian
- Department of Anatomy, Guangdong Province Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, China
| | - Zhenyu Zheng
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Chenglong Li
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhengnan Lian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China.,Division of Spine Surgery, Department of Orthopadics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| |
Collapse
|
14
|
Long-term, Time-course Evaluation of Ligamentum Flavum Hypertrophy Induced by Mechanical Stress: An Experimental Animal Study. Spine (Phila Pa 1976) 2021; 46:E520-E527. [PMID: 33273443 DOI: 10.1097/brs.0000000000003832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVE The aim of this study was to clarify chronological effects of mechanical stress on ligamentum flavum (LF) using a long-term fusion rabbit model. SUMMARY OF BACKGROUND DATA LF hypertrophy is a major pathology of lumbar spinal stenosis (LSS), but its mechanism remains unclear. We previously demonstrated mechanical-stress-induced LF hypertrophy with a rabbit model. However, we only investigated LFs at a single time point in the short-term; the effects of long-term mechanical stress have not been elucidated. METHODS Eighteen-week-old male New Zealand White rabbits were randomly divided into two groups: the mechanical stress group underwent L2-3 and L4-5 posterolateral fusion and resection of the L3-4 supraspinal muscle, whereas the control group underwent only surgical exposure. Rabbits were sacrificed 16 and 52 weeks after the procedure. Axial specimens of LFs at L3-4 were evaluated histologically. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) was performed to assess the numbers of vessels and myofibroblasts. RESULTS In the mechanical stress group, LFs at the L3-4 level exhibited hypertrophy with elastic fiber disruption and cartilage matrix production at 16 and 52 weeks. A trend test indicated that mechanical stress induced LF hypertrophy, elastic fiber disruption, and cartilage matrix production in a time-dependent manner, with the lowest levels before treatment and the highest at 52 weeks. Immunostaining for α-SMA showed similar numbers of vessels in both groups, whereas the percentage of myofibroblasts was significantly larger at 16 and 52 weeks in the mechanical stress group than in the control group. CONCLUSION We demonstrated that long-term mechanical stress caused LF hypertrophy with progressive elastic fiber disruption and cartilage matrix production accompanied by enhanced myofibroblasts. In addition, the reported rabbit model could be extended to elucidate the mechanism of LF hypertrophy and to develop new therapeutic strategies for LSS by preventing LF hypertrophy.Level of Evidence: SSSSS.
Collapse
|
15
|
Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021; 12:641575. [PMID: 33912216 PMCID: PMC8075056 DOI: 10.3389/fgene.2021.641575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic progressive aberrations in the nature and structure of ligamentous tissues characterized by increased thickness, reduced elasticity, local calcification, or aggravated ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically common entities. Though accumulated evidence has indicated both genetic and environmental factors could contribute to the initiation and progression of HLF/OLF, the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the important epigenetic modifications, are short single-stranded RNA molecules that regulate protein-coding gene expression at posttranscriptional level, which can disclose the mechanism underlying diseases, identify valuable biomarkers, and explore potential therapeutic targets. Considering that miRNAs play a central role in regulating gene expression, we summarized current studies from the point of view of miRNA-related molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of miRNA expression profiles and identified a battery of upregulated and downregulated miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing. Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p, miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis differentiation of LF cells and related target genes or molecular signaling pathways. Finally, we discussed the perspectives and challenges of miRNA-based molecular mechanism, diagnostic biomarkers, and therapeutic targets of HLF/OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xi Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Hur JW. Conservative treatment of senile spinal diseases: drug therapy and nerve block. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.3.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As we get closer to super-aged society, the prevalence of senile spinal diseases is constantly increasing and the burden on individuals and society grows high. Senile spinal disease is basically degenerative in nature. Pain and physical dysfunction occur due to various complex pathologic causes. For the diagnosis and treatment of such complex diseases, it is essential to understand common senile spinal diseases such as intervertebral disc herniation and spinal stenosis. Degenerative changes in intervertebral discs are caused by a combination of aging and excessive physical load, which results in structural damages and molecular biological changes in the intervertebral discs. Spinal stenosis is a disease in which nerves and blood vessels are compressed by hypertrophied ligamentum flavum, bulged disc, and a hypertrophied facet. Ligamentum flavum hypertrophy, which is the most important etiology in spinal stenosis, occurs due to mechanical stress and a cascade of inflammation and fibrosis reactions. Drug therapy targeting these pathologic mechanisms includes non-steroidal anti-inflammatory drugs, antidepressants, anticonvulsants, and agents that improve blood circulation. Nerve blocks, which prevent these pathophysiologic conditions, are also a good treatment modality. Typical nerve block techniques include medial nerve block and epidural block. It is necessary to understand the pathophysiology of senile spinal diseases and establish an appropriate treatment strategy that suit the patient's condition.
Collapse
|
17
|
Activity of Parathyroid Hormone Receptor Genes in Ligamentum Flavum Biopsies of Patients with Spinal Canal and Dural Sac Stenosis at the Lumbar Level. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Sun C, Zhang H, Liu X. Emerging role of CCN family proteins in fibrosis. J Cell Physiol 2020; 236:4195-4206. [PMID: 33222181 DOI: 10.1002/jcp.30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Zhang
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhui Liu
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Huang A, Li H, Zeng C, Chen W, Wei L, Liu Y, Qi X. Endogenous CCN5 Participates in Angiotensin II/TGF-β 1 Networking of Cardiac Fibrosis in High Angiotensin II-Induced Hypertensive Heart Failure. Front Pharmacol 2020; 11:1235. [PMID: 33013358 PMCID: PMC7494905 DOI: 10.3389/fphar.2020.01235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of angiotensin II (Ang II) accelerates hypertensive heart failure (HF); this has drawn worldwide attention. The complex Ang II/transforming growth factor (TGF)-β1 networking consists of central mechanisms underlying pro-fibrotic effects; however, this networking still remains unclear. Cellular communication network 5 (CCN5), known as secreted matricellular protein, mediates anti-fibrotic activity by inhibiting fibroblast-to-myofibroblast transition and the TGF-β1 signaling pathway. We hypothesized that endogenous CCN5 plays an essential role in TGF-β1/Ang II networking-induced cardiac fibrosis (CF), which accelerates the development of hypertensive HF. This study aimed to investigate the potential role of CCN5 in TGF-β1/Ang II networking-induced CF. Our clinical retrospective study demonstrated that serum CCN5 decreased in hypertensive patients, but significantly increased in hypertensive patients taking oral angiotensin-converting enzyme inhibitor (ACEI). A negative association was observed between CCN5 and Ang II in grade 2and 3 hypertensive patients receiving ACEI treatment. We further created an experimental model of high Ang II-induced hypertensive HF. CCN5 was downregulated in the spontaneously hypertensive rats (SHRs) and increased via the inhibition of Ang II production by ACEI. This CCN5 downregulation may activate the TGF-β1 signaling pathway, which promotes direct deposition of the extracellular matrix (ECM) and fibroblast-to-myofibroblast transition via activated Smad-3. Double immunofluorescence staining of CCN5 and cell markers of cardiac tissue cell types suggested that CCN5 was mainly expressed in the cardiac fibroblasts. Isolated cardiac fibroblasts were exposed to Ang II and transfected with small interfering RNA targeting CCN5. The expression of TGF-β1 together with Col Ia and Col IIIa was further promoted, and alpha-smooth muscle actin (α-SMA) was strongly expressed in the cardiac fibroblasts stimulated with Ang II and siRNA. In our study, we confirmed the anti-fibrotic ability of endogenous CCN5 in high Ang II-induced hypertensive HF. Elevated Ang II levels may decrease CCN5 expression, which subsequently activates TGF-β1 and finally promotes the direct deposition of the ECM and fibroblast-to-myofibroblast transition via Smad-3 activation. CCN5 may serve as a potential biomarker for estimating CF in hypertensive patients. A novel therapeutic target should be developed for stimulating endogenous CCN5 production.
Collapse
Affiliation(s)
- Anan Huang
- Nankai University School of Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Huihui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zeng
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Wanli Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Xin Qi
- Nankai University School of Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
20
|
Sun C, Zhang H, Wang X, Liu X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J 2020; 34:9854-9868. [PMID: 32608536 DOI: 10.1096/fj.202000635r] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Hypertrophy of ligamentum flavum (LF), along with disk protrusion and facet joints degeneration, is associated with the development of lumbar spinal canal stenosis (LSCS). Of note, LF hypertrophy is deemed as an important cause of LSCS. Histologically, fibrosis is proved to be the main pathology of LF hypertrophy. Despite the numerous studies explored the mechanisms of LF fibrosis at the molecular and cellular levels, the exact mechanism remains unknown. It is suggested that pathophysiologic stimuli such as mechanical stress, aging, obesity, and some diseases are the causative factors. Then, many cytokines and growth factors secreted by LF cells and its surrounding tissues play different roles in activating the fibrotic response. Here, we summarize the current status of detailed knowledge available regarding the causative factors, pathology, molecular and cellular mechanisms implicated in LF fibrosis and hypertrophy, also focusing on the possible avenues for anti-fibrotic strategies.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|