1
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
2
|
Li T, Li G, Su Z, Liu J, Wang P. Recent advances of sensing strategies for the detection of β-glucuronidase activity. Anal Bioanal Chem 2022; 414:2935-2951. [PMID: 35233695 DOI: 10.1007/s00216-022-03921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023]
Abstract
β-Glucuronidase (β-GLU), a kind of hydrolase, is widely distributed in mammalian tissues, body fluids, and microbiota. Abnormal changes of β-GLU activity are often correlated with the occurrence of diseases and deterioration of water quality. Therefore, detection of β-GLU activity is of great significance in biomedicine and environmental health such as cancer diagnosis and water monitoring. However, the conventional β-GLU activity assay suffers from the limitations of low sensitivity, poor accuracy, and complex procedure. With the development of analytical chemistry, many advances have been made in the detection of β-GLU activity in recent years. The sensors for β-GLU activity detection which have the advantages of rapid and reliable detection have been attracting increased attentions. In this paper, the principles, performances, and limitations of these β-GLU sensors, including colorimetric sensing, fluorescent sensing, electrochemical sensing for the determination of β-GLU activity, have been summarized and discussed. Moreover, the challenges and research trends of β-GLU activity assay are proposed.
Collapse
Affiliation(s)
- Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
3
|
Dubisova J, Burianova JS, Svobodova L, Makovicky P, Martinez-Varea N, Cimpean A, Fawcett JW, Kwok JCF, Kubinova S. Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Res Bull 2022; 181:144-156. [PMID: 35066096 PMCID: PMC8867078 DOI: 10.1016/j.brainresbull.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement. Removal of perineuronal nets (PNNs) reactivates neuroplasticity. Oral administration of 4-methylumbelliferone (4-MU) reduces PNNs. PNN reduction leads to enhancement in recognition memory in mice. The memory effect is not sustained likely due to a lack of memory training.
Collapse
Affiliation(s)
- Jana Dubisova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Jana Svobodova Burianova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lucie Svobodova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavol Makovicky
- Department of Biology, Faculty of Education, J. Selye University, Slovakia
| | - Noelia Martinez-Varea
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Anda Cimpean
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - James W Fawcett
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C F Kwok
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
5
|
Idota M, Ishizuka S, Hiraiwa H, Yamashita S, Oba H, Kawamura Y, Sakaguchi T, Haga T, Mizuno T, Kawashima I, Kuriyama K, Imagama S. 4-Methylumbelliferone suppresses catabolic activation in anterior cruciate ligament-derived cells via a mechanism independent of hyaluronan inhibition. J Orthop Surg Res 2021; 16:507. [PMID: 34404442 PMCID: PMC8369759 DOI: 10.1186/s13018-021-02637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The anterior cruciate ligament (ACL) has a key role as a dynamic stabilizer of the knee joints, and ACL dysfunction caused by traumatic or degenerative rupture accelerates osteoarthritis progression. Thus, it is important to prevent the degenerative rupture of the ACL. 4-Methylumbelliferone (4-MU), a pre-approved drug, exerts anti-inflammatory effects in osteoarthritis chondrocytes. It was originally used as an inhibitor of hyaluronan synthesis in chondrocytes. METHODS In this study, we investigated whether 4-MU affects the expression of catabolic factors, such as matrix metalloproteinase (MMP)-1, MMP-3, and interleukin (IL)-6, in ACL-derived cells and ACL explant cultures using immunohistochemistry, real-time RT-qPCR, and capillary western immunoassay. Furthermore, the hyaluronan concentration was evaluated using a colorimetric assay. Statistical analyses were conducted using analysis of variance for multi-group comparisons, followed by Tukey or Tukey-Kramer post hoc test. RESULTS Our results revealed, for the first time, that 4-MU suppressed the IL-β-induced upregulation of pro-catabolic factors, such as MMP-1, MMP-3, and IL-6, in ACL-derived cells. This suppressive effect was also observed in the cultured ligament tissues in ex vivo experiments. 4-MU also reversed an enhanced dependence on glycolysis in IL-1β-activated ACL-derived cells. Furthermore, we found that the suppressive effects of 4-MU were exerted directly and not through the inhibition of hyaluronan synthesis. CONCLUSIONS We conclude that 4-MU could be an effective and useful treatment for knee osteoarthritis, owing to its anti-inflammatory effect on, not only chondrocytes but also on ligament cells.
Collapse
Affiliation(s)
- Masaru Idota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan.
| | - Hideki Hiraiwa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Satoshi Yamashita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Hiroki Oba
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Yusuke Kawamura
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takefumi Sakaguchi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takahiro Haga
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takafumi Mizuno
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Itaru Kawashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Kanae Kuriyama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
6
|
Metabolic reprogramming in chondrocytes to promote mitochondrial respiration reduces downstream features of osteoarthritis. Sci Rep 2021; 11:15131. [PMID: 34302034 PMCID: PMC8302637 DOI: 10.1038/s41598-021-94611-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic dysfunction in chondrocytes drives the pro-catabolic phenotype associated with osteoarthritic cartilage. In this study, substitution of galactose for glucose in culture media was used to promote a renewed dependence on mitochondrial respiration and oxidative phosphorylation. Galactose replacement alone blocked enhanced usage of the glycolysis pathway by IL1β-activated chondrocytes as detected by real-time changes in the rates of proton acidification of the medium and changes in oxygen consumption. The change in mitochondrial activity due to galactose was visualized as a rescue of mitochondrial membrane potential but not an alteration in the number of mitochondria. Galactose-replacement reversed other markers of dysfunctional mitochondrial metabolism, including blocking the production of reactive oxygen species, nitric oxide, and the synthesis of inducible nitric oxide synthase. Of more clinical relevance, galactose-substitution blocked downstream functional features associated with osteoarthritis, including enhanced levels of MMP13 mRNA, MMP13 protein, and the degradative loss of proteoglycan from intact cartilage explants. Blocking baseline and IL1β-enhanced MMP13 by galactose-replacement in human osteoarthritic chondrocyte cultures inversely paralleled increases in markers associated with mitochondrial recovery, phospho-AMPK, and PGC1α. Comparisons were made between galactose replacement and the glycolysis inhibitor 2-deoxyglucose. Targeting intermediary metabolism may provide a novel approach to osteoarthritis care.
Collapse
|