1
|
Kraus VB, Hsueh MF. Molecular biomarker approaches to prevention of post-traumatic osteoarthritis. Nat Rev Rheumatol 2024; 20:272-289. [PMID: 38605249 DOI: 10.1038/s41584-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Up to 50% of individuals develop post-traumatic osteoarthritis (PTOA) within 10 years following knee-joint injuries such as anterior cruciate ligament rupture or acute meniscal tear. Lower-extremity PTOA prevalence is estimated to account for ≥12% of all symptomatic osteoarthritis (OA), or approximately 5.6 million cases in the USA. With knowledge of the inciting event, it might be possible to 'catch PTOA in the act' with sensitive imaging and soluble biomarkers and thereby prevent OA sequelae by early intervention. Existing biomarker data in the joint-injury literature can provide insights into the pathogenesis and early risk trajectory related to PTOA and can help to elucidate a research agenda for preventing or slowing the onset of PTOA. Non-traumatic OA and PTOA have many clinical, radiological and genetic similarities, and efforts to understand early risk trajectories in PTOA might therefore contribute to the identification and classification of early non-traumatic OA, which is the most prevalent form of OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Miller EY, Lee W, Lowe T, Zhu H, Argote PF, Dresdner D, Kelly J, Frank RM, McCarty E, Bravman J, Stokes D, Emery NC, Neu CP. MRI-derived Articular Cartilage Strains Predict Patient-Reported Outcomes Six Months Post Anterior Cruciate Ligament Reconstruction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306484. [PMID: 38746083 PMCID: PMC11092718 DOI: 10.1101/2024.04.27.24306484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Key terms Multicontrast and Multiparametric, Magnetic Resonance Imaging, Osteoarthritis, Functional Biomechanical Imaging, Knee Joint Degeneration What is known about the subject: dualMRI has been used to quantify strains in a healthy human population in vivo and in cartilage explant models. Previously, OA severity, as determined by histology, has been positively correlated to increased shear and transverse strains in cartilage explants. What this study adds to existing knowledge: This is the first in vivo use of dualMRI in a participant demographic post-ACL reconstruction and at risk for developing osteoarthritis. This study shows that dualMRI-derived strains are more significantly correlated with patient-reported outcomes than any MRI relaxometry metric. Background Anterior cruciate ligament (ACL) injuries lead to an increased risk of osteoarthritis, characterized by altered cartilage tissue structure and function. Displacements under applied loading by magnetic resonance imaging (dualMRI) is a novel MRI technique that can be used to quantify mechanical strain in cartilage while undergoing a physiological load. Purpose To determine if strains derived by dualMRI and relaxometry measures correlate with patient-reported outcomes at six months post unilateral ACL reconstruction. Study Design Cohort study. Methods Quantitative MRI (T2, T2*, T1ρ) measurements and transverse, axial, and shear strains were quantified in the medial articular tibiofemoral cartilage of 35 participants at six-months post unilateral ACL reconstruction. The relationships between patient-reported outcomes (WOMAC, KOOS, MARS) and all qMRI relaxation times were quantified using general linear mixed-effects models. A combined best-fit multicontrast MRI model was then developed using backwards regression to determine the patient features and MRI metrics that are most predictive of patient-reported outcome scores. Results Higher femoral strains were significantly correlated with worse patient-reported functional outcomes. Femoral shear and transverse strains were positively correlated with six-month KOOS and WOMAC scores, after controlling for covariates. No relaxometry measures were correlated with patient-reported outcome scores. We identified the best-fit model for predicting WOMAC score using multiple MRI measures and patient-specific information, including sex, age, graft type, femoral transverse strain, femoral axial strain, and femoral shear strain. The best-fit model significantly predicted WOMAC score (p<0.001) better than any one individual MRI metric alone. When we regressed the model-predicted WOMAC scores against the patient-reported WOMAC scores, we found that our model achieved a goodness of fit exceeding 0.52. Conclusions This work presents the first use of dualMRI in vivo in a cohort of participants at risk for developing osteoarthritis. Our results indicate that both shear and transverse strains are highly correlated with patient-reported outcome severity could serve as novel imaging biomarkers to predict the development of osteoarthritis.
Collapse
|
3
|
Harkey MS, Michel N, Grozier C, Slade JM, Collins K, Pietrosimone B, Lalush D, Lisee C, Hacihaliloglu I, Fajardo R. Femoral cartilage ultrasound echo-intensity is a valid measure of cartilage composition. J Orthop Res 2024; 42:729-736. [PMID: 37874323 PMCID: PMC10978297 DOI: 10.1002/jor.25722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to create a conversion equation that accurately predicts cartilage magnetic resonance imaging (MRI) T2 relaxation times using ultrasound echo-intensity and common participant demographics. We recruited 15 participants with a primary anterior cruciate ligament reconstruction between the ages of 18 and 35 years at 1-5 years after surgery. A single investigator completed a transverse suprapatellar scan with the ACLR limb in max knee flexion to image the femoral trochlea cartilage. A single reader manually segmented the femoral cartilage cross-sectional area to assess the echo-intensity (i.e., mean gray-scale pixel value). At a separate visit, a T2 mapping sequence with the MRI beam set to an oblique angle was used to image the femoral trochlea cartilage. A single reader manually segmented the cartilage cross-sectional area on a single MRI slice to assess the T2 relaxation time. A stepwise, multiple linear regression was used to predict T2 relaxation time from cartilage echo-intensity and common demographic variables. We created a conversion equation using the regression betas and then used an ICC and Bland-Altman plot to assess agreement between the estimated and true T2 relaxation time. Cartilage ultrasound echo-intensity and age significantly predicted T2 relaxation time (F = 7.33, p = 0.008, R2 = 0.55). When using the new conversion equation to estimate T2 relaxation time from cartilage echo-intensity and age, there was strong agreement between the estimated and true T2 relaxation time (ICC2,k = 0.84). This study provides promising preliminary data that cartilage echo-intensity combined with age can be used as a clinically accessible tool for evaluating cartilage composition.
Collapse
Affiliation(s)
- Matthew S Harkey
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas Michel
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Corey Grozier
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Katherine Collins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Lalush
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Lisee
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ilker Hacihaliloglu
- Department of Radiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan Fajardo
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
- Lansing Radiology Associates, Lansing, Michigan, USA
| |
Collapse
|
4
|
Firth AD, Pritchett SL, Milner JS, Atkinson HF, Bryant DM, Holdsworth DW, Getgood AMJ. Quantitative Magnetic Resonance Imaging of Lateral Compartment Articular Cartilage After Lateral Extra-articular Tenodesis. Am J Sports Med 2024; 52:909-918. [PMID: 38385189 DOI: 10.1177/03635465241228193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Concerns have arisen that anterior cruciate ligament reconstruction (ACLR) with lateral extra-articular tenodesis (LET) may accelerate the development of posttraumatic osteoarthritis in the lateral compartment of the knee. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate whether the augmentation of ACLR with LET affects the quality of lateral compartment articular cartilage on magnetic resonance imaging (MRI) at 2 years postoperatively. We hypothesized that there would be no difference in T1rho and T2 relaxation times when comparing ACLR alone with ACLR + LET. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A consecutive subgroup of patients at the Fowler Kennedy Sport Medicine Clinic participating in the STABILITY 1 Study underwent bilateral 3-T MRI at 2 years after surgery. The primary outcome was T1rho and T2 relaxation times. Articular cartilage in the lateral compartment was manually segmented into 3 regions of the tibia (lateral tibia [LT]-1 to LT-3) and 5 regions of the femur (lateral femoral condyle [LFC]-1 to LFC-5). Analysis of covariance was used to compare relaxation times between groups, adjusted for lateral meniscal tears and treatment, cartilage and bone marrow lesions, contralateral relaxation times, and time since surgery. Semiquantitative MRI scores according to the Anterior Cruciate Ligament OsteoArthritis Score were compared between groups. Correlations were used to determine the association between secondary outcomes (including results of the International Knee Documentation Committee score, Knee injury and Osteoarthritis Outcome Score, Lower Extremity Functional Scale, 4-Item Pain Intensity Measure, hop tests, and isokinetic quadriceps and hamstring strength tests) and cartilage relaxation. RESULTS A total of 95 participants (44 ACLR alone, 51 ACLR + LET) with a mean age of 18.8 years (61.1% female [58/95]) underwent 2-year MRI (range, 20-36 months). T1rho relaxation times were significantly elevated for the ACLR + LET group in LT-1 (37.3 ± 0.7 ms vs 34.1 ± 0.8 ms, respectively; P = .005) and LFC-2 (43.9 ± 0.9 ms vs 40.2 ± 1.0 ms, respectively; P = .008) compared with the ACLR alone group. T2 relaxation times were significantly elevated for the ACLR + LET group in LFC-1 (51.2 ± 0.7 ms vs 49.1 ± 0.7 ms, respectively; P = .03) and LFC-4 (45.9 ± 0.5 ms vs 44.2 ± 0.6 ms, respectively; P = .04) compared with the ACLR alone group. All effect sizes were small to medium. There was no difference in Anterior Cruciate Ligament OsteoArthritis Scores between groups (P = .99). Weak negative associations (rs = -0.27 to -0.22; P < .05) were found between relaxation times and quadriceps and hamstring strength in the anterolateral knee, while all other correlations were nonsignificant (P > .05). CONCLUSION Increased relaxation times demonstrating small to medium effect sizes suggested early biochemical changes in articular cartilage of the anterolateral compartment in the ACLR + LET group compared with the ACLR alone group. Further evidence and long-term follow-up are needed to better understand the association between these results and the potential risk of the development of osteoarthritis in our patient cohort.
Collapse
Affiliation(s)
- Andrew D Firth
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephany L Pritchett
- Division of Musculoskeletal Imaging, Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaques S Milner
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Hayden F Atkinson
- School of Physical Therapy, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Dianne M Bryant
- School of Physical Therapy, Western University, London, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alan M J Getgood
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Ontario, Canada
- Department of Orthopaedic Surgery, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Flannery SW, Murray MM, Badger GJ, Ecklund K, Kramer DE, Fleming BC, Kiapour AM. Early MRI-based quantitative outcomes are associated with a positive functional performance trajectory from 6 to 24 months post-ACL surgery. Knee Surg Sports Traumatol Arthrosc 2023; 31:1690-1698. [PMID: 35704062 PMCID: PMC9751233 DOI: 10.1007/s00167-022-07000-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Quantitative magnetic resonance imaging (qMRI) has been used to determine the failure properties of ACL grafts and native ACL repairs and/or restorations. How these properties relate to future clinical, functional, and patient-reported outcomes remain unknown. The study objective was to investigate the relationship between non-contemporaneous qMRI measures and traditional outcome measures following Bridge-Enhanced ACL Restoration (BEAR). It was hypothesized that qMRI parameters at 6 months would be associated with clinical, functional, and/or patient-reported outcomes at 6 months, 24 months, and changes from 6 to 24 months post-surgery. METHODS Data of BEAR patients (n = 65) from a randomized control trial of BEAR versus ACL reconstruction (BEAR II Trial; NCT02664545) were utilized retrospectively for the present analysis. Images were acquired using the Constructive Interference in Steady State (CISS) sequence at 6 months post-surgery. Single-leg hop test ratios, arthrometric knee laxity values, and International Knee Documentation Committee (IKDC) subjective scores were determined at 6 and 24 months post-surgery. The associations between traditional outcomes and MRI measures of normalized signal intensity, mean cross-sectional area (CSA), volume, and estimated failure load of the healing ACL were evaluated based on bivariate correlations and multivariable regression analyses, which considered the potential effects of age, sex, and body mass index. RESULTS CSA (r = 0.44, p = 0.01), volume (r = 0.44, p = 0.01), and estimated failure load (r = 0.48, p = 0.01) at 6 months were predictive of the change in single-leg hop ratio from 6 to 24 months in bivariate analysis. CSA (βstandardized = 0.42, p = 0.01), volume (βstandardized = 0.42, p = 0.01), and estimated failure load (βstandardized = 0.48, p = 0.01) remained significant predictors when considering the demographic variables. No significant associations were observed between MRI variables and either knee laxity or IKDC when adjusting for demographic variables. Signal intensity was also not significant at any timepoint. CONCLUSION The qMRI-based measures of CSA, volume, and estimated failure load were predictive of a positive functional outcome trajectory from 6 to 24 months post-surgery. These variables measured using qMRI at 6 months post-surgery could serve as prospective markers of the functional outcome trajectory from 6 to 24 months post-surgery, aiding in rehabilitation programming and return-to-sport decisions to improve surgical outcomes and reduce the risk of reinjury. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Sean W Flannery
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Martha M Murray
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Gary J Badger
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kirsten Ecklund
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis E Kramer
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Ata M Kiapour
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Eck BL, Yang M, Elias JJ, Winalski CS, Altahawi F, Subhas N, Li X. Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis. Invest Radiol 2023; 58:60-75. [PMID: 36165880 PMCID: PMC10198374 DOI: 10.1097/rli.0000000000000909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is a valuable tool for evaluating musculoskeletal disease as it offers a range of image contrasts that are sensitive to underlying tissue biochemical composition and microstructure. Although MRI has the ability to provide high-resolution, information-rich images suitable for musculoskeletal applications, most MRI utilization remains in qualitative evaluation. Quantitative MRI (qMRI) provides additional value beyond qualitative assessment via objective metrics that can support disease characterization, disease progression monitoring, or therapy response. In this review, musculoskeletal qMRI techniques are summarized with a focus on techniques developed for osteoarthritis evaluation. Cartilage compositional MRI methods are described with a detailed discussion on relaxometric mapping (T 2 , T 2 *, T 1ρ ) without contrast agents. Methods to assess inflammation are described, including perfusion imaging, volume and signal changes, contrast-enhanced T 1 mapping, and semiquantitative scoring systems. Quantitative characterization of structure and function by bone shape modeling and joint kinematics are described. Muscle evaluation by qMRI is discussed, including size (area, volume), relaxometric mapping (T 1 , T 2 , T 1ρ ), fat fraction quantification, diffusion imaging, and metabolic assessment by 31 P-MR and creatine chemical exchange saturation transfer. Other notable technologies to support qMRI in musculoskeletal evaluation are described, including magnetic resonance fingerprinting, ultrashort echo time imaging, ultrahigh-field MRI, and hybrid MRI-positron emission tomography. Challenges for adopting and using qMRI in musculoskeletal evaluation are discussed, including the need for metal artifact suppression and qMRI standardization.
Collapse
Affiliation(s)
- Brendan L. Eck
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John J. Elias
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Research, Cleveland Clinic Akron General, Akron, OH, USA
| | - Carl S. Winalski
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Faysal Altahawi
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Naveen Subhas
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Hipsley A, Hall M, Saxby DJ, Bennell KL, Wang X, Bryant AL. Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume. Knee Surg Sports Traumatol Arthrosc 2022; 30:1949-1957. [PMID: 34997247 DOI: 10.1007/s00167-021-06853-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology. METHODS The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18-40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°-50°, 50°-40°, 40°-30°, 30°-20°, 20°-10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression. RESULTS In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°-50° and 50°-40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume. CONCLUSION Higher quadriceps strength at knee flexion angles of 60°-40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Anthony Hipsley
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia.
| | - Michelle Hall
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - David J Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Core Group for Innovation in Health Technology, Menzies Health Institute Queensland, Gold Coast, Australia.,Gold Coast Orthopaedic Research and Education Alliance, Gold Coast, Australia
| | - Kim L Bennell
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Xinyang Wang
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedic Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Adam L Bryant
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Altahawi F, Reinke EK, Briskin I, Cantrell WA, Flanigan DC, Fleming BC, Huston LJ, Li X, Oak S, Obuchowski NA, Scaramuzza EA, Winalski CS, Zajichek A, Spindler KP, Jones MH, Jones MH. Meniscal Treatment as a Predictor of Worse Articular Cartilage Damage on MRI at 2 Years After ACL Reconstruction: The MOON Nested Cohort. Am J Sports Med 2022; 50:951-961. [PMID: 35373606 PMCID: PMC9176689 DOI: 10.1177/03635465221074662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Patients undergoing anterior cruciate ligament reconstruction (ACLR) are at an increased risk for posttraumatic osteoarthritis (PTOA). While we have previously shown that meniscal treatment with ACLR predicts more radiographic PTOA at 2 to 3 years postoperatively, there are a limited number of similar studies that have assessed cartilage directly with magnetic resonance imaging (MRI). HYPOTHESIS Meniscal repair or partial meniscectomy at the time of ACLR independently predicts more articular cartilage damage on 2- to 3-year postoperative MRI compared with a healthy meniscus or a stable untreated tear. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS A consecutive series of patients undergoing ACLR from 1 site within the prospective, nested Multicenter Orthopaedic Outcomes Network (MOON) cohort underwent bilateral knee MRI at 2 to 3 years postoperatively. Patients were aged <36 years without previous knee injuries, were injured while playing sports, and had no history of concomitant ligament surgery or contralateral knee surgery. MRI scans were graded by a board-certified musculoskeletal radiologist using the modified MRI Osteoarthritis Knee Score (MOAKS). A proportional odds logistic regression model was built to predict a MOAKS-based cartilage damage score (CDS) relative to the contralateral control knee for each compartment as well as for the whole knee, pooled by meniscal treatment, while controlling for sex, age, body mass index, baseline Marx activity score, and baseline operative cartilage grade. For analysis, meniscal injuries surgically treated with partial meniscectomy or meniscal repair were grouped together. RESULTS The cohort included 60 patients (32 female; median age, 18.7 years). Concomitant meniscal treatment at the time of index ACLR was performed in 17 medial menisci (13 meniscal repair and 4 partial meniscectomy) and 27 lateral menisci (3 meniscal repair and 24 partial meniscectomy). Articular cartilage damage was worse in the ipsilateral reconstructed knee (P < .001). A meniscal injury requiring surgical treatment with ACLR predicted a worse CDS for medial meniscal treatment (medial compartment CDS: P = .005; whole joint CDS: P < .001) and lateral meniscal treatment (lateral compartment CDS: P = .038; whole joint CDS: P = .863). Other predictors of a worse relative CDS included age for the medial compartment (P < .001), surgically observed articular cartilage damage for the patellofemoral compartment (P = .048), and body mass index (P = .007) and age (P = .020) for the whole joint. CONCLUSION A meniscal injury requiring surgical treatment with partial meniscectomy or meniscal repair at the time of ACLR predicted worse articular cartilage damage on MRI at 2 to 3 years after surgery. Further research is required to differentiate between the effects of partial meniscectomy and meniscal repair.
Collapse
Affiliation(s)
- Faysal Altahawi
- Department of Diagnostic Radiology, Cleveland Clinic, 9500 Euclid Ave., A-21, Cleveland, OH
| | - Emily K Reinke
- Department of Orthopaedic Surgery, Duke University, 3475 Erwin Rd., Durham, NC 27705
| | - Isaac Briskin
- Department of Quantitative Health Services, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - William A Cantrell
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - David C Flanigan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 2835 Fred Taylor Dr., Suite 2212, Columbus, OH 43202
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Coro West, Suite 404, 1 Hoppin Street, Providence RI 02903
| | - Laura J Huston
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, MCE, South Tower, Suite 4200, Nashville, TN 37232
| | - Xiaojuan Li
- Imaging Institute, Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine (CCLCM), 9500 Euclid Avenue, ND20, Cleveland, OH 44195
| | - Sameer Oak
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Nancy A Obuchowski
- Department of Quantitative Health Services, Cleveland Clinic, JJN3-296, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Erica A Scaramuzza
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, MCE, South Tower, Suite 4200, Nashville, TN 37232
| | - Carl S Winalski
- Department of Diagnostic Radiology, Cleveland Clinic, 9500 Euclid Ave., A-21, Cleveland, OH
| | - Alex Zajichek
- Department of Quantitative Health Services, Cleveland Clinic, Cleveland, OH
| | - Kurt P Spindler
- Orthopaedic and Rheumatologic Institute, Cleveland Clinic Foundation, 5555 Transportation Blvd., Garfield Heights, OH 44125
| | - Morgan H Jones
- Brigham and Women’s Hospital, Department of Orthopaedic Surgery, 75 Francis Street, Boston, MA 02115
| | - Morgan H Jones
- Investigation performed at the Cleveland Clinic, Cleveland, Ohio, USA and Venderbilt Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Giesler P, Baumann FA, Weidlich D, Karampinos DC, Jung M, Holwein C, Schneider J, Gersing AS, Imhoff AB, Bamberg F, Jungmann PM. Patellar instability MRI measurements are associated with knee joint degeneration after reconstruction of the medial patellofemoral ligament. Skeletal Radiol 2022; 51:535-547. [PMID: 34218322 PMCID: PMC8763754 DOI: 10.1007/s00256-021-03832-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To qualitatively and quantitatively evaluate the 2-year magnetic resonance imaging (MRI) outcome after MPFL reconstruction at the knee and to assess MRI-based risk factors that predispose for inferior clinical and imaging outcomes. MATERIALS AND METHODS A total of 31 patients with MPFL reconstruction were included (22 ± 6 years, 10 female). MRI was performed preoperatively in 21/31 patients. Two-year follow-up MRI included quantitative cartilage T2 and T1rho relaxation time measurements at the ipsilateral and contralateral knee. T2relative was calculated as T2patellofemoral/T2femorotibial. Morphological evaluation was conducted via WORMS scores. Patellar instability parameters and clinical scores were obtained. Statistical analyses included descriptive statistics, t-tests, multivariate regression models, and correlation analyses. RESULTS Two years after MPFL reconstruction, all patellae were clinically stable. Mean total WORMS scores improved significantly from baseline to follow-up (mean difference ± SEM, - 4.0 ± 1.3; P = 0.005). As compared to patients with no worsening of WORMS subscores over time (n = 5), patients with worsening of any WORMS subscore (n = 16) had lower trochlear depth, lower facetal ratio, higher tibial-tuberosity to trochlear groove (TTTG) distance, and higher postoperative lateral patellar tilt (P < 0.05). T2relative was higher at the ipsilateral knee (P = 0.010). T2relative was associated with preoperatively higher patellar tilt (P = 0.021) and higher TTTG distance (P = 0.034). TTTG distance, global T2 values, and WORMS progression correlated with clinical outcomes (P < 0.05). CONCLUSION MPFL reconstruction is an optimal treatment strategy to restore patellar stability. Still, progressive knee joint degeneration and patellofemoral cartilage matrix degeneration may be observed, with patellar instability MRI parameters representing particular risk factors.
Collapse
Affiliation(s)
- Paula Giesler
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Frederic A. Baumann
- Clinical and Interventional Angiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Christian Holwein
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Julia Schneider
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Alexandra S. Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
- Department of Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Andreas B. Imhoff
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Pia M. Jungmann
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
10
|
Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res 2022; 40:55-64. [PMID: 34314066 DOI: 10.1002/jor.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) reconstruction is successful at restoring stability to return ACL injured patients to high-demand work, sports, and recreational activities. The development of posttraumatic osteoarthritis (OA) in roughly half of patients just 10-15 years after ACLR highlight the need to improve clinical care pathways. Graft failure and reinjury rates, which further increase OA risk, also remain high for younger and more active patients. The biological components of joint recovery and graft incorporation, therefore, impact short- and long-term clinical outcomes. Biochemical and magnetic resonance imaging (MRI) data show substantial compromise of articular cartilage metabolism and matrix composition after ACL injury and reconstructive surgery suggesting a potential need for activity modulation in early recovery. Furthermore, joint recovery is variable with compositional MRI studies showing progressive cartilage degeneration 1 and 2 years after ACLR. Biopsy and MRI studies also show high variability in ACL graft characteristics within the 1st year after ACLR followed by continued graft maturation into the 2nd year and beyond. To improve the care of ACL injured patients, there is a critical need for clinical attention and scientific inquiry into timing the reintroduction of higher load activities in relationship to neuromuscular recovery, joint biology, and graft maturation. In addition to symptomatic and mechanical recovery, development and validation of biological markers for joint and cartilage homeostasis as well as ACL graft healing are needed for personalized decision making on rehabilitation needs, reduction of OA risk, and resumption of athletic, recreational, and vocational activities.
Collapse
Affiliation(s)
- Constance R Chu
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Veterans Affairs Palo Alto Healthcare System, Livermore, California, USA
| |
Collapse
|
11
|
Williams AA, Deadwiler BC, Dragoo JL, Chu CR. Cartilage Matrix Degeneration Occurs within the First Year after ACLR and Is Associated with Impaired Clinical Outcome. Cartilage 2021; 13:1809S-1818S. [PMID: 34894770 PMCID: PMC8804799 DOI: 10.1177/19476035211063856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Anterior cruciate ligament reconstruction (ACLR) has not been shown to decrease the risk for development of post-traumatic osteoarthritis. Magnetic resonance imaging (MRI) T2 mapping can be used to assess cartilage compositional changes. This study tests whether (1) worse cartilage arthroscopic status at ACLR is reflected by higher cartilage T2 values in matched study regions 6 weeks and 1 year after ACLR, and (2) increasing cartilage T2 values between 6 weeks and 1 year after ACLR are associated with worsening patient-reported outcomes. DESIGN Twenty-two participants with ACLR and 26 controls underwent 3T MRI. T2 values in medial and lateral femoral and tibial cartilage were measured at 6 weeks and 1 year after ACLR and compared with arthroscopic grades, Knee injury and Osteoarthritis Outcome Scores (KOOS), and control T2 values. RESULTS Most (59%-86%) cartilage study regions examined by arthroscopy demonstrated intact articular surfaces. Average T2 value increased in 3 of 4 study regions between 6 weeks and 1 year after ACLR (P = .001-.011). T2 value increased (P < .013) even for participants whose cartilage had intact articular surfaces at ACLR. Participants with ACLR who showed greater increases in cartilage T2 values had less improvement to KOOS Quality of Life (P = .009, ρ = -0.62). DISCUSSION Cartilage status assessed arthroscopically at ACLR and by MRI T2 maps 6 weeks later was healthier than cartilage status assessed by MRI T2 maps at 1-year follow-up. Progressive T2 elevations were observed over the first year after ACLR even in patients with arthroscopically intact cartilage at the time of surgery and were associated with reduced improvement in knee quality of life suggesting preosteoarthritis.
Collapse
Affiliation(s)
- Ashley A. Williams
- Department of Orthopaedic Surgery,
Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare
System, Palo Alto, CA, USA
| | | | - Jason L. Dragoo
- Department of Orthopaedics, University
of Colorado, Denver, CO, USA
| | - Constance R. Chu
- Department of Orthopaedic Surgery,
Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare
System, Palo Alto, CA, USA
| |
Collapse
|
12
|
Osteoarthritis year in review 2020: imaging. Osteoarthritis Cartilage 2021; 29:170-179. [PMID: 33418028 DOI: 10.1016/j.joca.2020.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023]
Abstract
This narrative "Year in Review" highlights a selection of articles published between January 2019 and April 2020, to be presented at the OARSI World Congress 2020 within the field of osteoarthritis (OA) imaging. Articles were obtained from a PubMed search covering the above period, utilizing a variety of relevant search terms. We then selected original and review studies on OA-related imaging in humans, particularly those with direct clinical relevance, with a focus on the knee. Topics selected encompassed clinically relevant models of early OA, particularly imaging applications on cruciate ligament rupture, as these are of direct clinical interest and provide potential opportunity to evaluate preventive therapy. Further, imaging applications on structural modification of articular tissues in patients with established OA, by non-pharmacological, pharmacological and surgical interventions are summarized. Finally, novel deep learning approaches to imaging are reviewed, as these facilitate implementation and scaling of quantitative imaging application in clinical trials and clinical practice. Methodological or observational studies outside these key focus areas were not included. Studies focused on biology, biomechanics, biomarkers, genetics and epigenetics, and clinical studies that did not contain an imaging component are covered in other articles within the OARSI "Year in Review" series. In conclusion, exciting progress has been made in clinically validating human models of early OA, and the field of automated articular tissue segmentation. Most importantly though, it has been shown that structure modification of articular cartilage is possible, and future research should focus on the translation of these structural findings to clinical benefit.
Collapse
|
13
|
Boling MC, Dupell M, Pfeiffer SJ, Wallace K, Lalush D, Spang JT, Nissman D, Pietrosimone B. In vivo Compositional Changes in the Articular Cartilage of the Patellofemoral Joint following Anterior Cruciate Ligament Reconstruction. Arthritis Care Res (Hoboken) 2021; 74:1172-1178. [PMID: 33460530 PMCID: PMC8286261 DOI: 10.1002/acr.24561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To compare T1ρ relaxation times of the medial and lateral regions of the patella and femoral trochlea at 6 and 12 months post-anterior cruciate ligament reconstruction (ACLR) on the ACLR and contralateral limb. Greater T1ρ relaxation times are associated with a lesser proteoglycan density of articular cartilage. METHODS Twenty individuals (11 males, 9 females; age=22±3.9yrs; mass=76.11±13.48kg; height=178.32±12.32) who underwent a previous unilateral ACLR using a patellar tendon autograft. Magnetic resonance images from both limbs were acquired at 6 and 12 months post-ACLR. Voxel by voxel T1ρ relaxation times were calculated using a five-image sequence. The medial and lateral regions of the femoral trochlea and patellar articular cartilage were manually segmented on both limbs. Separate limb (ACLR and contralateral limb) by time (6-months and 12-months) ANOVAs were performed for each region (P<0.05). RESULTS For the medial patella and lateral trochlea, T1ρ relaxation times increased in both limbs between 6 and 12-months post-ACLR (medial patella: P=0.012; lateral trochlea: P=0.043). For the lateral patella, T1ρ relaxation times were significantly greater on the contralateral limb compared to the ACLR limb (P=0.001). The T1ρ relaxation times of the medial trochlea on the ACLR limb were significantly greater at 6 (P=0.005) and 12-months (P<0.001) compared to the contralateral limb. T1ρ relaxation times of the medial trochlea significantly increased from 6 to 12-months on the ACLR limb (P=0.003). CONCLUSION Changes in T1ρ relaxation times occur within the first 12 months following ACLR in specific regions of the patellofemoral joint on the ACLR and contralateral limb.
Collapse
Affiliation(s)
- Michelle C Boling
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Matthew Dupell
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Steven J Pfeiffer
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Kyle Wallace
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - David Lalush
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Jeffrey T Spang
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Daniel Nissman
- University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | | |
Collapse
|
14
|
|